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Abstract

k-nearest-neighbor machine translation (kNN-
MT) (Khandelwal et al., 2021) boosts the
translation performance of trained neural ma-
chine translation (NMT) models by incorpo-
rating example-search into the decoding algo-
rithm. However, decoding is seriously time-
consuming, i.e., roughly 100 to 1,000 times
slower than standard NMT, because neighbor
tokens are retrieved from all target tokens of
parallel data in each timestep. In this pa-
per, we propose “Subset kNN-MT”, which im-
proves the decoding speed of kNN-MT by two
methods: (1) retrieving neighbor target tokens
from a subset that is the set of neighbor sen-
tences of the input sentence, not from all sen-
tences, and (2) efficient distance computation
technique that is suitable for subset neighbor
search using a look-up table. Our subset kNN-
MT achieved a speed-up of up to 132.2 times
and an improvement in BLEU score of up to
1.6 compared with kNN-MT in the WMT’19
De-En translation task and the domain adapta-
tion tasks in De-En and En-Ja.

1 Introduction

Neural machine translation (NMT) (Sutskever
et al., 2014; Bahdanau et al., 2015; Luong et al.,
2015; Wu et al., 2016; Vaswani et al., 2017)
has achieved state-of-the-art performance and be-
come the focus of many studies. Recently, kNN-
MT (Khandelwal et al., 2021) has been pro-
posed, which addresses the problem of perfor-
mance degradation in out-of-domain data by in-
corporating example-search into the decoding al-
gorithm. kNN-MT stores translation examples as
a set of key–value pairs called “datastore” and
retrieves k-nearest-neighbor target tokens in de-
coding. The method improves the translation
performance of NMT models without additional
training. However, decoding is seriously time-
consuming, i.e., roughly 100 to 1,000 times slower
than standard NMT, because neighbor tokens are

retrieved from all target tokens of parallel data in
each timestep. In particular, in a realistic open-
domain setting, kNN-MT may be significantly
slower because it needs to retrieve neighbor tokens
from a large datastore that covers various domains.

We propose “Subset kNN-MT”, which im-
proves the decoding speed of kNN-MT by two
methods: (1) retrieving neighbor target tokens
from a subset that is the set of neighbor sentences
of the input sentence, not from all sentences, and
(2) efficient distance computation technique that
is suitable for subset neighbor search using a look-
up table. When retrieving neighbor sentences for a
given input, we can employ arbitrary sentence rep-
resentations, e.g., pre-trained neural encoders or
TF-IDF vectors, to reduce the kNN search space.
When retrieving target tokens in each decoding
step, the search space in subset kNN-MT varies
depending on the input sentence; therefore, the
clustering-based search methods used in the origi-
nal kNN-MT cannot be used. For this purpose, we
use asymmetric distance computation (ADC) (Jé-
gou et al., 2011) in subset neighbor search.

Our subset kNN-MT achieved a speed-up of
up to 132.2 times and an improvement in BLEU
score of up to 1.6 compared with kNN-MT in
the WMT’19 German-to-English general domain
translation task and the domain adaptation tasks in
German-to-English and English-to-Japanese with
open-domain settings.

2 kNN-MT

kNN-MT (Khandelwal et al., 2021) retrieves the
k-nearest-neighbor target tokens in each timestep,
computes the kNN probability from the distances
of retrieved tokens, and interpolates the probabil-
ity with the model prediction probability. The
method consists of two steps: (1) datastore cre-
ation, which creates key–value translation mem-
ory, and (2) generation, which calculates an out-
put probability according to the nearest neighbors
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Figure 1: Overview of our subset kNN-MT.

of the cached translation memory.

Datastore Construction A typical NMT model
is composed of an encoder that encodes a source
sentence x = (x1, x2, . . . , x|x|) ∈ V |x|X and
a decoder that generates target tokens y =

(y1, y2, . . . , y|y|) ∈ V |y|Y where |x| and |y| are the
lengths of sentences x and y, respectively, and VX
and VY are the vocabularies of the source language
and target language, respectively. The t-th target
token yt is generated according to its output proba-
bility P (yt|x,y<t) over the target vocabulary, cal-
culated from the source sentence x and generated
target tokens y<t. kNN-MT stores pairs of D-
dimensional vectors and tokens in a datastore, rep-
resented as key–value memory M ⊆ RD × VY .
The key (∈ RD) is an intermediate representa-
tion of the final decoder layer obtained by teacher
forcing a parallel sentence pair (x,y) to the NMT
model, and the value is a ground-truth target token
yt. The datastore is formally defined as follows:

M = {(f(x,y<t), yt) | (x,y) ∈ D, 1 ≤ t ≤ |y|},
(1)

where D is parallel data and f : V |x|X × V t−1
Y →

RD is a function that returns the D-dimensional
intermediate representation of the final decoder
layer from the source sentence and generated tar-
get tokens. In our model, as in (Khandelwal et al.,
2021), the key is the intermediate representation
before it is passed to the final feed-forward net-
work.

Generation During decoding, kNN-MT gener-
ates output probabilities by computing the linear
interpolation between the kNN and MT probabili-

ties, pkNN and pMT, as follows:

P (yt|x,y<t) = λpkNN(yt|x,y<t)

+ (1− λ)pMT(yt|x,y<t), (2)

where λ is a hyperparameter for weighting the
kNN probability. Let f(x,y<t) be the query vec-
tor at timestep t. The top i-th key and value in
the k-nearest-neighbor are ki ∈ RD and vi ∈ VY ,
respectively. Then pkNN is defined as follows:

pkNN(yt|x,y<t)

∝
k∑

i=1

1yt=vi exp

(−∥ki − f(x,y<t)∥22
τ

)
, (3)

where τ is the temperature for pkNN, and we set
τ = 100. Note that this kNN search is seriously
time-consuming1 (Khandelwal et al., 2021).

3 Proposed Model: Subset kNN-MT

Our Subset kNN-MT (Figure 1) drastically ac-
celerates vanilla kNN-MT by reducing the kNN
search space by using sentence information (Sec-
tion 3.1) and efficiently computing the distance be-
tween a query and key by performing table lookup
(Section 3.2).

3.1 Subset Retrieval

Sentence Datastore Construction In our
method, we construct a sentence datastore that
stores pairs comprising a source sentence vector

1In our experiments on the WMT’19 German-to-English,
the datastore has 862M tokens, the vocabulary size is 42k,
and the batch size was set to 12,000 tokens. While a normal
Transformer translates 2,000 sentences in 7.5 seconds, kNN-
MT takes 2446.0 seconds. Note the kNN search is executed
for each timestep in generating a target sentence.

175



Figure 2: Distance computation using asymmetric dis-
tance computation (ADC).

and a target sentence. Concretely, a sentence
datastore S is defined as follows:

S = {(h(x),y) | (x,y) ∈ D}, (4)

where h : V |x|X → RD′
represents a sentence

encoder, which is a function that returns a D′-
dimensional vector representation of a source sen-
tence.

Decoding At the beginning of decoding, the
model retrieves the n-nearest-neighbor sentences
of the given input sentence from the sentence data-
store S . Let Ŝ ⊂ S be the subset comprising n-
nearest-neighbor sentences. The nearest neighbor
search space for target tokens in kNN-MT is then
drastically reduced by constructing the datastore
corresponding to Ŝ as follows:

M̂ = {(f(x,y<t), yt) |
(h(x),y) ∈ Ŝ, 1 ≤ t ≤ |y|}, (5)

where M̂ ⊂ M is the reduced datastore for the
translation examples coming from the n-nearest-
neighbor sentences. During decoding, the model
uses the same algorithm as kNN-MT except that
M̂ is used as the datastore instead of M. The
proposed method reduces the size of the nearest
neighbor search space for the target tokens from
|D| to n (≪ |D|) sentences.

3.2 Efficient Distance Computation Using
Lookup Table

Subset kNN-MT retrieves the k-nearest-neighbor
target tokens by an efficient distance computation
method that uses a look-up table. In the orig-
inal kNN-MT, inverted file index (IVF) is used

for retrieving kNN tokens. IVF divides the search
space into Nlist clusters and retrieves tokens from
the neighbor clusters. In contrast, in subset kNN-
MT, the search space varies dynamically depend-
ing on the input sentence. Therefore, clustering-
based search methods cannot be used; instead, it
is necessary to calculate the distance for each key
in the subset. For this purpose, we use asymmetric
distance computation (ADC) (Jégou et al., 2011)
instead of the usual distance computation between
floating-point vectors. In ADC, the number of ta-
ble lookup is linearly proportional to the number
of keys N in the subset. Therefore, it is not suit-
able for searching in large datastore M, but in a
small subset M̂, the search is faster than the direct
calculation of the L2 distance.

Product Quantization (PQ) The kNN-MT
datastore M may become too large because it
stores high-dimensional intermediate representa-
tions of all target tokens of parallel data. For in-
stance, the WMT’19 German-to-English parallel
data, which is used in our experiments, contains
862M tokens on the target side. Therefore, if vec-
tors were stored directly, the datastore would oc-
cupy 3.2 TiB when a 1024-dimensional vector as
a key 2, and this would be hard to load into RAM.
To solve this memory problem, product quantiza-
tion (PQ) (Jégou et al., 2011) is used in both kNN-
MT and our subset kNN-MT, which includes both
source sentence and target token search.

PQ splits a D-dimensional vector into M sub-
vectors and quantizes for each D

M -dimensional
sub-vector. Codebooks are learned by k-means
clustering of key vectors in each subspace. It is
computed iteratively by: (1) assigning the code of
a key to its nearest neighbor centroid (2) and up-
dating the centroid of keys assigned to the code.
The m-th sub-space’s codebook Cm is formulated
as follows:

Cm = {cm1 , . . . , cmL }, cml ∈ R
D
M . (6)

In this work, each codebook size is set to L = 256.
A vector q ∈ RD is quantized and its code vector
q̄ is calculated as follows:

q̄ = [q̄1, . . . , q̄M ]⊤ ∈ {1, . . . , L}M , (7)

q̄m = argmin
l
∥qm − cml ∥22, qm ∈ R

D
M . (8)

23.2 TiB ≃ 862.6M tokens × 1024 dimension ×
32 bits (float size)/8 bits (byte size)/10244
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Asymmetric Distance Computation (ADC)
Our method efficiently computes the distance be-
tween a query vector and quantized key vectors
using ADC (Jégou et al., 2011) (Figure 2). ADC
computes the distance between a query vector
q ∈ RD and N key codes K̄ = {k̄i}Ni=1 ⊆
{1, . . . , L}M . First, the distance look-up table
Am ∈ RL is computed by calculating the distance
between a query qm and the codes cml ∈ Cm in
each sub-space m, as follows:

Am
l = ∥qm − cml ∥22. (9)

Second, the distance between a query and each key
d(q, k̄i) is obtained by looking up the distance ta-
ble as follows:

d(q, k̄i) =

M∑

m=1

dm(qm, k̄mi ) =

M∑

m=1

Am
k̄mi

. (10)

A look-up table in each subspace, Am ∈ RL, con-
sists of the distance between a query and codes.
The number of codes in each subspace is L and
a distance is a scalar; therefore, Am has L dis-
tances. And the table look-up key is the code of
a key itself, i.e., if the m-th subspace’s code of
a key is 5, ADC looks-up Am

5 . By using ADC,
the distance is computed only once3 (Equation 9)
and does not decode PQ codes into D-dimensional
key vectors; therefore, it can compute the distance
while keeping the key in the quantization code,
and the k-nearest-neighbor tokens are efficiently
retrieved from M̂.

3.3 Sentence Encoder

In our subset kNN-MT, a variety of sentence en-
coder models can be employed. The more similar
sentences extracted from M, the more likely the
subset M̂ comprises the target tokens that are use-
ful for translation. Hence, we need sentence en-
coders that compute vector representations whose
distances are close for similar sentences.

In this work, we employ two types of repre-
sentations: neural and non-neural. We can em-
ploy pre-trained neural sentence encoders. While
they require to support the source language, we
expect that the retrieved sentences are more simi-
lar than other encoders because we can use mod-
els that have been trained to minimize the vector

3The direct distance computation requires N times calcu-
lations according to ∥q − k∥2. ADC computes the distance
only L ≪ N times and just looks-up the table N times.

distance between similar sentences (Reimers and
Gurevych, 2019). An NMT encoder can also be
used as a sentence encoder by applying average
pooling to its intermediate representations. This
does not require any external resources, but it is
not trained from the supervision of sentence rep-
resentations. Alternatively, we can also use non-
neural models like TF-IDF. However, it is not clear
whether TF-IDF based similarity is suitable for
our method. This is because even if sentences
with close surface expressions are retrieved, they
do not necessarily have similar meanings and may
not yield the candidate tokens needed for transla-
tion.

4 Experiments

4.1 Setup

We compared the translation quality and speed of
our subset kNN-MT with those of the conven-
tional kNN-MT in open-domain settings that as-
sume a domain of an input sentence is unknown.
The translation quality was measured by sacre-
BLEU (Post, 2018) and COMET (Rei et al., 2020).
The speed was evaluated on a single NVIDIA
V100 GPU. We varied the batch size settings: ei-
ther 12,000 tokens (B∞), to simulate the document
translation scenario, or a single sentence (B1), to
simulate the online translation scenario. The beam
size was set to 5, and the length penalty was set to
1.0.

k-Nearest-Neighbor Search In kNN-MT, we
set the number of nearest neighbor tokens to
k = 16. We used FAISS (Johnson et al.,
2019) to retrieve the kNN tokens in kNN-MT
and for neighbor sentence search in subset kNN-
MT. The subset search and ADC were imple-
mented in PYTORCH. We use approximate dis-
tance computed from quantized keys instead of
full-precision keys in Equation 3, following the
original kNN-MT (Khandelwal et al., 2021) im-
plementation. The kNN-MT datastore and our
sentence datastore used IVF and optimized PQ
(OPQ) (Ge et al., 2014). OPQ rotates vectors to
minimize the quantization error of PQ. The sub-
set kNN-MT datastore is not applied clustering
since we need to extract subset tokens. In this
datastore, the 1024-dimensional vector represen-
tation, i.e., D = 1024, was reduced in dimen-
sionality to 256-dimensions by principal compo-
nent analysis (PCA), and these vectors were then
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quantized by PQ. At search time, a query vec-
tor is pre-transformed to 256-dimensions by mul-
tiplying the PCA matrix, and then the kNN tar-
get tokens are searched by ADC. The subset of a
datastore can be loaded into GPU memory since
it is significantly smaller than the original kNN-
MT datastore, so we retrieved k-nearest-neighbor
tokens from a subset on a GPU.

Sentence Encoder We compared 4 different
sentence encoders: LaBSE, AvgEnc, TF-IDF, and
BM25. LaBSE (Feng et al., 2022) is a pre-trained
sentence encoder, fine-tuned from multilingual
BERT. AvgEnc is an average pooled encoder hid-
den vector of the Transformer NMT model, which
is also used for translation. TF-IDF (Jones, 1972)
and BM25 (Jones et al., 2000) compute vectors
weighted the important words in a sentence. We
used the raw count of tokens as the term frequency
and applied add-one smoothing to calculate the in-
verse document frequency, where a sentence was
regarded as a document. We set k1 = 2.0, b =
0.75 in BM25 (Jones et al., 2000). Both TF-IDF
and BM25 vectors were normalized by their L2-
norm and their dimensionality was reduced to 256-
dimensions by singular value decomposition.

4.2 In-Domain Translation

We evaluated the translation quality and speed
of subset kNN-MT in the WMT’19 De-En
translation task (newstest2019; 2,000 sentences)
and compared them with the kNN-MT base-
lines (Khandelwal et al., 2021; Meng et al., 2022).
We used a trained Transformer big implemented in
FAIRSEQ (Ott et al., 2019) as the base MT model.
We constructed the datastore from the parallel data
of the WMT’19 De-En news translation task with
subword lengths of 250 or less and a sentence
length ratio of 1.5 or less between the source and
target sentences. The datastore contained 862.6M
target tokens obtained from 29.5M sentence pairs.
The subset size was set to n = 512.

Table 1 shows our experimental results. In
the table, “tok/s” denotes the number of tokens
generated per second. The table shows that, al-
though kNN-MT improves 0.9 BLEU point from
the base MT without additional training, the de-
coding speed is 326.1 times and 51.7 times slower
with the B∞ and B1 settings, respectively. In con-
trast, our subset kNN-MT (h: LaBSE) is 111.8
times (with B∞) and 47.4 times (with B1) faster
than kNN-MT with no degradation in the BLEU

↑tok/s

Model ↑BLEU ↑COMET B∞ B1

Base MT 39.2 84.56 6375.2 129.14

kNN-MT 40.1 84.73 19.6 2.5
Fast kNN-MT 40.3 84.70 286.9 27.1
Ours: Subset kNN-MT
h: LaBSE 40.1 84.66 2191.4 118.4
h: AvgEnc 39.9 84.68 1816.8 97.3
h: TF-IDF 40.0 84.63 2199.1 113.0
h: BM25 40.0 84.60 1903.9 108.4

Table 1: Results of translation quality and decoding
speed in the WMT’19 De-En translation task. “h:”
shows the type of sentence encoder used.

score. Subset kNN-MT (h: AvgEnc) achieved
speed-ups of 92.7 times (with B∞) and 38.9 times
(with B1) with a slight quality degradation (−0.2
BLEU and −0.05 COMET), despite using no ex-
ternal models. We also evaluated our subset kNN-
MT when using non-neural sentence encoders (h:
TF-IDF, BM25). The results show that both TF-
IDF and BM25 can generate translations with al-
most the same BLEU score and speed as neural
sentence encoders. In summary, this experiment
showed that our subset kNN-MT is two orders of
magnitude faster than kNN-MT and has the same
translation performance.

4.3 Domain Adaptation
German-to-English We evaluated subset kNN-
MT on out-of-domain translation in the IT, Ko-
ran, Law, Medical, and Subtitles domains (Koehn
and Knowles, 2017; Aharoni and Goldberg, 2020)
with open-domain settings. The datastore was
constructed from parallel data by merging all tar-
get domains and the general domain (WMT’19
De-En) assuming that the domain of the input
sentences is unknown. The datastore contained
895.9M tokens obtained from 30.8M sentence
pairs. The NMT model is the same as that used
in Section 4.2 trained from WMT’19 De-En. The
subset size was set to n = 256, and the batch size
was set to 12,000 tokens.

Table 2 shows the results. Compared with
base MT, kNN-MT improves the translation per-
formance in all domains but the decoding speed
is much slower. In contrast, our subset kNN-
MT generates translations faster than kNN-MT.
However, in the domain adaptation task, there are
differences in translation quality between those
using neural sentence encoders and those using
non-neural sentence encoders. The table shows

178



IT Koran Law Medical Subtitles

Model BLEU tok/s BLEU tok/s BLEU tok/s BLEU tok/s BLEU tok/s

Base MT 38.7 4433.2 17.1 5295.0 46.1 4294.0 42.1 4392.1 29.4 6310.5

kNN-MT 41.0 22.3 19.5 19.3 52.6 18.6 48.2 19.8 29.6 30.3
Subset kNN-MT
h: LaBSE 41.9 2362.2 20.1 2551.3 53.6 2258.0 49.8 2328.3 29.9 3058.4
h: AvgEnc 41.9 2197.8 19.9 2318.4 53.2 1878.8 49.2 2059.9 30.0 3113.0
h: TF-IDF 40.0 2289.0 19.3 2489.5 51.4 2264.3 47.5 2326.6 29.3 2574.4
h: BM25 40.0 1582.4 19.1 2089.5 50.8 1946.3 47.4 1835.6 29.4 1567.7

Table 2: Results of out-of-domain translation with open-domain settings. The speed is evaluated with B∞. Bold
scores show the best translation performance in each domain. The COMET scores are listed in the appendix due
to space limitations.

that the use of non-neural sentence encoders (TF-
IDF and BM25) causes drop in translation qual-
ity, whereas the use of neural sentence encoders
(LaBSE and AvgEnc) do not. In addition, com-
pared with kNN-MT, our subset kNN-MT with
neural encoders achieves an improvement of up to
1.6 BLEU points on some datasets. In summary,
these results show that neural sentence encoders
are effective in retrieving domain-specific nearest
neighbor sentences from a large datastore.

English-to-Japanese We also evaluated our
model on English-to-Japanese translation. We
used a pre-trained Transformer big model trained
from JParaCrawl v3 (Morishita et al., 2022) and
evaluated its performance on Asian Scientific Pa-
per Excerpt Corpus (ASPEC) (Nakazawa et al.,
2016) and Kyoto Free Translation Task (KFTT;
created from Wikipedia’s Kyoto articles) (Neubig,
2011). The datastore was constructed from paral-
lel data by merging ASPEC, KFTT, and the gen-
eral domain (JParaCrawl v3). Note that ASPEC
contains 3M sentence pairs, but we used only the
first 2M pairs for the datastore to remove noisy
data, following Neubig (2014). The datastore con-
tained 735.9M tokens obtained from 24.4M sen-
tence pairs. The subset size was set to n = 512,
and the batch size was set to 12,000 tokens.

Table 3 shows the results. These show that
kNN-MT improves out-of-domain translation per-
formance compared with base MT on other lan-
guage pairs other than German-to-English. On
English-to-Japanese, subset kNN-MT improves
the decoding speed, but subset kNN-MT with TF-
IDF and BM25 degrades the translation quality
compared with kNN-MT. However, subset kNN-
MT still achieves higher BLEU scores than base
MT without any additional training steps, and it
is two orders of magnitude faster than kNN-MT.

In summary, subset kNN-MT can achieve better
translation performance than base MT in exchange
for a small slowdown in open-domain settings.

5 Discussion

5.1 Case Study: Effects of Subset Search

Translation examples in the medical domain are
shown in Table 4 and the search results of the top-
3 nearest neighbor sentences are shown in Table 5.
In the table, the subset kNN-MT results are ob-
tained using a LaBSE encoder. Table 4 shows that
subset kNN-MT correctly generates the medical
term “Co-administration”. The results of the near-
est neighbor sentence search (Table 5) show that
“Co-administration” is included in the subset. In
detail, there are 30 cases of “Co-administration”
and no case of “A joint use” in the whole sub-
set consisting of k = 256 neighbor sentences.
Base MT and kNN-MT have the subwords of “Co-
administration” in the candidates; however, the
subwords of “A joint use” have higher scores. Ta-
ble 6 shows the negative log-likelihood (NLL) of
the first three tokens and their average for each
model. The second token of subset kNN-MT, “-
” (hyphen), has a significantly lower NLL than
the other tokens. The number of “joint” and “-
” in the subset were 0 and 101, respectively, and
the k-nearest-neighbor tokens were all “-” in sub-
set kNN-MT. Therefore, the NLL was low be-
cause pkNN(“-”) = 1.0, so the joint probabil-
ity of a beam that generates the sequence “Co-
administration” is higher than “A joint use”.

In summary, the proposed method can retrieve
more appropriate words by searching a subset that
consists only of neighboring cases.
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ASPEC KFTT

Model BLEU COMET tok/s BLEU COMET tok/s

Base MT 26.7 88.55 5541.6 20.3 83.52 3714.4

kNN-MT 32.8 89.13 23.5 27.8 85.32 28.0
Subset kNN-MT
h: LaBSE 32.5 88.77 2031.8 25.8 84.11 1436.6
h: AvgEnc 32.4 88.75 1775.6 26.4 84.45 1471.3
h: TF-IDF 29.5 88.24 1763.9 22.3 82.37 1559.3
h: BM25 29.4 88.04 1810.7 21.8 82.21 1533.8

Table 3: Results of out-of-domain translation in English-to-Japanese. The speed is evaluated with B∞.

Input Eine gemeinsame Anwendung von Nifedipin
und Rifampicin ist daher kontraindiziert.

Reference Co-administration of nifedipine with ri-
fampicin is therefore contra-indicated.

Base MT A joint use of nifedipine and rifampicin is
therefore contraindicated.

kNN-MT A joint use of nifedipine and rifampicin is
therefore contraindicated.

Subset
kNN-MT

Co-administration of nifedipine and rifampicin
is therefore contraindicated.

Table 4: Translation examples in the medical domain.

S-1 Die gemeinsame Anwendung von Ciprofloxacin und
Tizanidin ist kontraindiziert.

S-2 Rifampicin und Nilotinib sollten nicht gleichzeitig
angewendet werden.

S-3 Die gleichzeitige Anwendung von Ribavirin und Di-
danosin wird nicht empfohlen.

T-1 Co-administration of ciprofloxacin and tizanidine is
contra-indicated.

T-2 Rifampicin and nilotinib should not be used concomi-
tantly.

T-3 Co-administration of ribavirin and didanosine is not
recommended.

Table 5: Top-3 neighbor sentences of our subset kNN-
MT in Table 4. “S-” and “T-” denote the top-n neighbor
source sentences and their translations, respectively.

5.2 Diversity of Subset Sentences

We hypothesize that the noise introduced by sen-
tence encoders causes the difference in accuracy.
In this section, we investigate whether a better sen-
tence encoder would reduce the noise injected into
the subset. In particular, we investigated the rela-
tionship between vocabulary diversity in the sub-
set and translation quality in the medical domain.
Because an output sentence is affected by the sub-
set, we measured the unique token ratio of both
source and target languages in the subset as the di-
versity as follows:

number of unique tokens
number of subset tokens

. (11)

timestep t Base MT kNN-MT Subset kNN-MT

1 A: 0.80 A: 1.26 Co: 1.49
2 joint: 1.18 joint: 1.12 - (hyphen): 0.05
3 use: 0.83 use: 0.42 administration: 0.59

Avg 0.94 0.93 0.71

Table 6: Negative log-likelihood (NLL) of the first
three tokens and their average in the case of Table 4.
Note that a smaller NLL means a larger probability.

unique ratio %

Model h BLEU source target

LaBSE 49.8 19.6 18.5
AvgEnc 49.2 20.4 19.2
TF-IDF 47.5 33.3 32.3
BM25 47.4 34.2 32.9

Table 7: BLEU score and unique token ratio in the sub-
set obtained by each sentence encoder in the medical
domain.

Table 7 shows the BLEU score and unique to-
ken ratio for the various sentence encoders, in
which “source” and “target” indicate the diversity
of the neighbor sentences on the source-side and
target-side, respectively. The results show that the
more diverse the source-side is, the more diverse
the target-side is. It also shows that the less diver-
sity in the vocabulary of both the source and target
languages in the subset, the higher BLEU score.

We also investigated the relationship be-
tween sentence encoder representation and BLEU
scores. We found that using a model more accu-
rately represents sentence similarity improves the
BLEU score. In particular, we evaluated trans-
lation quality when noise was injected into the
subset by retrieving n sentences from outside the
nearest neighbor. Table 8 shows the results of var-
ious n-selection methods when LaBSE was used
as the sentence encoder. In the table, “Top” indi-
cates the n-nearest-neighbor sentences, “Bottom
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unique ratio %

n-selection BLEU source target

Top 49.8 19.6 18.5
Bottom of 2n 47.7 21.7 20.3
Random of 2n 44.9 22.7 21.1

Table 8: BLEU score and unique token ratio in the
subset obtained by different n-selection methods in the
medical domain.

↑tok/s (B∞)

Model h w/ ADC w/o ADC

LaBSE 2191.4 446.4 (×0.20)
AvgEnc 1816.8 365.1 (×0.20)
TF-IDF 2199.1 531.0 (×0.24)
BM25 1903.9 471.6 (×0.25)

Table 9: Efficiency of ADC in WMT’19 De-En.

of 2n” the n furthest sentences of 2n neighbor
sentences, and “Random of 2n” n sentences ran-
domly selected from 2n neighbor sentences. The
“Bottom of 2n” and “Random of 2n” have higher
diversity than the “Top” on both the source- and
target-sides, and the BLEU scores are correspond-
ingly lower. These experiments showed that a sen-
tence encoder that calculates similarity appropri-
ately can reduce noise and prevent the degradation
of translation performance because the subset con-
sists only of similar sentences.

5.3 Analysis of Decoding Speed

Efficiency of ADC Subset kNN-MT computes
the distance between a query vector and key vec-
tors using ADC as described in Section 3.2. The
efficiency of ADC in WMT’19 De-En is demon-
strated in Table 9. The results show that “w/ ADC”
is roughly 4 to 5 times faster than “w/o ADC”.

Effect of Parallelization The method and im-
plementation of our subset kNN-MT are designed
for parallel computing. We measured the trans-
lation speed for different batch sizes in WMT’19
De-En. Figure 3(a) shows that subset kNN-MT
(h: LaBSE) is two orders of magnitude faster than
kNN-MT even when the batch size is increased.

Subset Size We measured the translation speed
for different subset sizes, i.e., the number of n-
nearest-neighbor sentences in WMT’19 De-En.
Figure 3 (b) shows the translation speed of subset
kNN-MT (h: LaBSE). Subset kNN-MT is two or-
ders of magnitude faster than kNN-MT even when

the subset size is increased. The results also show
that the speed becomes slower from n = 256 com-
pared with base MT. We also found that 71.7% of
the time was spent searching for the kNN tokens
from the subset when n = 2048. Although ADC
lookup search is slow for a large datastore, it is
fast for kNN search when the subset size n is not
large (Matsui et al., 2018), e.g., n = 512.

Figure 3(c) shows the results for translation
quality on the development set (newstest2018).
The results show that a larger n improves BLEU
up to n = 512, but decreases for greater values
of n. In terms of both the translation quality and
translation speed, we set n = 512 for WMT’19
De-En.

6 Related Work

The first type of example-based machine transla-
tion method was analogy-based machine transla-
tion (Nagao, 1984). Zhang et al. (2018); Gu et al.
(2018) incorporated example-based methods into
NMT models, which retrieve examples according
to edit distance. Bulte and Tezcan (2019) and Xu
et al. (2020) concatenated an input sentence and
translations of sentences similar to it. Both kNN-
MT and subset kNN-MT retrieve kNN tokens ac-
cording to the distance of intermediate representa-
tions and interpolate the output probability.

To improve the decoding speed of kNN-MT,
fast kNN-MT (Meng et al., 2022) constructs ad-
ditional datastores for each source token, and re-
duces the kNN search space using their datastores
and word alignment. Subset kNN-MT requires a
sentence datastore that is smaller than source to-
ken datastores and does not require word align-
ment. Martins et al. (2022) decreased the number
of query times by retrieving chunked text; their
model led to a speed-up of up to 4 times, com-
pared with kNN-MT. In contrast, subset kNN-MT
reduces the search space. Dai et al. (2023) reduced
the kNN search space by retrieving the neighbor
sentences of the input sentence. They searched for
neighboring sentences by BM25 scores with Elas-
ticSearch4, so our subset kNN-MT with BM25 can
be regarded as an approximation of their method.
They also proposed “adaptive lambda”, which dy-
namically computes the weights of the lambda of
linear interpolation in Equation 2 from the dis-
tance between the query and the nearest neighbor

4https://github.com/elastic/
elasticsearch
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Figure 3: Translation speed for different batch sizes, and subset sizes and translation quality for different subset
sizes in WMT’19 De-En.

key vectors. However, adaptive lambda requires
an exact distance and cannot employ datastore
quantization and the ADC lookup. To improve
the translation performance of kNN-MT, Zheng
et al. (2021) computed the weighted average of
kNN probabilities pkNN over multiple values of
k. Each weight is predicted by “meta-k network”,
trained to minimize cross-entropy in the training
data. For the other tasks, kNN-LM (Khandelwal
et al., 2020), Efficient kNN-LM (He et al., 2021),
and RETRO (Borgeaud et al., 2022) used kNN
search for language modeling (LM). Our subset
search method cannot be applied to LM because
the entire input cannot be obtained.

In the field of kNN search, Matsui et al. (2018)
allowed search in dynamically created subsets,
whereas conventional search methods assume only
full search. Subset kNN-MT retrieves kNN to-
kens from a subset depending on a given input. In
our subset kNN-MT, the decoding speed is slow
when the subset size n is large. The bottleneck is
the lookup in the distance table, and this can be
improved by efficient look-up methods that uses
SIMD (André et al., 2015; Matsui et al., 2022).

7 Conclusion

In this paper, we proposed “Subset kNN-MT”,
which improves the decoding speed of kNN-MT
by two methods: (1) retrieving neighbor tokens
from only the neighbor sentences of the input sen-
tence, not from all sentences, and (2) efficient dis-
tance computation technique that is suitable for
subset neighbor search using a look-up table. Our
subset kNN-MT achieved a speed-up of up to
132.2 times and an improvement in BLEU of up
to 1.6 compared with kNN-MT in the WMT’19
De-En translation task and the domain adaptation

tasks in De-En and En-Ja. For future work, we
would like to apply our method to other tasks.

Limitations

This study focuses only on improving the speed of
kNN-MT during decoding; other problems with
kNN-MT remain. For example, it still demands
large amounts of memory and disk space for the
target token datastore. In addition, our subset
kNN-MT requires to construct a sentence datas-
tore; therefore, the memory and disk requirements
are increased. For example, the quantized target
token datastore has 52GB (|M| = 862,648,422)
and our sentence datastore has 2GB (|S| =
29,540,337) in the experiment of WMT’19 De-En
(Section 4.2). Although subset kNN-MT is faster
than the original kNN-MT in inference, datastore
construction is still time-consuming. The decod-
ing latency of our subset kNN-MT is still several
times slower than base MT for large batch sizes.
The experiments reported in this paper evaluated
the inference speed of the proposed method on a
single computer and single run only; the amount
of speed improvement may differ when different
computer architectures are used.

Ethical Consideration

We construct both kNN-MT and subset kNN-MT
datastores from open datasets; therefore, if their
datasets have toxic text, kNN-MT and our sub-
set kNN-MT may have the risk of generating toxic
contents.
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tional Linguistics.

A Datasets, Tools, Models

Datasets Parallel data of the WMT’19 De-En
translation task can be used for research purposes
as described in https://www.statmt.org/
wmt19/translation-task.html. The five
domain adaptation datasets in De-En can be
used for research purposes as described in the
paper (Aharoni and Goldberg, 2020). AS-
PEC can be used for research purposes as de-
scribed in https://jipsti.jst.go.jp/
aspec/. KFTT is licensed by Creative Commons
Attribution-Share-Alike License 3.0.

Tools FAIRSEQ and FAISS are MIT-licensed.

Models We used the following pre-trained NMT
models implemented in FAIRSEQ.

• De-En: https://dl.
fbaipublicfiles.com/fairseq/
models/wmt19.de-en.ffn8192.
tar.gz

• En-Ja: http://www.kecl.ntt.
co.jp/icl/lirg/jparacrawl/
release/3.0/pretrained_models/
en-ja/big.tar.gz

The De-En model is included in FAIRSEQ and
it is MIT-licensed. The Ja-En model is li-
censed by Nippon Telegraph and Telephone Cor-
poration (NTT) for research use only as de-
scribed in http://www.kecl.ntt.co.jp/
icl/lirg/jparacrawl/.

We used the pre-trained LaBSE model licensed
by Apache-2.0.

B Pseudo Code for ADC lookup

Algorithm 1 shows the pseudo code for the ADC
lookup described in Section 3.2. The function
COMPUTE_DISTANCES calculates the squared Eu-
clidean distances between a query vector and each
quantized key vector by looking up the distance
table.

C Tuning of the Subset Size in Domain
Adaptation

Section 5.3 showed that n = 256 and 512 are in
balance between speed and quality. To tune the

Algorithm 1 ADC lookup
Require:

query; q ∈ RD

quantized keys; K̄ = {k̄i}Ni=1 ⊆ {1, . . . , L}M
codebook; C = {C1, . . . , CM},

where Cm = {cml }Ll=1 ⊆ R
D
M

Ensure:
distances; d ∈ RN

1: function COMPUTE_DISTANCES(q, K̄, C)
2: for m = 1, . . . ,M do
3: for l = 1, . . . , L do
4: Am

l ← ∥qm − cml ∥22
5: end for
6: end for
7: for i = 1, . . . , N do
8: di ←

∑M
m=1A

m
k̄mi

9: end for
10: return d
11: end function

n IT Koran Law Medical Subtitles Avg.

256 40.5 19.7 53.3 48.6 29.5 38.3
512 40.0 19.7 53.4 48.3 29.9 38.1

Table 10: Results of the German-to-English domain
adaptation translation on the development set.

subset size n in the domain adaptation task, we
evaluated for n = 256 and 512 on the develop-
ment set of each domain, and the choice of n was
judged by the averaged BLEU. Table 10 and 11
show the results of the domain adaptation transla-
tion on each development set. We tuned the sub-
set size by using LaBSE for the sentence encoder.
Finally, we chose n = 256 for the German-to-
English and n = 512 for the English-to-Japanese
domain adaptation tasks.

D Details of Translation Quality

We evaluated all experiments by BLEU, COMET,
and chrF scores.

Table 12, 13, and 14 show the results of
the WMT’19 De-En translation task, the domain
adaptation task in De-En, and En-Ja, respectively.
Note that Table 13 only shows COMET and chrF
scores and the BLEU scores are shown in Table 2
due to space limitations.

E Details of kNN Indexes.

The details of the kNN indexes are shown in Ta-
ble 15.
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n ASPEC KFTT Avg.

256 31.7 24.5 28.1
512 32.0 25.5 28.8

Table 11: Results of the English-to-Japanese domain
adaptation translation on the development set.

Model ↑BLEU ↑chrF ↑COMET

Base MT 39.2 63.7 84.56

kNN-MT 40.1 64.2 84.73
Fast kNN-MT 40.3 64.6 84.70
(Meng et al., 2022)
Ours: Subset kNN-MT
h: LaBSE 40.1 64.1 84.66
h: AvgEnc 39.9 64.0 84.68
h: TF-IDF 40.0 64.2 84.63
h: BM25 40.0 63.9 84.60

Table 12: Details of translation quality in the WMT’19
De-En translation task. “h:” shows the type of sentence
encoder used.

F Domain Adaptation with Closed
Domain Settings

We carried out the German-to-English domain
adaptation experiments faithful to the original
kNN-MT settings. In this experiment, the datas-
tore for each domain was created only from the
parallel data of the target domain, assuming a sce-
nario where the domain of the input sentences is
known. Note that the general domain data, i.e.,
the training data of the WMT’19 De-En transla-
tion task, is not included in the datastores.

Table 16 shows the German-to-English domain
adaptation translation results in closed-domain
settings. The original kNN-MT is faster than that
of open-domain settings because the datastore is
smaller; however, our subset kNN-MT is still 10
times faster than the original kNN-MT.
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Model COMET chrF COMET chrF COMET chrF COMET chrF COMET chrF

Base MT 83.09 58.9 72.50 40.0 85.79 66.2 83.31 61.6 79.85 48.6

kNN-MT 83.93 60.6 73.33 41.9 86.83 70.4 84.63 65.4 79.98 48.7
Subset kNN-MT
h: LaBSE 84.17 60.7 73.43 42.3 86.82 70.9 84.60 66.4 79.82 48.7
h: AvgEnc 84.23 60.9 73.40 42.2 86.84 70.7 84.75 66.1 79.83 48.6
h: TF-IDF 81.70 59.2 72.65 41.4 85.96 69.2 83.38 64.6 79.50 48.3
h: BM25 81.16 58.9 72.60 41.3 85.79 68.6 83.17 64.4 79.35 48.1

Table 13: COMET and chrF scores in the German-to-English domain adaptation. BLEU scores are shown in
Table 2.

ASPEC KFTT

Model BLEU COMET chrF BLEU COMET chrF

Base MT 26.7 88.55 37.6 20.3 83.52 28.0

kNN-MT 32.8 89.13 41.5 27.8 85.32 33.9
Subset kNN-MT
h: LaBSE 32.5 88.77 40.6 25.8 84.11 32.0
h: AvgEnc 32.4 88.75 40.5 26.4 84.45 32.1
h: TF-IDF 29.5 88.24 38.5 22.3 82.37 28.6
h: BM25 29.4 88.04 38.4 21.8 82.21 28.2

Table 14: Details of translation quality in the English-to-Japanese domain adaptation.

kNN-MT Subset kNN-MT

DS;M Sentence DS; S DS; M̂
Search Method IVF IVF Linear ADC look-up
Vector Transform OPQ OPQ PCA:

(Ge et al., 2014) (Ge et al., 2014) 1024→ 256 dim
# of PQ Sub-vectors; M 64 64 64
# of Centroids; Nlist 131,072 32,768 —
# of Probed Clusters 64 clusters 64 clusters —
Size of Search Target

∑
y∈D |y| |D| ∑

(h(x),y)∈Ŝ |y|

Table 15: Details of kNN indexes. “DS” indicates “Datastore”.

IT Koran Law Medical Subtitles

Model BLEU tok/s BLEU tok/s BLEU tok/s BLEU tok/s BLEU tok/s

Base MT 38.7 4433.2 17.1 5295.0 46.1 4294.0 42.1 4392.1 29.4 6310.5

kNN-MT 43.2 143.9 21.6 146.8 54.1 142.2 49.7 144.0 30.9 142.3
Subset kNN-MT
h: LaBSE 42.8 2232.7 21.2 2737.0 54.5 2175.6 50.2 2287.3 30.5 3554.6
h: AvgEnc 42.6 2423.3 20.7 2754.4 54.1 2259.5 50.0 2348.9 30.3 3569.7
h: TF-IDF 42.1 2464.1 20.7 3426.9 54.0 2137.0 49.8 2526.4 29.8 3916.0
h: BM25 42.7 2519.9 20.4 3370.1 53.8 2152.6 49.8 2510.5 29.9 3723.2

Table 16: Results of out-of-domain translation with closed-domain settings. The speed is evaluated with B∞.

187



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

After Conclusion ("Limitations" section)

�3 A2. Did you discuss any potential risks of your work?
After Limitations ("Ethical Consideration" section)

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

�3 A4. Have you used AI writing assistants when working on this paper?
We use tools that only assist with language: deepl, grammarly.

B �3 Did you use or create scientific artifacts?
Section 4

�3 B1. Did you cite the creators of artifacts you used?
Section 4

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Appendix (Section A: Dataset, Tools, Models)

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Appendix (Section A: Datasets, Tools, Models)

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
We noted in the Ethical Consideration section that our used data may contain toxic contents.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 4

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4

C �3 Did you run computational experiments?
Section 4 and 5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

188

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4 and 5

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
We report the experimental results of just a single run and that is noted in Limitations section.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

189


