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Abstract

Various Vision-Language Pre-training (VLP)
models (e.g., CLIP, BLIP) have sprung up
and dramatically improved the benchmarks of
public general-domain datasets (e.g., COCO,
Flickr30k). Such models typically learn the
cross-modal alignment from large-scale well-
aligned image-text datasets. Adapting these
models to downstream applications in specific
domains, such as fashion, requires fine-grained
in-domain image-text datasets. However, such
datasets are usually less semantically aligned
and smaller in scale, which requires more effi-
cient pre-training strategies. In this paper, we
propose a knowledge-guided fashion-domain
language-image pre-training (KG-FLIP) frame-
work that focuses on learning fine-grained rep-
resentations in the e-commerce domain and
utilizes external knowledge (i.e., product at-
tribute schema) to improve the pre-training ef-
ficiency. Experimental results demonstrate that
KG-FLIP outperforms previous state-of-the-art
VLP models on Amazon data and the Fashion-
Gen dataset by large margins. KG-FLIP has
been successfully deployed in the Amazon cat-
alog system to backfill missing attributes and
improve the customer shopping experience.

1 Introduction

Modern e-commerce websites exhibit products
with multi-modal information (e.g., product im-
ages, product titles, and product bullet points) to
inform customers’ purchase decisions. The effec-
tive exploitation of such multi-modal product infor-
mation is crucial for product understanding and
downstream vision-language (VL) applications,
such as product categorization, search, and recom-
mendation. Meanwhile, recent large-scale vision-
language pre-training (VLP) models have led to
impressive performance improvements on many
general-domain VL tasks (Radford et al., 2021; Yu
et al., 2022). As a result, there has been a surge of
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interest in adapting such VLP models to facilitate
various applications in e-commerce scenarios.

Unlike the well-aligned coarse-grained language-
image datasets in the general domain, the paired
data in the e-commerce domain have two character-
istics. First, both of the product titles/descriptions
and the images contain richly detailed (i.e., fine-
grained) product information compared to datasets
in the general domain. Second, the product textual
information and images usually share only partial
information while containing complementary infor-
mation (i.e., not well-aligned). Thus, an effective
pre-training method needs to align the common
portion and fuse the distinct facts from each modal-
ity in a fine-grained manner. Rather than aligning
the entire image and text pair at a global level us-
ing contrastive loss as CLIP (Radford et al., 2021)
does, we designed our pre-training tasks to focus
on a finer level of text tokens and image patches.

In addition, previous VLP methods relied solely
on the inductive bias of the model to align cross-
modality representations through vast amounts of
paired data. Such an approach is data-hungry, in-
efficient, and disregards the availability of struc-
tured product knowledge. Thus, we propose to
leverage existing knowledge in the e-commerce
catalog to facilitate such alignment. Specifically,
for each type of product (e.g., dress), the catalog
stores its applicable attributes (e.g., neckline style)
and enumerated attribute values (e.g., v-neck, crew-
neck). Such attribute knowledge can serve as an-
chor points to help VLP models efficiently acquire
salient semantic relations between modalities.

To address the above challenges, we propose
KG-FLIP: a knowledge-guided Fashion-domain
Language-Image Pre-training to improve the VLP
models for e-commerce data. The design of KG-
FLIP is inspired by the state-of-the-art general-
purpose VLP model BLIP [6]. We adapt its de-
sign for our use case by 1) replacing the widely-
used image-text contrastive (ITC) objective with
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the masked language-image modeling (MLIM) pre-
training objective, to facilitate multi-model fusion
at the token level instead of cross-model alignment;
2) leveraging the structured knowledge of prod-
uct attribute schema information to guide the pre-
training process, and facilitate the VLP model to
learn more fine-grained product representations.
These enhancements can be generalized to other
real-world applications, where image-text pairs are
not well-aligned in semantics and external knowl-
edge can be leveraged to guide the pre-training.

2 Related Work

2.1 Vision-Language Pre-training

The emergence of large-scale pre-training models
(e.g., BERT (Devlin et al., 2018), ViT (Kim et al.,
2021)) has significantly advanced the state of the art
across various uni-modal domains, such as natural
language processing (NLP), computer vision (CV),
and speech recognition (SR). Recently, researchers
have introduced the pre-training and-then fine-
tuning paradigm into the vision-language (VL) do-
main for solving multi-modal tasks, which requires
models to comprehend both the input image and
text contents (Dou et al., 2022). Existing vision-
language pre-training (VLP) models (e.g., CLIP
(Radford et al., 2021), ALIGN (Jia et al., 2021),
Flamingo (Alayrac et al., 2022)) have proven to be
highly effective on various downstream VL tasks,
such as image retrieval (IR), text retrieval (TR), and
visual question answering (VQA). Consequently,
VLP has become the de facto practice to tackle
multi-modal problems because of its superior per-
formance (Dou et al., 2022; Chen et al., 2023).
Existing VLP models can be divided into two cat-
egories: object-detector (OD)-based VLP models
(e.g., LXMERT (Tan and Bansal, 2019), UNITER
(Chen et al., 2020), OSCAR (Li et al., 2020)) and
end-to-end VLP models (e.g., ALIGN (Jia et al.,
2021), ALBEF (Li et al., 2021), METER (Dou
et al., 2022)). OD-based VLP models rely on pre-
trained object detectors to extract region-based im-
age features, and then utilize a multi-modal en-
coder to fuse the image features with text tokens.
While OD-based VLP models have brought impres-
sive performance, crafting the pre-trained object
detectors for them is both annotation-expensive
and computation-expensive, because it requires
bounding box annotations for pre-training and high-
resolution images during inference (Li et al., 2021).
On the other hand, end-to-end VLP models directly
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feed image patch features into a pre-trained ViT
model, which eliminates the need for costly anno-
tations and significantly improves inference speed,
and have been adopted by the more recent work
(Chen et al., 2021; Kim et al., 2021). Thus, we
focus on end-to-end VLP models in this work.

2.2 Knowledge-enhanced Vision-Language
Pre-training

Recently, there has been a surge of interest in uti-
lizing domain knowledge (e.g., knowledge graph,
keywords) to guide VLP in order to reach better per-
formance and improve the pre-training efficiency.
For example, Chen et al. (2021) proposed to in-
corporate knowledge graph (KG) embeddings into
VLP models to enhance the learning of seman-
tically aligned and knowledge-aware representa-
tions. Although their experimental results demon-
strated that KG could benefit VLP, it requires object
tags in each image to construct domain-specific
KGs. Zhu et al. (2021) presented a knowledge-
perceived multi-modal pre-training model in e-
commerce that uses product attribute information
as the third modality in addition to the visual and
linguist modalities. However, this approach re-
quires complete and low-noise product attribute
information, and its downstream tasks also require
such quality product attribute information to be
available as input. This implies increased annota-
tion costs and reduces the scope of the VLP model
for use on downstream tasks or data. Considering
that product attribute information is usually incom-
plete and noisy in the real world, we think existing
knowledge-enhancement approaches are not opti-
mal, because they either require additional labeling
efforts or introduce additional noise to VLP models.
Thus, we propose to use attribute information to
improve the pre-training efficiency of VLP.

3 Method

This section delineates KG-FLIP. Section 3.1 in-
troduces the architecture of KG-FLIP. Then, Sec-
tion 3.2 presents pre-training objectives of the
model. Finally, Section 3.3 explains how we in-
ject attribute knowledge into KG-FLIP.

3.1 FLIP Architecture

We use the BLIP (Li et al., 2022) architecture as our
backbone model, which is now one of the state-of-
the-art general-purpose VLP models. We choose
BLIP for the following reasons: 1) instead of using



a pre-trained object detector as the image encoder,
BLIP uses ViT (Dosovitskiy et al., 2020), which is
more computing-friendly and eliminates the need
for bounding box annotations; 2) BLIP has a spe-
cially added text decoder — thus can be utilized for
both VL understanding (e.g., multi-modal attribute
classification) and VL generation (e.g., image cap-
tioning) downstream tasks in e-commerce; 3) train-
ing a VLP model from scratch is time-consuming
and expensive. Reusing a pre-trained checkpoint,
which has been empirically demonstrated to be very
effective, can conspicuously reduce the R&D time
and expenses of our proposed KG-FLIP model.
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Figure 1: The architecture of KG-FLIP. It consists of
an image encoder, an image-grounded text encoder,
a multi-modal text encoder, and an image-grounded
text decoder. Three pre-training tasks at the top are:
knowledge-guided masked language-image modeling
(KG-MLIM); knowledge-guided image-text matching
(KG-ITM); and language modeling (LM). Components
with the same color use the hard-parameter sharing.

As illustrated in Figure 1, KG-FLIP contains an
image encoder, an image-grounded text encoder, a
multi-modal text encoder, and an image-grounded
text decoder. Similar to BLIP, we craft the im-
age encoder using the visual transformer (ViT-
B/16) (Dosovitskiy et al., 2020). The text encoders
are built upon BERT (Devlin et al., 2018), but we in-
sert an additional cross-attention layer, which helps
to fuse visual and linguistic information, between
the self-attention layer and the feed-forward layer
of each block. The text decoder is similar to the text
encoder, except that we replace the self-attention
layers with the causal self-attention layers to auto-
regressively predict next tokens. In the following,
we describe each of the components mentioned.

Image encoder: encodes input images and maps
them into visual information representations. Con-
cretely, each input image is first segmented into
patches, and then ViT takes these patches as input
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and encodes them into a sequence of embeddings.
The embeddings carry all visual information per-
ceived from the image, and are finally mapped into
the key matrix (K) and value matrix (V) for com-
puting the cross-attention scores with the text.
Image-grounded text encoder: fuses the vi-
sual and linguistic information through the cross-
attention layer of each transformer block. Specif-
ically, the output of the self-attention layer in
each block, which carries linguistic information
obtained from the text input, is mapped into the
query matrix (Q). Then, in each cross-attention
layer, we use the query matrix (Q) together with
the key matrix (K) and the value matrix (V), both
coming from the ViT, to produce the output.
Multi-modal text encoder: has the same struc-
ture as the image-grounded text encoder. A special
token is prepended to the beginning of the input
text, and its output is used as the global representa-
tion of the fused visual and linguistic information.
Image-grounded text decoder: which is em-
ployed for performing VL generation downstream
tasks (e.g., captioning). The causal self-attention
layers enable the decoder to generate text in an
auto-regressive manner. Specifically, a special to-
ken [DEC] is used as the start signal, and then the
module iteratively generates the next token based
on generated or supervised tokens in previous steps,
until it reaches the end-of-sequence token.
We follow BLIP’s design of parameter sharing
between three branches to reduce model size with
demonstrated performance gain. (Li et al., 2022)

3.2 Pre-training Objectives

KG-FLIP jointly optimizes three pre-training objec-
tives: knowledge-guided masked language-image
modeling (KG-MLIM), knowledge-guided image-
text matching (KG-ITM), and language modeling
(LM). Similar to BLIP, we use two understanding-
based pre-training objectives and one generation-
based pre-training objective. These three objectives
activate different functionalities while contributing
to each other through hard-parameter sharing. We
first describe the three pre-training objectives of
the model without the knowledge guidance (KG):
Masked Language-Image Modeling Loss
(MLIM): is similar to MLM in pre-training lan-
guage models (e.g., BERT), but it utilizes both the
image and the contextual text to predict the masked
tokens (Chen et al., 2022), which helps the model
to learn cross-modal alignment at the token level



instead of instance level as in ITC. Formally, the
MLIM loss can be represented by,

E E
(I,T)eD MCT

£mlim = -
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t;eEM

where one uniformly samples an image I and its
corresponding text 7' from the dataset D, masks
a random token subset M from 7", and predicts it
given the image and the masked text T.

Image-Text Matching Loss (ITM): aims to
learn joint VL embeddings that effectively fuse
the information from input image-text pairs. ITM
facilitates the model to produce more effective and
fine-grained VL representations by using these rep-
resentations to judge whether image-text pairs are
matched (positive pairs) or not matched (negative
pairs). The ITM loss can be expressed as:

ﬁitm = - [Ing(yI,TUa T)] ;

E
(I’T)Npsamp (I:T|D)

where pgsamyp is a distribution that samples posi-
tive and negative training examples, y; 7 € {0, 1}
represents whether the image [ and the text 7" are
matched, and log p(y; 7|, T) is the output of the
[ENC] token in multi-modal text encoder followed
by a classification layer.

Language Modeling Loss (LM): aims to auto-
regressively generate desired textual information
given an image (e.g., for captioning) or an image-
text pair (e.g., for Visual Question Answering). It
optimizes the loss,

[’lm

=— E logp(t;|1,T<;) | ,
(I.7)eD tZZG; gp( z’ <z)

where each token ¢; is predicted given the image 1
and all text tokens in 7" before position 1.

3.3 Knowledge Guidance

To facilitate KG-FLIP to fuse two modalities more
effectively, we utilize attribute knowledge to guide
MLIM and I'TM objectives, as described below:
Knowledge-guided MLIM (KG-MLIM): uti-
lizes attribute information to guide MLIM by ame-
liorating the masking policy, as illustrated in Fig-
ure 2. The original policy of BERT (Devlin et al.,
2018) uniformly chooses 15% of input tokens, of
which 80% are replaced with a special masked to-
ken [MASK], 10% are replaced with a random
textual token, and 10% remain unchanged. Rather
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Product Title

Women’s Dress Sweet & Cute
V-neck Bell Sleeve

Women’s Dress [Masked] & Cute
V-neck Bell Sleeve

Women’s Dress Sweet & Cute
[Masked] Bell Sleeve

Product Title

Women’s Dress Sweet & Cute
V-neck Bell Sleeve

Negative Text in ITM

Summer Casual Loose Crewneck
Boho Dress

’ Negative Text in KG-ITM ‘

Women’s Dress Sweet & Cute
V-neck Half Sleeve

Figure 2: KG-MLIM vs. MLM, KG-ITM vs. ITM.
(Left) Comparing to MLM which randomly selects 15%
of words to mask, KG-MLIM prioritizes masking at-
tribute words (e.g., crew neck, sleeveless). (Right) Gen-
eral ITM forms a negative pair by replacing the paired
text with another text sample in the batch. By contrast,
KG-ITM synthesizes a “harder” negative example by
replacing the attribute word in the paired text with an-
other value of the same attribute.

than treating all tokens the same, masking product
attribute words allows the VLP model to focus on
learning salient product information and provide
anchor points to align both modalities, thus pro-
ducing more effective VL representations than the
original 15% random masking policy.

To this end, we propose to use knowledge (i.e.,
product attribute schema) to guide MLIM to mask
significant attribute tokens rather than random-
selected tokens. Concretely, we use the enumerated
attribute values (e.g., “v-neck”, “sleeveless”) from
the catalog system to identify significant words in
the text that match our attribute value names. After
that, we maintain an overall masking ratio of 15%,
and if the number of detected significant attribute
words exceeds 15%, we randomly select a subset
of them to be masked. Otherwise, we randomly
mask other tokens to fill up to 15%. In this way,
we implement KG-MLIM, which enables VLP to
focus on noteworthy attribute words.

Knowledge-guided ITM (KG-ITM): leverages
attribute knowledge to synthesize “harder” nega-
tive image-text pairs, letting KG-FLIP determine
whether the image-text pairs are matched or not
matched. Specifically, in the standard ITM objec-
tive, psamp typically utilizes the input image-text
pairs in each batch as positive samples (Chen et al.,
2022), and creates negative ones by replacing the
image or text in each paired sample with randomly
selected from other samples. The next step is to
predict whether each image-text pair is matched.
However, since images or text of different products
are typically disparate, the negative samples are



usually too facile to train the model effectively.

Hence, we propose to leverage attribute knowl-
edge to synthesize “harder” negative image-text
pairs for the ITM loss. Similar to KG-MLIM, we
use attribute values to search for salient attribute
words in the text. If any attribute word in the text is
detected, we synthesize a negative text string by re-
placing each identified word with another random
attribute word from the same attribute class (e.g.,
“blue” — “red”, “v-neck” — “crew neck”). Other-
wise, if we do not spot any attribute word, we se-
lect a random text to construct the negative sample.
Thus, these “more difficult” synthesized negative
samples force KG-FLIP to produce more effective
VL representations that capture subtle (i.e., fine-
grained) distinctions between samples.

4 Experiments

4.1 Experimental Setup

We initialized all parameters with a BLIP check-
point (Li et al., 2022), and then pre-trained KG-
FLIP using a dataset of 1.9M pairs of Amazon
product images and product texts (title and bullet
points) in the fashion domain (viz., dresses and
shoes). To investigate the potential promise of KG-
FLIP, we tested KG-FLIP on two most common
VL downstream tasks in e-commerce: we perform
product attribute extraction on the Amazon product
attribute dataset and product categorization on the
Fashion-Gen dataset (Rostamzadeh et al., 2018),
which we describe in detail below.

The Amazon product attribute dataset: con-
tains a sample of products in our pre-training
datasets that also have corresponding attribute val-
ues in the catalog. We further annotated another
600 image-title pairs as the validation and test set,
which are used for hyper-parameter tuning and per-
formance evaluation, respectively.

The Fashion-Gen dataset*: incorporates
293,008 fashion data pairs. The dataset contains
48 main categories (e.g., “Dresses”, “Jeans”) and
121 sub-categories (e.g., “Short Dresses”, “Leather
Jackets”). We tested KG-FLIP by performing the
sub-category classification based on visual and lin-
guistic modalities. In our experiments, we use the
same training and testing data as used in Kaleido-
BERT (Zhuge et al., 2021) and CMA-CLIP (Liu
et al., 2021). The numbers of training and testing

“Note that the Fashion-Gen dataset was only used to bench-
mark and illustrate the advance we made. It was not involved
in building or optimizing our deployed model.
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samples are 260,480 and 32,528, respectively.

4.2 Results

Product attribute extraction: The attribute-
extraction task aims to automatically infer product
attribute information (e.g., color, neck style) from
product images and textual information such as title
and description. Following (Liu et al., 2021), we
formulate this problem as a multi-task classification
task. We add a multi-layer perception (MLP) head
for each attribute in Table 1 on top of the [ENC] out-
put embedding from the multi-modal text encoder
and fine-tune them simultaneously. We compare
the results with CMA-CLIP, BLIP, and an unguided
version of KG-FLIP, which was pre-trained with
standard MLIM and I'TM without knowledge guid-
ance. All models are pre-trained and fine-tuned on
the same datasets. Table 1 below shows the recall
at 90% precision (R@90P) on the test set.

Table 1: Recall at 90% precision on the Amazon product
attribute dataset. (attribute names are anonymized for
compliance reasons)

. CMA- unguided  KG-
Altribute cuip BMP kGFLIP  FLIP
dress attribute 1 29.1 53.1 52.1 57.3
dress attribute 2 423 41.0 52.6 48.7
dress attribute 3 57.3 61.1 65.9 67.9
dress attribute 4 33 36.7 44.1 42.1
dress attribute 5 71.5 65.1 71.8 74.1
shoe attribute 1 89.2 94.6 92.7 94.1
shoe attribute 2 90.0 92.0 91.0 92.0
shoe attribute 3 78.5 85.2 82.8 85.6
shoe attribute 4 98.7 99.0 98.7 99.0
Average 65.51 69.75 72.32 73.42

Product categorization: The task of product
categorization is to automatically determine the
sub-category for each product given its image-text
pair. Similarly, we also formulate this problem as a
classification task and stack an MLP head on top.
Each VLP model in Table 2 was fine-tuned on the
Fashion-Gen training set, and we then reported the
accuracy of the categorization on the test set.

Overall, the results in Table 1 and Table 2 show
that KG-FLIP outperforms all other VLP models
on both datasets. For the Amazon product attribute
dataset, KG-FLIP and unguided-FLIP offer per-
formance gains of 3.67% and 2.57% in terms of
R@90P, respectively, over BLIP. For the Fashion-
Gen dataset, KG-FLIP can outperform the current
benchmark (i.e., FashionViL) and BLIP in terms
of accuracy by 2.1% and 0.36%, respectively. In



Table 2: Accuracy (%) on the Fashion-Gen dataset.

Method Accuracy
ImageBERT (Qi et al., 2020) 80.11
FashionBERT (Gao et al., 2020) 85.27
OSCAR (Li et al., 2020) 84.23
KaleidoBERT (Zhuge et al., 2021) 88.07
CMA-CLIP (Liu et al., 2021) 93.60
FashionViL (Han et al., 2022) 92.23
BLIP (Li et al., 2022) 93.96
unguided KG-FLIP 94.15
KG-FLIP 94.32

summary, KG-FLIP has demonstrated its eminent
performance, which makes it a compelling VLP so-
lution for partially semantically aligned real-world
VL data in e-commerce scenarios.

S5 Model Deployment

Currently, we have successfully deployed our KG-
FLIP model in a real-world application to back-
fill missing product attributes in the e-commerce
catalog. E-commerce websites curate their prod-
uct information in their catalog system. In addi-
tion to unstructured information (e.g., product ti-
tles and descriptions), structured product attributes
(e.g., color and size) play an essential role in var-
ious downstream applications, including search
and recommendation. For example, customers
can filter search results by product attribute values
and quickly identify their desired products. How-
ever, missing product attribute values are common,
given the large number of products offered on e-
commerce websites. Improving the coverage of
product attributes with high accuracy is critical to
improving the customer experience and maintain-
ing customer trust. In addition, complete and accu-
rate product attribute information can also improve
the performance of various downstream applica-
tions (e.g., alternative product recommendations).

Compared to previous image-only and text-only
models, KG-FLIP can infer product attributes from
both modalities and increase precision and recall
by large margins. Another advantage is that it can
predict thousands of product attributes in a single
model, which implies that model development and
maintenance efforts are significantly reduced com-
pared to single attribute models. However, train-
ing thousands of attributes in one model makes
single-machine training infeasible because of the
massive size of the training data. To overcome this
challenge, we have developed our own distributed
training infrastructure to support large-scale model
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training. Our infrastructure leverages the power of
AWS Batch” Multi-Node Parallel, and the Deep-
Speed framework, which allows us to automati-
cally launch, configure, and manage a cluster of
GPU instances, and train our model on 100 mil-
lion image-text pairs for 10 epochs within a week
with twenty p3.16xlarge instances. We also auto-
mated the process of launching a distributed job
with just one command, which enables any indi-
vidual to conduct distributed training tasks on their
own and accelerates the experiment speed by reduc-
ing 90% of manual efforts. The model deployment
is through AWS SageMaker*. We leveraged AWS
Batch to perform large-scale batch mode inference
to backfill billions of product-attribute pairs with
high accuracy since mid-2022.

6 Conclusion

In this paper, we introduced a knowledge-guided
fashion-domain language-image pre-training
framework for e-commerece, dubbed KG-FLIP.
By utilizing the product attribute knowledge to
guide MLIM and ITM pre-training objectives, our
KG-FLIP model facilitates the vision-language
pre-training and enhances the product representa-
tion learning for e-commerce data that are partially
aligned while also containing complementary
information. The evaluation results have demon-
strated its prominent performance against other
state-of-the-art benchmarks on both Amazon and
Fashion-Gen datasets. The KG-FLIP model has
been deployed in a real-world application and
improved the customer shopping experience.

7 Limitations

There are two main limitations to this study. First,
because of the lack of downstream datasets, we did
not evaluate KG-FLIP on other downstream VL
tasks in e-commerce (e.g., substitute recommenda-
tion). Therefore, the robustness of the KG-FLIP
model on other downstream tasks requires further
investigation. Second, the experimental results em-
pirically show that the proposed knowledge-guided
pre-training objectives are more effective in produc-
ing VL representations that capture subtle distinc-
tions between samples than the standard objectives.
However, a theoretical analysis of the effectiveness
of our knowledge-guidance strategies is lacking.

"https://aws.amazon.com/batch/
*https://aws.amazon.com/sagemaker/
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8 Ethics Statement

We discuss ethical issues from these aspects:
Intended Use. If the technology is function-
ing as intended, both sellers and customers of e-
commence platforms could benefit from the KG-
FLIP model. KG-FLIP could help customers to
quickly identify their desired products (e.g., by fil-
tering search results by product attribute values). It
could also help sellers by reducing their manual ef-
forts when listing new products (e.g, the platforms
can automatically recommend the attribute values).
Failure modes. In case of failure, KG-FLIP
might output inaccurate product attribute informa-
tion. Such non-factual information may harm cus-
tomers’ shopping experience. For example, the
substitute recommendation system, which may use
the incorrect product information provided by KG-
FLIP, may recommend a non-desired product to
our customers and hurt their shopping experience.
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