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Abstract

Large-scale pre-trained text-image models with
dual-encoder architectures (such as CLIP (Rad-
ford et al., 2021)) are typically adopted for
various vision-language applications, includ-
ing text-image retrieval. However, these mod-
els are still less practical on edge devices or
for real-time situations, due to the substan-
tial indexing and inference time and the large
consumption of computational resources. Al-
though knowledge distillation techniques have
been widely utilized for uni-modal model com-
pression, how to expand them to the situation
when the numbers of modalities and teach-
ers/students are doubled has been rarely stud-
ied. In this paper, we conduct comprehen-
sive experiments on this topic and propose the
fully-Connected knowledge interaction graph
(Cona) technique for cross-modal pre-training
distillation. Based on our findings, the result-
ing ConaCLIP achieves SOTA performances
on the widely-used Flickr30K and MSCOCO
benchmarks under the lightweight setting. An
industry application of our method on an e-
commercial platform further demonstrates the
significant effectiveness of ConaCLIP.1

1 Introduction

Text-image retrieval (TIR) aims at retrieving a list
of the most relevant images from a large image
collection when a specific text query is given. With
the rapid development of information interaction
and social intercourse, it has been regarded as a
crucial component of cross-modal applications and
required by various real-world scenarios, such as
e-commercial platforms (sites).

Recently, inspired by the great success of pre-
trained language models (Devlin et al., 2019; Liu

∗Contribution during internship at Alibaba Group.
†Co-corresponding authors.

1Related resources will be publicly available in the
EasyNLP framework (Wang et al., 2022a). URL: https:
//github.com/alibaba/EasyNLP.

et al., 2019; Brown et al., 2020), research on large-
scale vision-language pre-training (Tan and Bansal,
2019; Li et al., 2020; Radford et al., 2021; Li et al.,
2022; Wang et al., 2022b, 2023) has achieved re-
markable progress on a variety of vision-language
tasks, including text-image retrieval. These exist-
ing methods can be typically classified into two cat-
egories according to the model architecture: cross-
encoder and dual-encoder. Cross-encoder typi-
cally adds additional Transformer (Vaswani et al.,
2017) layers to model the deep interaction between
image and text representations. It can generally
boost the retrieval performance, while resulting in
an unbearably slow retrieval speed when applied to
the entire image collection since the cross-modal
costs are required for each image sample whenever
a new text query is given. In contrast, dual-encoder
encodes the visual and textual inputs in a wholly
decoupled manner. The image representation is
allowed to be pre-computed and re-used indepen-
dent of the text queries. Such approaches can also
utilize fast approximate nearest neighbor (ANN)
search (Muja and Lowe, 2009; Jegou et al., 2010;
Johnson et al., 2019) at runtime.

Although dual-encoder is usually preferred for
real-world applications, the existing related models
such as CLIP (Radford et al., 2021) are still less
practical on edge devices with limited computing
resources, or for the dynamic indexing scenario,
e.g., private photos/messages collections (sites). To
address this issue, we aim to start from the large-
scale pre-trained dual-encoder models and focus
on the pre-training distillation to present a series
of much smaller, faster, and effective counterparts.
Knowledge distillation (KD) (Hinton et al., 2014)
is proposed to transfer knowledge with soft targets
from a teacher to a student in the same modality.
MoTIS (Ren and Zhu, 2022) simply repeats intra-
modal InfoNCE-based (Oord et al., 2018) learn-
ing in both text and image domains for distillation.
Nevertheless, when the number of modalities dou-
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bles for dual-encoder structure, which means text
and image teachers as well as text and image stu-
dents, these methods still only involve intra-modal
teacher-student knowledge interaction learning. In-
stead, in this paper, we comprehensively explore
the fully-Connected knowledge interaction graph
(Cona) between every possible teacher-student or
student-student pair. As shown in Fig. 1, each
two-way arrow represents the knowledge interac-
tion learning between the two models it points to.
And the aforementioned KD and MoTIS belong
to a single blue arrow and the two blue arrows,
respectively. Moreover, in order to better explore
the potential of Cona, we implement and inves-
tigate various supervision strategies to guide the
model optimization, which finally makes each type
of learning contribute to the overall improvement.

We release various sizes of lightweight dual-
encoder models named ConaCLIP for different
real-world scenarios. Compared with the pre-
vious SOTA method (Ren and Zhu, 2022), our
ConaCLIP achieves 10.6/12.9/12.8 R@1 gains on
Flickr30K/MSCOCO (1K)/MSCOCO (5K) bench-
marks under the same model setting. We have also
verified its effectiveness on an e-commerce plat-
form. It can achieve 1.44×/1.92∼4.86× inference
speed-up with competitive performances given im-
age/text queries. The main contributions of this
paper can be summarized as follows:

• We propose a new pre-training distillation
method with the fully-connected knowledge
interaction graph (Cona) for lightweight dual-
encoder models.

• We release a series of lightweight Cona-
CLIP models to the open-source commu-
nity, which can significantly surpass previous
SOTA models on the widely-used Flickr30K
and MSCOCO benchmarks.

• We provide a real-world application of this
method in real industrial scenarios to further
demonstrate its practical values.

2 Related Work

Cross-encoder (Tan and Bansal, 2019; Li et al.,
2019; Chen et al., 2020; Li et al., 2020; Chen
et al., 2022) refers to multiple layers of dense cross-
modal interactions, e.g., cross-attention (Vaswani
et al., 2017), are typically employed to image and
text representations for more fine-grained merge

and alignment. Although it often achieves superior
retrieval accuracy thanks to the patch/token-level
integration, the high memory cost and computation
inefficiency make it impractical under time-critical
real-world settings.

Oppositely, for dual-encoder (Zhang et al., 2020;
Jia et al., 2021; Radford et al., 2021; Dou et al.,
2022), image and text features are encoded into a
joint embedding space separately, and the modality
interaction is only handled by a simple cosine sim-
ilarity of the final image and text feature vectors.
Such approaches can be regarded as scalable and
indexable: the specific choices of encoder archi-
tectures can be independent and dynamic, and the
late-interaction scheme allows for efficient large-
scale searching.

Pre-training distillation for lightweight dual-
encoder architecture has been rarely studied.
Vanilla knowledge distillation (Hinton et al., 2014)
can be referred to as the knowledge transfer from
a teacher to a student in the same modality based
on soft targets. However, it is a general proce-
dure without awareness and pertinence for cross-
modal learning. MoTIS (Ren and Zhu, 2022) sep-
arately compresses text or image encoder with an
intra-modal contrastive objective that aligns the
output embeddings of the student and teacher of
each modality, which can be seen as an alternative
form of knowledge distillation. Nevertheless, these
methods ignore or do not find an appropriate ap-
proach to leverage the cross-modal distillation pro-
cess. Further than them, our method is dedicated
to exploring the fully-connected knowledge inter-
action graph for dual-encoder distillation, which is
a natural and effective extension.

3 Methodology

In this section, we first give the preliminary knowl-
edge, then propose our pre-training distillation
framework with Cona. Finally, we introduce vari-
ous supervision strategies.

3.1 Preliminary

For the sake of explanation, we abbreviate text,
image, teacher and student as T , I , tch and stu re-
spectively. F represents the L2-normalized feature
vector outputted by the encoder architecture E.

Before student learning, the teachers ET
tch and

EI
tch are commonly first pre-trained using an ob-

jective that pushes the embeddings of matched
text-image pairs closer while pushing those of non-
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Figure 1: Our dual-encoder pre-training distillation
framework with Cona. Each color of two-way arrows
represents a type of knowledge interaction learning. At
this stage, the teacher encoders are frozen.

matched ones apart, with large model capacity and
massive data. Specifically, CLIP (Radford et al.,
2021) takes the InfoNCE (Oord et al., 2018) loss
as the supervision form. Without losing general-
ity, given two outputted feature vectors F a and
F b ∈ RN×d, we define that:

pi,j(F
a, F b) =

exp(F a
i F

b
j
⊤
/τ)

∑
k exp(F

a
i F

b
k
⊤
/τ)

, (1)

LInfoNCE
Fa→F b = − 1

N

N∑

i=1

log(pi,i(F
a, F b)), (2)

where N is the mini-batch size, d is the channel
size and τ is the temperature hyper-parameter. The
final loss of CLIP can be formulated as:

LCLIP = LInfoNCE
FT
tch→F I

tch
+ LInfoNCE

F I
tch→FT

tch
. (3)

Next, the pre-training distillation of students
ET

stu and EI
stu begins, with parameters of teach-

ers ET
tch and EI

tch frozen. MoTIS (Ren and Zhu,
2022) also adopts the InfoNCE-based loss at this
stage, and implements it in both text and image
domains separately:

LMoTIS = LInfoNCE
FT
stu→FT

tch
+ LInfoNCE

F I
stu→F I

tch
. (4)

According to the subscript in Eq. (4), it is easy to
see that MoTIS only involves intra-modal teacher-
student learning.

3.2 Pre-training Distillation with Cona
Unlike existing works, our method introduces
the fully-connected knowledge interaction graph

(Cona) for pre-training distillation. Apart from
intra-modal teacher-student learning, our method
also includes intra-modal student-student learn-
ing, inter-modal teacher-student learning and inter-
modal student-student learning, as shown in Fig. 1.
This fully-connected learning graph established for
students ET

stu and EI
stu serves as an integration of

multi-view and multi-task learning schemes, which
can strengthen the robustness and effectiveness
(Caruana, 1997; Luong et al., 2016; Aghajanyan
et al., 2021) required by pre-trained models.

We suggest that each type of learning process
in Cona should be concretely implemented in de-
tailed supervision strategies. Therefore, we pro-
pose and investigate various supervision strategies
in the next subsection.

3.3 Supervision Strategies

Here we continue to use F a and F b (prediction)
along with F̃ a and F̃ b (target) as placeholders for
illustration, and present the following effective su-
pervision strategies:
InfoNCE loss is a type of contrastive loss function.
It has been formulated in Eq. (2), and successfully
applied for distillation by Eq. (4).
Feature-wise distance (FD) loss directly mini-
mizes the distance between feature vectors. We
utilize squared L2-norm as the measure:

LFD
Fa⇔F b =

1

2

1

Nd

N∑

i=1

d∑

j=1

(F a
i,j − F b

i,j)
2. (5)

Similarity-wise distance (SD) loss minimizes the
distance criterion between similarity matrices:

LSD

Fa→F b⇔F̃a→F̃ b
= 1

2
1
N2

N∑
i=1

N∑
j=1

(F a
i F

b
j
⊤ − F̃ a

i F̃
b
j

⊤
)2.

(6)

Since F a, F b, F̃ a and F̃ b have been L2-
normalized, the values of cosine-similarities

F a
i F

b
j
⊤ and F̃ a

i F̃
b
j

⊤
are in the range [−1, 1]. The

distance between prediction F a
i F

b
j
⊤ and target

F̃ a
i F̃

b
j

⊤
needs to be shortened. Hence, the squared

L2-norm is also adopted here.
KL-Div loss uses the Kullback–Leibler divergence
to measure the difference between the predicted
and the target probability distributions. Given pi,j
acquired by softmax operation shown in Eq. (1), it
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Learning Type
Supervision Strategies

InfoNCE FD SD KL-Div Sym-SD Sym-KL-Div

intra-modal stu-stu learning \ \
LSD
FT
stu→FT

stu⇔FT
tch→FT

tch

+LSD
F I
stu→F I

stu⇔F I
tch→F I

tch

LKL-Div
FT
stu→FT

stu∥FT
tch→FT

tch

+LKL-Div
F I
stu→F I

stu∥F I
tch→F I

tch

LSD
FT
stu→FT

stu⇔F I
stu→F I

stu

LKL-Div
FT
stu→FT

stu∥F I
stu→F I

stu

+LKL-Div
F I
stu→F I

stu∥FT
stu→FT

stu

inter-modal stu-stu learning
LInfoNCE
FT
stu→F I

stu

+LInfoNCE
F I
stu→FT

stu

LFD
FT
stu⇔F I

stu

LSD
FT
stu→F I

stu⇔FT
tch→F I

tch

+LSD
F I
stu→FT

stu⇔F I
tch→FT

tch

LKL-Div
FT
stu→F I

stu∥FT
tch→F I

tch

+LKL-Div
F I
stu→FT

stu∥F I
tch→FT

tch

\ \

intra-modal tch-stu learning
LInfoNCE
FT
stu→FT

tch

+LInfoNCE
F I
stu→F I

tch

LFD
FT
stu⇔FT

tch

+LFD
F I
stu⇔F I

tch

LSD
FT
stu→FT

tch⇔FT
tch→FT

tch

+LSD
F I
stu→F I

tch⇔F I
tch→F I

tch

LKL-Div
FT
stu→FT

tch∥FT
tch→FT

tch

+LKL-Div
F I
stu→F I

tch∥F I
tch→F I

tch

LSD
FT
stu→FT

tch⇔F I
stu→F I

tch

LKL-Div
FT
stu→FT

tch∥F I
stu→F I

tch

+LKL-Div
F I
stu→F I

tch∥FT
stu→FT

tch

inter-modal tch-stu learning
LInfoNCE
FT
stu→F I

tch

+LInfoNCE
F I
stu→FT

tch

LFD
FT
stu⇔F I

tch

+LFD
F I
stu⇔FT

tch

LSD
FT
stu→F I

tch⇔FT
tch→F I

tch

+LSD
F I
stu→FT

tch⇔F I
tch→FT

tch

LKL-Div
FT
stu→F I

tch∥FT
tch→F I

tch

+LKL-Div
F I
stu→FT

tch∥F I
tch→FT

tch

LSD
FT
stu→F I

tch⇔F I
stu→FT

tch

LKL-Div
FT
stu→F I

tch∥F I
stu→FT

tch

+LKL-Div
F I
stu→FT

tch∥FT
stu→F I

tch

Table 1: Detailed loss functions of all combinations of knowledge interaction learning and supervision strategies.
"Sym-" is the symmetric version loss function. "\" indicates the combination is meaningless.

minimizes the following optimization objective:

LKL-Div

Fa→F b∥F̃a→F̃ b
= 1

N

N∑
i=1

N∑
j=1

pi,j(F
a, F b)log

pi,j(F
a,F b)

pi,j(F̃a,F̃ b)
.

(7)

It is worth noting that, when performing the
learning process indicated by an arrow shown in
Fig. 1, the common practice is to use teachers’
outputs F T

tch and F I
tch as target in Eq. (6)(7) that

students learn from. While in our case with two
modalities available, we propose to use the paired
arrow as the target, and we call this the symmet-
ric version (for SD loss and KL-Div loss). For
example, inter-modal teacher-student learning im-
plemented with KL-Div loss can be formulated as

LKL-Div
FT
stu→F I

tch∥FT
tch→F I

tch
+ LKL-Div

F I
stu→FT

tch∥F I
tch→FT

tch
,

(8)

while its symmetric version is

LKL-Div
FT
stu→F I

tch∥F I
stu→FT

tch
+ LKL-Div

F I
stu→FT

tch∥FT
stu→F I

tch
.

(9)

This modification deepens the interaction between
the four encoders during optimization.

So far, any one of the learning types can be con-
cretely implemented by any one of the supervision
strategies, except for a few meaningless combina-
tions. Detailed loss functions are listed in Tab. 1.

4 Experiments

4.1 Setup
We use Conceptual Caption (CC3M) (Sharma et al.,
2018) and Conceptual 12M (CC12M) (Changpinyo
et al., 2021) for pre-training distillation, which con-
sist of 3M and 12M noisy text-image pairs respec-
tively. During fine-tuning, we use MSCOCO (Lin

et al., 2014) and Flickr30K (Plummer et al., 2015)
as benchmarks. MSCOCO has 113,287 images for
training, 5K images for validation, and both 5K
and 1K for testing. Flickr30K has 28,783 images
for training, 1K images for validation, and 1K for
testing. Following previous works, we use recall
R@k (k=1,5,10) as the main metric.

We use the open-source CLIP (Radford et al.,
2021) with ViT-B/32 (Dosovitskiy et al., 2020) as
the teacher model. Its image encoder is a 12-layer
ViT with the hidden size to be 768 and 12 attention
heads. Its text encoder is a 12-layer Transformer
with hidden size to be 512 and 8 attention heads.

For the student model, we use ViT-S/16 with
hidden size to be 384 as the image encoder, and ini-
tialize it from the pre-trained weights on ImageNet-
21K (Ridnik et al., 2021). For the text encoder,
we experiment with 2, 4 and 6-layer Transformer,
of which the weights are initialized from the first
corresponding layers of the teacher’s text encoder.
The details of model settings are shown in Tab. 6.

In pre-training distillation, we train the student
models in 4 epochs using AdamW (Loshchilov and
Hutter, 2018) with a batch size of 1024 for both
images and texts, the learning rate of 3e-4, and the
weight decay of 0.1. We employ a cosine learning
rate scheduler with 10,000 warm-up steps. In fine-
tuning, we use the same optimization setting as
in MoTIS (Ren and Zhu, 2022). Experiments are
conducted on 4 NVIDIA TESLA V100 32G GPUs.

4.2 Ablation Study

Considering our complete pre-training distillation
takes a relatively long time, we follow the setup
of (Ren and Zhu, 2022) and train ConaCLIP on
CC3M for 1 epoch with batch size 84 to conduct
the ablation study. Taking Eq. (4) as the naive
baseline, we aim to find out which of the proposed
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Learning Type
Supervision Strategies

InfoNCE FD SD KL-Div Sym-SD Sym-KL-Div

intra-modal stu-stu learning \ \ 58.8/83.7/90.1 57.1/82.7/88.8 57.1/82.0/89.2 56.8/81.6/88.6

inter-modal stu-stu learning 34.7/58.7/69.9 56.6/82.1/88.8 58.6/83.6/90.0 56.5/82.4/88.9 \ \
intra-modal tch-stu learning 57.6/82.4/89.0† 57.6/82.0/88.4 58.5/83.2/89.6 55.1/80.0/87.4 58.7/83.4/89.9 56.3/81.5/88.3

inter-modal tch-stu learning 51.4/76.3/83.8 50.0/80.7/88.4 57.6/82.5/88.6 56.9/81.8/88.7 56.9/81.8/88.7 59.1/83.4/89.8

Table 2: Ablation study of text-image retrieval R@1/5/10 on Flickr30K. †Baseline. Bold denotes all R@ks have
obvious improvements. All five losses in bold will be added to the baseline loss to finally serve as our framework.

Model
Text

Encoder
Image

Encoder
Flickr30K MSCOCO (1K) MSCOCO (5K)

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

(a) Fair Comparisons

InfoNCE-based

CLIP’s[512/6] ViT-S/16[384/12]

38.4 68.0 78.0 53.3 85.3 93.5 31.5 60.3 73.3
Cross-modal KD 41.1 70.6 80.0 54.9 86.0 93.6 33.4 61.9 74.4
MoTIS 57.0 82.1 88.8 62.7 88.2 94.5 42.6 69.6 79.4
ConaCLIP (Ours) 60.6 85.2 91.2 68.6 92.4 96.7 47.3 76.1 85.2

(b) Model Zoo and Benchmarks

ConaCLIP-6L (Ours) CLIP’s[512/6]
ViT-S/16[384/12]

67.6 89.6 94.4 75.6 94.6 97.4 55.4 83.5 89.9
ConaCLIP-4L (Ours) CLIP’s[512/4] 67.0 89.3 94.2 75.4 94.6 97.4 55.3 83.1 89.9
ConaCLIP-2L (Ours) CLIP’s[512/2] 65.6 89.2 93.9 74.7 94.3 97.3 54.1 82.2 89.4

Table 3: (a) Fair comparisons of text-image retrieval results on Flickr30K and MSCOCO (1K and 5K). (b) Our
model zoo and the corresponding benchmarks. Bold indicates the best performance. "[m/n]" represents n layers
with the hidden size to be m.

combinations of learning types and supervision
strategies can bring further improvements. The
fine-tuned results on Flickr30K is shown in Tab. 2.

We can make some observations that: 1) With
an appropriate choice of detailed supervision strate-
gies, each type of learning can further bring ob-
vious improvements on the basis of the baseline.
2) The effect of each learning type is greatly af-
fected by the implemented loss function. It also
indicates that the pre-training distillation process
should be carefully explored regarding the supervi-
sion strategy. 3) Our proposed symmetric version
losses (Sym-SD and Sym-KL-Div) can generally
achieve superior performances to the standard ones
for (intra/inter-modal) teacher-student learning.

We can also attain several findings that: 1) For
(intra/inter-modal) student-student learning where
students first make knowledge interaction and then
learn together from teachers, SD loss performs the
best. Because the actual retrieval application uses
this cosine similarity to rank candidates, it can help
students acquire goal-oriented knowledge more di-
rectly. It also relaxes the learning task of students
from teachers’ feature space to the similarity space.
2) For (intra/inter-modal) teacher-student learning,
our proposed symmetric version losses are more

suitable. Compared with the standard losses, they
make the knowledge interaction between teachers
and students closer during optimization. In this
regard, student encoders can cooperate more inti-
mately in downstream tasks. 3) Although the naive
intra-modal teacher-student learning with InfoNCE
loss can serve as a competent baseline, the addi-
tion of SD and Sym-SD losses of the same learning
type can complement its effectiveness. On the other
hand, the other three different learning types with
proper loss choices can also benefit the effect of
pre-training distillation. More findings on distilling
intermediate layers are shown in A.2.

Our method has been established with the further
integration of the highlight (in bold) combinations
in Tab. 2 based on the baseline. The effect after full
integration is shown in Tab. 3(a).

4.3 Performance
Fair Comparisons. In order to better verify the
effectiveness of ConaCLIP, besides the previous
SOTA, we also experiment with two strong baseline
methods. As shown in Tab. 3(a), InfoNCE-based in-
dicates the naive cross-modal contrastive learning
procedure. Cross-modal KD represents distilling
the cross-modal in-batch probability distribution
of teachers into students. All these experiments
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Model
Text-Image Retrieval Image-Text Retrieval

Disk Space (MB) QPSt QPSi

R@1 R@5 R@10 R@1 R@5 R@10

CLIP 16.5 48.0 61.3 18.0 49.7 62.2 578 1.00× 1.00×
EC-CLIP 25.0 63.5 76.0 25.9 64.1 75.7 578 1.00× 1.00×
EC-ConaCLIP-6L 24.3 62.4 75.6 24.8 62.4 73.9 254 1.92× 1.44×
EC-ConaCLIP-4L 23.6 61.1 74.3 22.0 59.7 72.2 230 2.71× 1.44×
EC-ConaCLIP-2L 23.0 60.7 73.5 21.8 59.3 72.0 206 4.86× 1.44×

Table 4: Performance of the industry application. "EC-" is the e-commercial version of our model. QPSt/QPSi

indicates the acceleration rate of QPS.

are conducted under the pre-training setup of (Ren
and Zhu, 2022) for fair comparisons. As can be
observed, 1) Cross-modal KD which introduces
the knowledge distillation process obviously out-
performs the standard InfoNCE-based approach.
2) MoTIS greatly surpasses InfoNCE-based and
Cross-modal KD. This reveals the superiority of
intra-modal teacher-student learning over inter-
modal student-student learning in the case of dual-
encoder distillation. 3) Our ConaCLIP shows sig-
nificant improvements compared with competitors
on all evaluation metrics: 3.6/3.1/2.4 R@1/5/10
gains on Flickr30K, 5.9/4.2/2.2 R@1/5/10 gains on
MSCOCO (1K) and 4.7/6.5/5.8 R@1/5/10 gains on
MSCOCO (5K). This fully demonstrates the effec-
tiveness of our distillation framework with Cona.

Model Zoo and Benchmarks. In order to bet-
ter promote the development of cross-modal text-
image research, we release a series of lightweight
dual-encoder models. Their benchmark results are
shown in Tab. 3(b). In this case, the power of Cona-
CLIP is further unlocked and brings further im-
provements. Specifically, even ConaCLIP-2L can
achieve 8.6/7.1/5.1 R@1/5/10 gains on Flickr30K,
12.0/6.1/2.8 R@1/5/10 gains on MSCOCO (1K)
and 11.5/12.6/10.0 R@1/5/10 gains on MSCOCO
(5K) compared with the previous SOTA. We have
also found that the capacity of the text encoder may
have limited effects on these performances. For
example, ConaCLIP-4L can achieve competitive
results with ConaCLIP-6L, and ConaCLIP-2L
has only minor drops.

5 Industry Application

We apply the proposed technique to end-to-end
cross-modal retrieval in an e-commerce platform,
where we vectorize the search queries and the prod-
ucts and then perform product retrieval and rank-
ing with nearest-neighbor search (Muja and Lowe,

2009; Jegou et al., 2010; Johnson et al., 2019),
as shown in Fig. 2. We first collect massive data
of text-image pairs from e-commerce products in
our platform, where the titles of products can act
as text information. We utilize most of the data
to pre-train an e-commerce version of the CLIP
model (denoted as EC-CLIP) with ViT-B/32 as the
image encoder, which is overly large for online de-
ployment. For the remaining data, we utilize 3M
pairs for distilling the lightweight EC-ConaCLIP.
To evaluate its effectiveness, we hold out a sepa-
rate set of 100K pairs for fine-tuning and 5K/5K
pairs used in validating/testing. In this set of experi-
ments, we train EC-ConaCLIP for 20 epochs in pre-
training distillation, and fine-tune both EC-CLIP
and EC-ConaCLIP for 5 epochs. The remaining
settings are the same as in Section 4.1.

In apart to the R@k metric, we also report the
disk space (MB) and the acceleration rate of Query
Per Second (QPSi for image and QPSt for text)
to evaluate model’s memory footprints and infer-
ence speed. In Tab. 4, we report the averaged
results where the inference speed is tested on an
NVIDIA TESLA V100 (16G) GPU. As seen, the
compressed EC-ConaCLIP-6L only takes 44%
disk space (254MB) of EC-CLIP meanwhile be-
ing 1.44×/1.92× faster with image/text queries.
It also performs on par with EC-CLIP. Our EC-
ConaCLIP-2L can further achieve up to 4.86×
inference speed-up with text queries, and 64% size
reduction (from 578MB to 206MB). We provide
some case studies in A.4.

6 Conclusion

In this paper, we propose Cona for pre-training
distillation with dual-encoder architecture. It gath-
ers every type of knowledge interaction learning
with appropriate supervision choice to benefit the
cross-modal distillation. The resulting ConaCLIP
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achieves superior performances on both general
benchmarks and industry applications.

For future work, we will explore more variants
of visual encoders, and continue to tap the potential
of dual-encoder distillation.
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A Appendix

A.1 Model Settings
We give detailed parameters on the settings of our
ConaCLIP models in Tab. 6, such as the number of
parameters, layers, heads, etc.

Model Setting ConaCLIP-6L ConaCLIP-4L ConaCLIP-2L

Number of Parameters 66M 60M 53M

Text Encoder Layers 6 4 2
Text Encoder Heads 8 8 8
Text Encoder Hidden Size 512 512 512
Vocabulary Size 49408 49408 49408
Text Length 77 77 77

Image Encoder Layers 12 12 12
Image Encoder Heads 6 6 6
Image Encoder Hidden Size 384 384 384
Image Patch Size 16 16 16
Image Size 224 224 224

Table 6: Detailed parameters on the settings of our
ConaCLIP models.

A.2 Negative Results on Distilling
Intermediate Layers

We also present an exploratory study on distilling
the knowledge of intermediate layers from teacher
encoders. We first evenly divide the encoder of
each student/teacher into six parts along the num-
ber of layers, and then perform our distillation tech-
nique on the feature representations of each part.
The experiment results are shown in Tab. 5.

We can observe that additional distillation with
features of the intermediate layers does not bring
about positive improvement. This inspires us
that we should mainly focus on the representation
matching ability of the output of the last layer for
the cross-modal retrieval task. Due to the differ-
ence of capabilities between models of different
sizes, they can choose different paths to learn the
goal-oriented features in the same task during dis-
tillation (Li et al., 2021; Zhu and Wang, 2021; Xu

Applied Parts R@1 R@5 R@10

6th (Baseline) 60.6 85.2 91.2
5-6 59.5 84.2 90.7
4-6 59.5 84.3 90.9
3-6 57.9 83.5 90.2
2-6 58.6 84.1 90.9
1-6 59.2 84.5 90.8

Table 5: An exploratory study on distilling intermediate
layers. The R@1/5/10 results on Flickr30K are listed.
Each student/teacher encoder is evenly divided into six
parts along the number of layers, and distillation is
performed on the feature representations of each part.

et al., 2022). In our application, we suggest that it
can be inappropriate to force small models to learn
the same path as the large ones.

A.3 Application in E-Commerce Product
Retrieval

We apply the proposed distillation technique to
end-to-end cross-modal retrieval in an e-commerce
platform, where we vectorize the search queries
and the products and then perform product retrieval
and ranking with nearest-neighbor search. The
whole framework is shown in Fig. 2.
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Figure 2: The application of our ConaCLIP in e-
commerce retrieval.

A.4 Case Study

Case Query CLIP EC-ConaCLIP (Ours)

1

Waterproof large capacity
lightweight fashion unicorn
cartoon kids girl middle
school backpack.

2

Stainless steel induction
steamers pot, 2 layers
double handle food
cooking pots with lid.

3
Children’s sand hammer
wooden bell multi-color
children’s development toy.

4
Hot red large size sports
tights high waist yoga
pants.

5
Tempered glass waterproof
platform 5kg digital food
electric kitchen scale.

Table 7: Case studies in e-commerce retrieval. Given
the same text query, we show the image retrieval results
of the open-source CLIP and our EC-ConaCLIP.

Tab. 7 shows the case studies in our e-commerce
retrieval scenario. For the same text query, we
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show the top-1 image retrieval results of the open-
source CLIP model and our EC-ConaCLIP model
respectively.

From these cases, we can find that our model
can better capture conceptual and fine-grained fash-
ion information during cross-modal text-image re-
trieval, and maintain the cross-modal alignment
effect of text-image samples after the lightweight
distillation. For example, in Case 1, our model
more accurately captures the cartoon subject in the
target commodity as "unicorn". In Case 2, our
model pays more attention to fine-grained informa-
tion "2 layers double handle", while maintaining
the correct perception of other information such as
"Stainless steel", "steamers pot" and "with lid". In
Case 3, our EC-ConaCLIP better captures the color
clue of "Hot red". Although the retrieval result of
CLIP also conforms to the information of "sports
tights high waist yoga pants", its color is more like
"dark red".

Based on our distillation technique, the resulting
model can sufficiently learn the perception abil-
ity of the teacher model about commodity fashion
concepts and reduce matching errors.
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