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Abstract

Recently, the recognition of flat, nested, and
discontinuous entities by a unified generative
model framework has received increasing at-
tention both in the research field and industry.
However, the current generative NER methods
force the entities to be generated in a predefined
order, suffering from error propagation and in-
efficient decoding. In this work, we propose a
unified non-autoregressive generation (NAG)
framework for general NER tasks, referred to
as NAG-NER. First, we propose to generate
entities as a set instead of a sequence, avoiding
error propagation. Second, we propose incorpo-
rating NAG in NER tasks for efficient decoding
by treating each entity as a target sequence.
Third, to enhance the generation performances
of the NAG decoder, we employ the NAG en-
coder to detect potential entity mentions. Ex-
tensive experiments show that our NAG-NER
model outperforms the state-of-the-art gener-
ative NER models on three benchmark NER
datasets of different types and two of our pro-
prietary NER tasks.

1 Introduction

Named entity recognition (NER) is a fundamen-
tal task in the field of information extraction. It is
the basic task for many natural language processing
applications like dialogue systems, document anal-
ysis, and search engines. Currently, NER tasks can
be divided into three subtasks (Yan et al., 2021),
i.e., flat NER, nested NER, and discontinuous NER,
as illustrated in Figure 1. Recently, researchers
have grown interested in tackling the three sub-
tasks via a unified model architecture, which we
refer to as general NER models (Li et al., 2020; Dai
et al., 2020; Yan et al., 2021). Existing literature for
general NER models fall into the following three
categories: (1) span-based models (Yu et al., 2020a;
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Figure 1: Examples of the discontinuous / nested / flat
NER.

Bekoulis et al., 2018); (2) models based on care-
fully designed data structures like hyper-graphs
and shift-reduce parsers (Dai et al., 2020; Wang
et al., 2021b); (3) sequence-to-sequence (seq2seq)
models (Yan et al., 2021; Zhang et al., 2022).

Among the three branches of literature, the
seq2seq models (Yan et al., 2021; Fei et al., 2021)
have achieved SOTA performances. However, they
organize target entities into a single sequence ac-
cording to a predetermined order. This setting is
against the intuition that the target entities are es-
sentially an unordered set and results in an incorrect
bias (entity-order confounder) to the model (Zhang
et al., 2022). In addition, sequentially generating
target entities suffers from two disadvantages: (1)
low inference speed due to autoregressive decod-
ing; (2) Error propagation, i.e., errors generated by
the previous steps could misguide the current and
future generation steps.

In this paper, we propose a non-autoregressive
generation (NAG) framework for named entity
recognition, NAG-NER (as depicted in Figure 2).
Given an input sentence, the framework first en-
codes the sentence and detects where and how
many entities will start at each token of the input
sentence. Then, it asks the decoder to generate the
set of targeted entities accordingly. We conducted
extensive experiments on three benchmark datasets
(CADEC, ACE2004, CoNLL03) and two propri-
etary datasets we developed (referred to as CME
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Figure 2: The overall framework of our NAG-NER framework. Left: the encoder is tasked for obtaining high-quality
context representations for the input text, and entity start classification. Upper right: During training, the decoder
will take a sequence of ⟨m⟩ tokens, and generate the corresponding entity type label and the whole entity mention.
Lower right: During inference, the encoder first propose the entity starting words and #entities starting from these
words, and then the decoder will generate corresponding entity results.

and QER). The results validate that our method can
perform comparably to or outperform the previous
generative NER models while achieving significant
speedups.

To summarize, our main contributions include
the following:

• We propose NAG-NER, a novel non-
autoregressive entity generation framework
for general NER tasks. Distinct from the
seq2seq models, it avoids the entity-order con-
founder and error propagation by generating
multiple entity sequences simultaneously with
a pre-trained non-autoregressive generation
model.

• Experimental results show that our model
achieves SOTA performances while being ef-
ficient.

2 Related Work

Due to limited length, we include the related
works of NAG in Appendix A. We also include a
preliminary introduction of NAG in Appendix B.

2.1 Generative NER models

Generative models are investigated to solve dif-
ferent types of NER tasks in a unified model frame-
work. Straková et al. (2019) propose to transform

the BILOU labels (Ratinov and Roth, 2009) of
source tokens into a label sequence via heuristic
rules. Athiwaratkun et al. (2020) propose an aug-
mented natural language output format for flat NER
tasks, where the type tags of words are placed along
with the words to form a sentence-like target se-
quence. Tan et al. (2021) proposes to generate
entities as a set. However, this model directly gen-
erates entity position and type information via a
set generation framework, failing to employ the
text generation capabilities of pre-trained genera-
tive models. Yan et al. (2021) combine pre-trained
BART with a delicately-designed copying mech-
anism and achieve promising performance on a
wide range of NER benchmarks. Fei et al. (2021)
train an LSTM from scratch to generate the target
sequence and devise a novel memory-augmented
pointer mechanism to enhance the interactions be-
tween the current pointer and the prior recognized
entity mentions. Lu et al. (2022) transforms dif-
ferent information extraction task into a structured
extraction language and solve general information
extraction tasks with a unified text-to-structure gen-
eration framework. Zhang et al. (2022) point out
two kinds of incorrect bias (pre-context confounder,
entity-order confounder) in the generative NER
models and propose two data augmentation meth-
ods to address these biases, but this model still has
to generate all the entities sequentially.
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Our NAG-NER framework contributes to the lit-
erature by (a) we generate all the entities of a given
input sentence in parallel via a NAG model, re-
sulting in significant speedup and avoiding the pre-
context confounder; (b) our framework bypasses
the entity-order confounder since it generates a set
of entities in a single forward pass.

3 Methods

In detail, we formally introduce our framework
(Figure 2). We uniformly formulate the task of rec-
ognizing flat, nested, and discontinuous entities as
NAG-based entity sequence generation problems.
We will take a pre-trained NAG model consisting of
an encoder and a decoder as the model backbone.
Denote the tokenized (Sennrich et al., 2016) in-
put sentence with length L as S = [w0, ..., wL−1].
And the target output is the set of entity sequences
{(ESi, Ti)}Mi=1, where M is the number of entities,
ESi is the i-th entity consisting of li tokens, and Ti

is the type label of entity i.

3.1 Encoder
The pre-trained NAG encoder will encode the

input sequence S and output the contextualized
representations:

H = Encoder(S), (1)

where H ∈ RL×d and d is the hidden size of the
NAG model. Since the transformer-based NAG
model will provide the contextualized encoding of
tokens, we use the representations of each word’s
first subword token as the vector representation of
this word:

vj = H[startj ], (2)

where vj is the representation of the j-th word in
the original input sequence, startj is the index of
the first subword token of word j in sequence S.

3.2 Entity start classification
To motivate the encoder to gain a deep under-

standing of the input sentence and provide informa-
tion for the decoder, we ask the encoder to detect
where an entity will start and how many entities
will start at such a position.1 This task is formu-
lated as a multi-class classification task on each
word j predicting the number of entities nej that
starts at word j:

p(nej) = Softmax(vjWne + bne), (3)
1For discontinuous and nested NER tasks, multiple entities

could share the same starting words, as shown in Figure 1.

where p(nej) ∈ ROmax+1, Omax is the maximum
number of entities starting at the same word. Note
that nej = 0 means that no entity will start at word
j. This task is optimized with cross-entropy loss
Lne.

3.3 Entity generation

As shown in Figure 2, we ask the NAG decoder
to generate entity information for each word j
of the input. The non-autoregressive generation
(NAG) model is proposed (Gu et al., 2018) to
speedup autoregressive generation, which removes
the order dependency between target tokens Y and
can generate tokens of the target sentence simulta-
neously given input X:

PNAG(Y |X; Θ) =

l∏

t=1

P(yt|X; Θ), (4)

where l denotes the length of the target sentence.
The decoder of the NAG model needs to know the
targeted length before generation. A common prac-
tice is to treat length prediction as a classification
task, using the information from the encoder’s out-
put to make predictions. However, following Qi
et al. (2020), we will discard this length prediction
task by using a unified length for the output se-
quence and use the first generated end-of-sentence
token ⟨/s⟩ as the ending signal for the generated
sequence.

Denote the maximum entity length (in subword
level) as lmax ∈ Z+. During training, we sort
(in ascending order) the nej entities by their span-
ning length, that is, the length of the span that
envelops this entity.2 For each word j and each
n = 0, 1, 2, ..., nej − 1, we would like the decoder
to generate entity (ESj,n,Tj,n). In the negative
cases where no named entities are starting from
word j, ESj,n will be the subtokens of word j, and
Tj,n will be the non-entity tag ⟨O⟩. Thus, the input
and target output of the decoder are:

• Decoder input: a sequence of length lmax + 3
consisting of only the mask token ⟨m⟩ are fed
into the decoder;

• Targeted decoder output: the target output se-
quence is in the form of

⟨s⟩ ETj,n ESj,n ⟨/s⟩, (5)

2This is reflected on Figure 1, where the spanning length
of "Pain in hip" is smaller than that of "Pain in knees".
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where ESj,n is the subtoken sequences of this
entity, and ETj,n is the token added to the
NAG vocabulary that represents the entity
class tag Tj,n. The non-entity tag O corre-
sponds to the special token ⟨O⟩.

Note that since entities are of different lengths,
we will pad the target output sequence with the
padding token ⟨pad⟩ to length lmax+3 if necessary.

The model does not need to generate entity se-
quences on every word during inference. We can
take advantage of the entity start classification mod-
ule and decide which words are likely to be the
starting words of named entities. Formally, with
the threshold τs (0 < τs < 1) for entity start classi-
fication,

Sstart = {j | p(nej = 0) < τs}, (6)

where Sstart is the collection of indexes of detected
entity starting words, and the number of entities
is obtained by nej ← argmaxnej p(nej). Then
we will generate entity sequences by feeding the
decoder a sequence of length lmax + 3 consisting
of only the mask token ⟨m⟩ for each j ∈ Sstart

and each n < nej . After the decoder generates
an output sequence, the entity tag token ETj,n is
obtained as the second generated token, and the
token sequence from the third position till the first
⟨/s⟩ token is the generated entity token sequence.
If there is no ⟨/s⟩ token in the output sequence,
all the output tokens starting from the third posi-
tion will be considered the generated entity token
sequence.

Given a decoder input and targeted output se-
quences, we can calculate the generation loss Lg
of NAG, which is the average cross-entropy loss
on each token according to Equation 4. We will
discard the losses from ⟨pad⟩ tokens.

3.4 Positional embeddings for entity
generation

Note that the decoder receives input sequences
consisting of only mask tokens ⟨m⟩, and it does not
know where the entity starts and which contexts
it should pay more attention to during generation.
In addition, we should also inform the decoder
about the number of entities starting from the same
word so that the decoder can generate entities of
different spanning lengths instead of generating the
same entity. Thus, we introduce two positional
embedding to the decoder’s embedding layer:

• word start position embedding (WSPE): as
depicted in Figure 2, all the mask tokens of the
decoder input share the same word start posi-
tion index, that is, startj , the index of the first
subtoken of word j. Furthermore, the word
start position embedding vector is obtained by
looking up the positional embedding layer of
the encoder.

• number-of-entities position embedding
(NEPE): for each n < nej , n represents the n-
th entity, and the n-th shortest entity starting
from word j. We map n to a randomly ini-
tialized learnable embedding vector NEPEn.
This positional embedding is also shared by
all the tokens of the decoder input.

These two positional embeddings will be added to
the decoder’s original embedding layer.

3.5 Overall fine-tuning objective
During fine-tuning of NAG, the whole frame-

work of NAG-NER is optimized end-to-end, with
the total losses of entity start classification and en-
tity sequence generation:

L = Lg + Lne. (7)

4 Experiments

4.1 Evaluation datasets and metrics
To show that our proposed method can be used

in various NER subtasks, we conducted experi-
ments on three English open-sourced benchmark
datasets (CADEC, ACE2004, CoNLL03) and two
Chinese proprietary tasks (CME, QER). CoNLL03
and QER are flat NER tasks, CADEC is a discon-
tinuous NER task, and ACE2004 contains nested
entities. CME is a complex task containing both
discontinuous and nested entities. We include intro-
ductions and statistics of the datasets in Appendix
C.

For evaluation, strict evaluation metrics are ap-
plied, where an entity is confirmed correct only if
all of its words and its type label are recognized
correctly. Precision (P), Recall (R), and Micro F1
score (F1) are reported in the results.

4.2 Implementation Details
We employ the BANG model (Qi et al., 2020) as

the backbone for English tasks while we pre-train
a NAG model in Chinese based on the codebase of
BANG on our corpus containing 120 million docu-
ments in Chinese. For fine-tuning on each task, the
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special tokens corresponding to the entity type la-
bels (including the non-entity label ⟨O⟩) are added
to the vocabulary, and their embedding vectors are
randomly initialized. For optimization, we use the
AdamW optimizer (Loshchilov and Hutter, 2018)
with a linear learning rate schedule and 6% of the
optimization steps as warm-up steps. After each
epoch, we evaluate the fine-tuned model on the
development set and save the model checkpoints.
After fine-tuning ends, the best checkpoint will be
evaluated on the test set, and the test result will be
reported. Details of hyper-parameter tuning and
settings are included in Appendix D. We report the
average test performance on five random seeds.

4.3 Compared Methods

We mainly compare our model with SOTA gen-
erative NER models listed in Section 2. We also
compare our method with SOTA discriminative
NER models. See Appendix E for an introduction
to them.

For a fair comparison, since our NAG model is
in the base size, we run the baseline models with
BERT-base (Devlin et al., 2019) (12 encoder layers)
or BART-base (Lewis et al., 2019) (6 encoder layers
and 6 decoder layers).3 Lu et al. (2022) is run
with the implementation of PaddlePaddle4. All the
baselines are run with their open-sourced codes
with their suggested hyper-parameters.

4.4 Main results

Table 1 and Table 2 show the comparison be-
tween our model and other models in three bench-
mark datasets and two proprietary datasets.
Results on the open-sourced benchmark
datasets Table 1 demonstrates that on the
benchmark datasets, our method has clear advan-
tages over the previous SOTA generative methods
on complex discontinuous or nested NER tasks
CADEC and ACE2004. On these tasks, our
method also outperforms the models designated
for specific tasks, like Wang et al. (2021b). On the
flat NER tasks, although the previous generative
models slightly underperform the discriminative
models, our method can obtain results comparable
to the strong discriminative models, demonstrating
the broad applicability of our method.

3The Chinese version of BART-base is provided by https:
//huggingface.co/fnlp/bart-base-chinese.

4https://github.com/PaddlePaddle/PaddleNLP/
tree/develop/model_zoo/uie

Model
CADEC ACE2004 CoNLL03

F1 F1 F1
Discriminative NER models

Tang et al. (2018) 65.1 - -
Dai et al. (2020) [ELMO] 68.7 - -
Wang et al. (2021b) [BERT-base] 69.7 - -
Yu et al. (2020a) [BERT-base] - 85.6 92.4
Li et al. (2020) [BERT-base] - 84.2 92.7
Xu et al. (2021) [BERT-base] - 85.0 -
Shen et al. (2021) [BERT-base] - 85.7 92.7
Akbik et al. (2019) [BERT-base] - - 92.8
Wang et al. (2021a) [BERT-base] - - 92.8

Set Generation NER models
Tan et al. (2021) [BERT-base] - 85.6 92.4

Generative NER models
Straková et al. (2019) [BART-base] - 84.3 92.4
Yan et al. (2021) [BART-base] 68.7 85.2 92.5
Fei et al. (2021) [BART-base] 70.6 - -
Zhang et al. (2022) [BART-base] 70.8 85.2 92.7
Lu et al. (2022) [BERT-base] - 85.3 92.3
NAG-NER (ours) 71.3 85.9 92.8

Table 1: Results on the three NER benchmark datasets.
The results show that our NAG-NER method has clear
advantages on complex NER tasks while performing
comparably with the SOTA models on flat NER tasks.

Model
CME QED

F1 F1
Discriminative NER models

Yu et al. (2020a) [BERT-base] 88.9 -
Li et al. (2020) [BERT-base] 87.8 94.5
Shen et al. (2021) [BERT-base] 88.7 94.6
Akbik et al. (2019) [BERT-base] - 94.5
Wang et al. (2021a) [BERT-base] - 94.8

Set Generation NER models
Tan et al. (2021) [BERT-base] - 93.8

Generative NER models
Straková et al. (2019) [BART-base] 86.4 93.9
Yan et al. (2021) [BART-base] 88.6 94.2
Zhang et al. (2022) [BART-base] 88.5 94.3
Lu et al. (2022) [BERT-base] 88.8 94.4
NAG-NER (ours) 89.6 94.7

Table 2: Results on the two proprietary datasets, CME
and QER.

Results on the proprietary datasets The results
on the our proprietary dataset (Table 2) lead to
similar observations with Table 1. Our method
outperforms the baseline methods on the complex
task CME which contains both discontinuous and
nested entities. In addition, the performance of
our method on the flat NER task, QER, is also
comparable to the strong discriminative baseline
models.

4.5 Inference Efficiency

We compare the inference efficiency of our
method with the SOTA seq2seq ner model Yan
et al. (2021) and the SOTA set generation NER
model Tan et al. (2021) on two tasks: ACE04 and
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Methods
QPS

ACE2004 CME
Yan et al. (2021) [BART-base] 108 (1×) 11
Tan et al. (2021) [BERT-base] 227 (2.1×) -

NAG-NER (ours) 205 (1.9×) 63 (5.7×)

Table 3: Comparison of efficiency for three models,
using a NVIDIA RTX 3090 GPU. The results show
that our method can effectively speed up inference for
various NER tasks.

CME. We run each model repeatedly on a fixed
batch of samples containing four sentences for a
fair comparison. For ACE2004, the batch contains
86 tokens; for CME, the batch contains 892 tokens.
The efficiency is measured on an NVIDIA RTX
3090 GPU. We report the average number of sen-
tences processed per second (QPS) of each model
in Table 3. As shown in Table 3, our method is
significantly faster than the seq2seq NER model
and only runs slightly slower than Tan et al. (2021).
Note that our CME task has a much longer average
sentence length and a larger number of entities per
sentence. Thus the speedup effects of our NAG-
NER method on CME are much more significant
than on the ACE2004 task.

4.6 Ablation studies
We conduct an ablation study on ACE2004 and

CME to verify the effectiveness of different com-
ponents of NAG-NER. We consider three different
variations of our whole NAG-NER model whose
results are presented in Table 4:

• NAG-NER-1. In our main experiments (in
Table 2), we utilize a Chinese BANG model
to initialize our model for the CME and QER
tasks. This BANG model is pre-trained on our
Chinese corpus with 100 thousand steps under
a batch size of 1024. We now substitute this
pre-trained checkpoint with a less well-pre-
trained one (at 20 thousand steps). NAG-NER-
1 under-performs NAG-NER on the CME test
set, demonstrating that the quality of the pre-
trained NAG models can directly affect the
results of our method.

• NAG-NER-2, which is to drop the entity start
classification module. Thus, in this model, the
decoder has to generate entity sequences on
each word’s starting token. After dropping
this module, the F1 score drops slightly on
both tasks, showing that this module is benefi-
cial for filtering out noise and increasing the

Methods
ACE2004 CME

F1 F1
NAG-NER 85.9 89.6

NAG-NER-1 - 88.7
NAG-NER-2 85.3 88.9
NAG-NER-3 73.2 69.5

Table 4: Results of ablation study on the ACE2004 and
CME tasks.

Dataset Test set Yan et al. (2021) NAG-NER

ACE2004
All 85.2 85.9 (+0.7)

Overlapping 83.2 84.7 (+1.5)

CME
All 88.6 89.6 (+1.0)

Overlapping 83.4 85.8 (+2.4)

Table 5: Results of ablation study on the ACE2004 and
CME tasks.

precision of the decoder’s generation outputs.

• NAG-NER-3, which is to drop the WSPE and
NEPE positional embeddings in Section 3.4.
NAG-NER-3 can not obtain a reasonable per-
formance, demonstrating the necessity of in-
forming our decoder where the entity starts to
generate the entity mentions correctly.

4.7 Error analysis
To further demonstrate the advantage of our

method over Seq2Seq NER models, we now an-
alyze how our model performs when dealing with
overlapping entities. In Table 5, we report the F1
scores on the whole test set and the subset of over-
lapping entities for the ACE2004 and CME tasks.
We can see that compared with Yan et al. (2021),
our NAG-NER model significantly boosts the F1
score on the overlapping entities, showing that our
method is effective in recognizing complex entities.

5 Conclusion

In this work, we propose NAG-NER, a unified
generative model for various NER tasks based on
non-autoregressive generation (NAG). In NAG-
NER, different NER tasks are formulated as entity
set generation tasks. We employ the NAG encoder
to detect potential entity starts and the NAG de-
coder to efficiently decode entity sequences. Ex-
periments on three benchmark NER tasks and two
proprietary NER tasks demonstrate that our method
can outperform baseline generative NER methods
while achieving higher inference speed. We also
conduct ablation studies to demonstrate the neces-
sity of each module in our NAG-NER method.
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Limitations

In this work, we develop a unified model frame-
work that is applicable to different NER tasks.
Through experiments, we show the effectiveness
of our method on different NER tasks, both in En-
glish and Chinese. However, we recognize that
our method is not tested on NER tasks where the
input sequences are extremely long. In addition,
our method is not tested on few-shot scenarios. We
will investigate these issues in future work.

Ethics Statement

Our model is designated to recognize entities
in input sequences. We use two groups of tasks.
The three benchmark datasets CADEC, ACE2004,
and CoNLL03 are widely studied in the literature,
and our work does not introduce new ethical is-
sues. Since the two proprietary datasets are all
anonymized and only used for training models in
our institution, no ethical concerns are included in
our work.
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A Appendix of related work

A.1 Non-autoregressive Generation Models

Due to its advantages in efficiency, there is
a wide range of studies for NAG models (Gu
et al., 2018; Ghazvininejad et al., 2019; Qi et al.,
2020). Gu et al. (2018) is the first to propose NAG
paradigm to reduce the inference latency of text
generation. NAG is widely studied in machine
translation. Ghazvininejad et al. (2019) masks
and predicts a fraction of tokens that the model
is least confident about. Saharia et al. (2020) and
Libovický and Libovický and Helcl (2018) use
connectionist temporal classification to perform
latent alignment in NAR models. Bao et al. (2022)
employs the discrete latent variables to capture
word categorical information and invoke an ad-
vanced curriculum learning technique, alleviating
the multi-modality problem of NAG in machine
translation tasks. Recently, several groups aim to
apply NAG to a wider range of tasks. Qi et al.
(2020) designs and pre-trains a monoligual Trans-
former model with multiple attention streams that
can be used both as an AG model and a NAG model.
They apply their pre-trained models on summariza-
tion, machine reading comprehension and dialogue
response generation, and show that NAG models
can achieve competitive performance with around
15 times speedup. Li et al. (2022) develops an
early exiting based strategies for monoligual NAG
pre-training.

Our work complements the literature by: (a) we
successfully apply NAG models in named entity
recognition tasks; (b) we propose a span set gener-
ation task for pre-training a NAG model which is
more suitable for downstream NER tasks.

B Appendix: Preliminaries on NAG

B.1 Autoregressive generation

The autoregressive generation (AG) models
achieve the state-of-the-art performance on a wide
range of text generation tasks like machine trans-
lation (Song et al., 2019; Sun et al., 2020), sum-
marization (Lewis et al., 2019), image captioning
(Stefanini et al., 2021). We now use machine trans-
lation to introduce the AG method. Given a source

sentence X = (x1, x2, ..., xn) and the target sen-
tence Y = (y1, y2, ..., ym), an AG model with pa-
rameters Θ decomposes the target distribution of
translations according to the chain rule:

PAG(Y |X; Θ) =
m∏

t=1

P(yt|y<t, X; Θ), (8)

where y<t denotes generated previous tokens be-
fore the t-th position. During the training process,
the AG model is usually trained via the teacher-
forcing strategy that uses ground truth target tokens
as previously decoded tokens so that the output of
the decoder can be computed in parallel. During
inference, the AG model still needs to generate
translations one-by-one from left to right until the
token ⟨/s⟩ that represents the end of sentence. Al-
though AG models achieve SOTA performances on
text generation tasks, its autoregressive decoding
method dramatically reduces the decoding speed
and becomes the main bottleneck of its efficiency.
In addition, some literature argues that autoregres-
sive decoding is prone to error propagation Gu and
Tan (2022).

B.2 Non-autoregressive generation

To improve the inference speed of AG models,
the non-autoregressive generation (NAG) model
is proposed (Gu et al., 2018), which removes the
order dependency between target tokens and can
generate tokens of the target sentence simultane-
ously:

PNAG(Y |X; Θ) =
m∏

t=1

P(yt|X; Θ), (9)

where m denotes the length of the target sentence.
Generally, NAG models need to have the ability
to predict the length because the entire sequence
needs to be generated in parallel. A common prac-
tice is to treat it as a classification task, using the
information from the encoder’s output to make pre-
dictions. Qi et al. (2020) discard the length pre-
diction module and use the first generated end-of-
sentence token ⟨/s⟩ as the ending signal for the
generated sequence.

Because NAG is only conditioned on source-side
information, but AG can obtain the strong target-
side context information provided by the previously
generated target tokens, NAG models generally
have a performance gap compared to AG models.
NAG is first studied in machine translation and
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Statistics
CADEC ACE04 CoNLL03

Train Dev Test Train Dev Test
# Sentences 6077 760 759 6200 745 812 14041 3250 3453

Avg sent. length 14.1 14.2 14.2 22.5 23.0 23.0 13.7 13.5 13.6
# Entities 5052 631 634 22204 2514 3035 23326 5902 5613

#types of entities 1 1 1 7 7 7 4 4 4
# Nested entities - - - 10149 1092 1417 - - -

# Discontinuous entities 543 64 68 - - - - - -

Table 6: Statistics of the three benchmark NER datasets.

recently NAG is rapidly closing the performance
gap against AG models via novel NAG-style pre-
training (Qi et al., 2020; Bao et al., 2022). NAG is
also applied to other generation tasks like summa-
rizaiton (Li et al., 2022), automatic speech recogni-
tion (Deng et al., 2022).

C Datasets

C.1 Open-sourced benchmark datasets

Discontinuous NER datasets We follow Dai
et al. (2020); Yan et al. (2021) to use the CADEC
dataset5 in our experiment. Since only the Adverse
Drug Events (ADEs) entities have discontinuous
annotation, only this type of entity is considered
and the other 4 types of entities are discarded.
Nested NER datasets For Nested NER subtask,
we adopt the ACE20046 dataset. This dataset con-
tains corpuses of newswire, broadcast news and
telephone conversations. It contains 7 entity cate-
gories: “PER”, “ORG”, “LOC”, “GEP”, “VEH”,
“WEA” and “FAC”. In experiment conducted on
ACE2004, we use the same data split as Muis and
Lu (2017); Yu et al. (2020a), the ratio between train,
development and test set is 8:1:1.
Flat NER datasets We adopt the CoNLL03
(Sang and Meulder, 2003) datasets. It is a flat
NER dataset with a news corpus and has annotated
4 types of entities as “PER”, “LOC”, “ORG” and
“MISC”. For CoNLL03, we follow Lample et al.
(2016); Yu et al. (2020a) to train our model on the
concatenation of the train and development sets.

C.2 Our proprietary datasets

In this work, we run experiments on two of our
proprietary datasets we collect to develop our infor-
mation extraction or question answering systems.
Chinese medical entity (CME) dataset This
dataset is collected from medical records. The col-

5https://data.csiro.au/collection/10948v003
6https://catalog.ldc.upenn.edu/LDC2005T09

lection of these medical records are agreed by the
owner, and the data are completely anonymized be-
fore being used by the data scentists. This dataset
contains 15 entity types, and contains both nested
and discontinuous datasets.
Query entity recognition (QER) dataset This
dataset is collected from queries from an online
question-answering system. The data collection is
agreed by all the users. This dataset considers 7
types of entities and it is a flat NER task.

Statistics of the two datasets are listed in Tabel
7.

D Appendix for experimental settings

D.1 Hyper-parameters settings

We run our experiments on NVIDIA Tesla V100
GPUs. The maximum entity length lmax is set to 8
for all the three Enghlish benchmark datasets, and
16 for our two proprietary tasks. The maxmimum
number of entities starting from the same word
Omax is set to 5. We manually tune the hyper-
parameters including maximum learning rate (max-
LR), epochs, maximum tokens per batch, dropout
rate, threshold τs for each dataset. Specifically,
we trial different values of each hyper-parameter
within the hyper-parameter search space for ten
times and the hyper-parameter values that results
in the best performance on the development set are
chosen. The search space of each hyper-parameter
and the final hyper-parameter configuration are re-
ported in Table 8.

E Appendix: Introduction to
discriminative NER models

Models for Discontinuous NER Tang et al.
(2018) use LSTM-CRF to recognize continuous
and discontinuous adverse drug reaction mentions.
Dai et al. (2020) is a transition-based method that
utilizes shift-reduce parsers to identify discontinu-
ous entities. Wang et al. (2021b) solve discontin-
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Statistics
CME QER

Train Dev Test Train Dev Test
# Sentences 84328 10540 10540 54390 6800 6800

Avg sent. length 231 232 232 14.3 14.1 14.5
# Entities 1813052 227664 227652 70712 8845 8862

#types of entities 15 15 15 7 7 7
# Nested entities 112458 13463 12968 - - -

# Discontinuous entities 63281 6590 6438 -

Table 7: Statistics of the two proprietary NER datasets.

Hyper-param Search space CADEC ACE2004 CoNLL03 CME QER

Epochs { 30, 50, 75 } 75 50 75 30 50
Max-LR {1e-5, 2e-5, 5e-5, 1e-4} 2e-5 5e-5 2e-5 1e-5 2e-5

batch size {1, 2, 4, 8, 16} 4 8 4 16 16
dropout rate {0.1, 0.2, 0.3, 0.5} 0.3 0.3 0.1 0.1 0.2

τs {0.2, 0.3, 0.5, 0.7, 0.9} 0.2 0.5 0.3 0.5 0.3

Table 8: The hyper-parameter settings for each task in our experiments.

uous NER via the maximal clique discovery algo-
rithm based on graph theory.

Models for Nested NER Yu et al. (2020b)
formulate NER as the dependency parsing task.
Li et al. (2020) adopt the pointer-based span ex-
traction strategy widely adopted in machine read-
ing comprehension (Zeng et al., 2020). Xu et al.
(2021) treat nested NER tasks as multi-class clas-
sification of spans and solve it with a multi-head
self-attention mechanism. Shen et al. (2021) is a
two-stage entity extraction model which first gener-
ates candidate spans and then labels the boundary-
adjusted span proposals with the corresponding
categories.

Models for Flat NER Akbik et al. (2019) dy-
namically aggregate contextualized embeddings of
each encountered string and use a pooling operation
to obtain a contextualized word representation from
all contextualized instances. Yu et al. (2020b) and
Li et al. (2020) can be used to solve both nested and
flat NER tasks. Wang et al. (2021a) use the input
sentence as a query to retrieve external contextual
information with a search engine and concatenate
the sentence with external contexts.
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