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Abstract

Most natural language tasks in the radiology
domain use language models pre-trained on
biomedical corpus. There are few pretrained
language models trained specifically for radi-
ology, and fewer still that have been trained
in a low data setting and gone on to produce
comparable results in fine-tuning tasks. We
present RadLing, a continuously pretrained
language model using ELECTRA-small (Clark
et al., 2020) architecture, trained using over
500K radiology reports, that can compete with
state-of-the-art results for fine tuning tasks in
radiology domain. Our main contribution in
this paper is knowledge-aware masking which
is a taxonomic knowledge-assisted pretraining
task that dynamically masks tokens to inject
knowledge during pretraining. In addition, we
also introduce an knowledge base-aided vocab-
ulary extension to adapt the general tokeniza-
tion vocabulary to radiology domain.

1 Introduction

Radiology reports are radiologist interpretations of
medical images such as X-Rays, CT, Ultrasound
and MRI scans. Healthcare professionals rely on
these reports to monitor and diagnose patients. A
radiology report typically includes several sections
(Kahn Jr et al., 2009), among which the most im-
portant ones are the following:

1. CLINICAL SECTION. This section describes
afflictions of the patient that prompted the
study, past diseases and symptoms.

2. COMPARISON. This refers to previous imag-
ing studies of the patient with which the radi-
ologist is comparing the current image.

3. FINDINGS. This section includes qualitative
and quantitative descriptions of abnormalities
if present, along with the radiologist’s diag-
nosis or differential diagnosis regarding the
observations.

4. IMPRESSIONS. This section summarises the
FINDINGS section. The radiologist notes ma-
jor abnormalities and their recommendations.

5. MISCELLANEOUS. This consists of other in-
formation like patient information, imaging
modality.

The post-BERT era (Devlin et al., 2018) of con-
textualized pretrained language models (PLMs)
has drastically reduced the need for expensive and
hard-to-find human annotated data for biomedi-
cal NLP. Biomedical PLMs are usually trained
on biomedical publications (Gu et al., 2020; Lee
et al., 2020; Gururangan et al., 2020; Peng et al.,
2019; Alsentzer et al., 2019; Lin et al., 2021; Yuan
et al., 2022; Luo et al., 2022) and have facilitated
drug discovery and healthcare informatics. Despite
sharing the same concepts, challenges remain in
adapting these models to radiology reports. This
is because the contents, context and structure of
biomedical publications are significantly different
from those of the radiology reports. Radiology re-
ports are terse, and concept-dense. It is shown that
models pretrained on radiology reports improve
performance in downstream clinical NLP tasks as
opposed to models pretrained on biomedical pub-
lications (Yan et al., 2022; Smit et al., 2020; Dai
et al., 2021). While this is encouraging, we iden-
tified some research challenges as well as encoun-
tered issues in adapting these PLMs to industrial
setting:
Research challenges. Random masking in masked
language modeling (MLM) is known to have con-
text understanding issues(Song et al., 2020). This
is exemplified in tasks like relationship extraction
(Jain et al., 2021) in radiology reports. Figure 1
shows an example sentence from CheXpert (Irvin
et al., 2019). The entities ‘Pneumonia’ and ‘lungs’
are related concepts, but current state-of-the-art
PLM-based methods fail to identify their relation
in the sentence.
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Figure 1: A difficult relationship extraction problem
in radiology report, taken from RadGraph relationship
extraction dataset (Jain et al., 2021). The shaded arrow
shows corresponding RadLex entities being connected
via the property Anatomical_site.

Industry adaptation issues. Industry adaptation
issues emanate from data and model sizes. Training
datasets available for industry are generally small.
Use of public datasets like MIMIC-IV (Johnson
et al., 2020) is not feasible for industry research due
to license restrictions. Large PLMs like PubMed-
BERT (109 million parameters) and best perform-
ing RadBERT variant(125 million) have latency is-
sues in industrial deployment, with low throughput
when deployed in low memory settings. Reduc-
tion in parameters by quantisation or distillation
reduces efficiency which is less than ideal.

We believe that context understanding problem
can be avoided with the help of domain knowl-
edge. In radiology domain, an excellent source
of domain knowledge is the taxonomical knowl-
edge base RadLex (Langlotz, 2006), which cu-
rates radiology lexicons. For the sentence in Fig-
ure 1, current PLMs misclassify the relationship.
However, a look at RadLex for the entity ’Pneu-
monia’ reveals its Anatomical_site property to be
’Lungs’. The RadLex property Anatomical_site
and the RadGraph relation ‘Located_at’ are anal-
ogous. Infusing this knowledge into PLMs adds
more context and domain knowledge and thus in-
creases prediction capabilities. In this paper, we
introduce RadLing, the first radiology language
model based on ELECTRA-small architecture with
13.7 million parameters trained with the help of
RadLex. Our major contributions in this paper are:

(a) Domain-specific vocabulary extension where
we have modified existing tokenization meth-
ods with help of RadLex,

(b) Knowledge base-aided continuous pretraining
objective that abets better context understand-
ing, and

(c) Smaller high performance radiology language
model.

2 Related Work

Radiology Report Understanding and Radiology
summarization are the most-addressed NLP tasks
that are related to the field of radiology. Radiology
summarization involves generating a summary of a
radiology report, which can help clinicians quickly
understand the key findings without having to read
the entire report (Karn et al., 2022). Radiology
Report Understanding involves extracting informa-
tion from a radiology report, such as the type of
imaging study, problem list generation, etc. This in-
formation can then be used to assist with diagnosis
and treatment planning.
Radiology report understanding using MLMs.
Yan et al. (2022) has used MLM with several pre-
trained PLMs like BERT, RoBERTa(Liu et al.,
2019) and Clinical BERT (Huang et al., 2019) to
train on 4.4 million radiology reports. These mod-
els show high performance in NER, RE, QA, abnor-
mal classification and summarisation. In contrast,
we aim to train with knowledge graph pretraining
objectives that might help learn with much smaller
dataset with 545k reports, and achieve comparable
results for NER, RE and Abnormals classification.
Other biomedical pretraining objectives. En-
tityBERT (Lin et al., 2021) used entity masking
pretraining objective to infuse domain knowledge.
This pretraining objective can mask context in ra-
diology reports, and hence we improved on this
by using RadLex. Section segmentation is another
radiology-specific pretraining objective proposed
in BiRadsBERT (Kuling et al., 2021) which we
have adapted to our work RadLing-SS. We plan
to use fewer sections in keeping with our training
dataset structure and test the architecture for our
training data.
Biomedical Knowledge Graph infusion. KeBi-
oLM (Yuan et al., 2021) applies text-only encod-
ing layer to aggregate entity representation. They
use MLM, entity detection and entity linking as
pretraining objectives and surpassed state-of-the-
art in biomedical NER and RE. BioKGLM(Fei
et al., 2021) has compiled large biomedical knowl-
edge graph as well as introduced a separate post-
training procedure between pretraining and fine-
tuning where they experimented several strategies
using knowledge embedding algorithms to inject
domain knowledge. In contrast, our work RadLing
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Figure 2: Schematic details of the methods outlined in this paper. We perform Preprocessing, followed by
tokenization, continuous pretraining and fine tuning. For continuous pretraining, this figure depicts the architecture
used for the three pretraining objectives: Masked Language modeling, Section segmentation and Knowledge-aware
masking. For fine-tuning, we have four tasks: Question Answering, Abnormal report classification, Named Entity
Recognition and Relationship Extraction. Radiology report picture courtesy: (Liang et al., 2022) Created with
BioRender.com

attempts to use existing radiology domain-specific
knowledge graph RadLex and pretraining objec-
tives that are better suited to the structure of train-
ing data.

3 Methods

Our methods consists of preprocessing, tokeniza-
tion and continuous pretraining. In addition, we
have outlined the downstream tasks we have used
to evaluate RadLing models. An overview of our
approach is presented in Figure 2.

3.1 Dataset

We have 545K reports in our training dataset, with
over 9.7M sentences and 87M words. The reports
have been collected from various medical institu-
tions in the United States and India. We have a high
volume of reports for radiograph images taken for
head and chest regions (see Appendix Figure 3).
We have a high volume of CT and Xray modalities

compared to MRI or Ultrasound (see Appendix Fig-
ure 5). We preprocessed the dataset using standard
techniques, which we describe in more detail in the
Appendix Section A.1.

3.2 Tokenization

We extend existing vocabulary for ELECTRA so that
meaningful tokens in radiology domain are added.
We have modified AVocaDo (Hong et al., 2021)
tokenisation to include only domain-specific words
in the new vocabulary. We perform Wordpiece to-
kenization on our corpus to form the set of new
tokens Tcorpus. The vocabulary of BERT contains
set of tokens TBERT . We find the tokens that be-
long to Tcorpus−TBERT and call them Tcandidate.
We query RadLex to check whether the tokens in
Tcandidate represent any concept in RadLex. In
case the word is present in RadLex, we append
the token to the new set of tokens Tnew. Since the
reports are anonymized, the names, dates and sev-
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eral other patient identifiers are replaced by fixed
special tokens, such as ‘[date]’, ‘[person]’, ‘[loca-
tion]’, ‘[time]’ and ‘[removed]’. We also include
these sets of tokens Ts into our vocabulary. Our
new vocabulary TRadLing = TBERT +Tnew +Ts.

The addition of significant number of tokens to
the existing vocabulary has been seen to introduce
catastrophic forgetting or overfitting of model to
the new tokens (Hong et al., 2021). We adopt the
regularization method in AVocaDo during continu-
ous pretraining to prevent these issues. Total loss
during training is a combination of the loss of the
pretraining objective and regularization term Lreg

(See Appendix Section A.2).

3.3 Continuous Pretraining objectives

We train RadLing using ELECTRA-small (Clark
et al., 2020). ELECTRA uses generator and dis-
criminator networks to perform ‘replaced token
detection’ (RTD) task. RTD is a pretraining task
where the model learns to differentiate between real
input tokens and plausible but artificially created re-
placements. The generator is a small MLM model
that replaces some corrupted (masked) input tokens
by sampling tokens from its vocabulary distribu-
tion. The discriminator (ELECTRA) is pretrained to
predict whether each token is a replaced token or
original token. The advantage of RTD is better lan-
guage understanding with relatively small amount
of pretraining data. In our work, we have exper-
imented with three pretraining or self-supervised
objectives: Masked language modeling, Section
Segmentation, and Knowledge-aware masking.
Masked Language Modeling (RadLing-MLM):
In keeping with the original paper (Devlin et al.,
2018), for every input sequence, we have randomly
masked 15% of the tokens in the text.
Section Segmentation (RadLing-SS): Section
segmentation pretraining task follows (Kuling et al.,
2021) and uses the discriminator to classify sen-
tences belonging to one of the five report sections:
CLINICAL SECTION, FINDINGS, IMPRESSIONS,
COMPARISON and MISCELLANEOUS1.
Knowledge-aware masking (RadLing-KG):
Knowledge-aware masking utilizes RadLex to
intelligently mask (Figure 4) so that context
information is preserved. RadLex-KG uses four
steps to achieve this: (a) Named entity extraction
and entity linking, (b) Categorization of the

1We use Spacy(Honnibal et al., 2020) for section segmen-
tation.

entities, (c) Entity masking according to their
categories, and (d) Regularization during training.

From the 15 sub-classes of entities that make
up RadLex, we have used the classes "anatomi-
cal entity", "clinical finding", "procedure", "imag-
ing observation" and "RadLex descriptors" in this
study. Each term in this class can optionally have
63 properties, among which we have only used
Anatomical_site.
Named entity extraction and entity linking:
Most of the contextual information of a radiology
report is contained in three sections: CLINICAL

SECTION, FINDINGS and IMPRESSIONS. We detect
spans of the named entities using SciSpacy (Neu-
mann et al., 2019) in these sections of the report.
Then, using the NCBO annotator tool2, we nor-
malize the entities so that we can query RadLex
and retrieve information about the ancestors and
properties of these entities.
Categorization of the entities: We classify the
entities into three types: Symptom, Anatomy and
Observation. Observations refer to different clini-
cal findings in the patient. The normalized entities
are classified to these categories using the follow-
ing heuristics3:

1. Those that RadLex recognizes as "symptom"
are classified as Symptom.

2. Those that RadLex recognizes as ‘anatom-
ical entity’, ‘anatomical descriptors’ and
‘anatomically-related descriptor’ are classified
as Anatomy.We also include ‘location descrip-
tor’ class into this category, although they are
merely positional qualifiers and don’t repre-
sent anatomy.

3. Those that map to the following RadLex sec-
tions are classified as Observation: ‘clinical
finding’, ‘procedure’, ‘imaging observation’,
‘size descriptor’, ‘normality descriptor’, ‘tur-
bidity descriptor’, ‘stage of healing descriptor’
and ‘composition descriptor’.

Entity masking. We mask entity tokens based on
their entity category. We randomly choose one of
the following masking options for each sequence:

2https://github.com/ncbo/ncbo_annotator
3There are entities that may have words classified to differ-

ent categories. For example, ‘basilar atelectasis’ has ‘basilar’
belonging to Anatomies and ‘atelectasis’ belonging to Obser-
vations. In these cases we split the entity into its constituents
and consider them separately for masking.
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1. Mask entity tokens identified as Anatomy in
the CLINICAL SECTION and FINDINGS of the
report. Mask entity tokens identified as Symp-
tom in FINDINGS and IMPRESSIONS.

2. Mask entity tokens identified as Observation
in the FINDINGS of the report. Mask entity
tokens identified as Symptom in FINDINGS

and IMPRESSIONS.

3. Mask entity tokens identified as Anatomy in
the CLINICAL SECTION and IMPRESSIONS of
the report. Mask entity tokens identified as
Symptom in FINDINGS and IMPRESSIONS.

4. Mask entity tokens identified as Observation
in the IMPRESSIONS of the report. Mask entity
tokens identified as Symptom in FINDINGS

and IMPRESSIONS.

Each anatomy in a radiology report is associated
with a corresponding observation usually. These
masking options ensure that context is not masked
altogether in a sequence. In addition, if multi-
ple words comprise an entity, we have randomly
masked either all or a subset of the tokens compris-
ing the entity. We only consider the masking option
that will lead to masking at least 15 % of the total
number of tokens. If no masking option meets that
criteria, we randomly select one of the four options
and mask the corresponding entities. The rest of
the 15% quota is filled up by tokens corresponding
to non-entities.
Regularisation: In addition to the discriminator
loss in ELECTRA, we introduce a novel regularisa-
tion loss where we decrease the penalty for gener-
ating a token that belongs to an Observation that
pertains to the same Anatomy. This is done by
checking the property Anatomical_site of both the
linked entity and generated entity or verifying if
they belong to the same subclass in ‘body-system-
specific disorder’ in RadLex. The regularisation
loss is denoted by LKG, and is explained in the
Appendix Section A.3.2.

4 Experimental Results

4.1 Finetuning Tasks

We evaluated our pretrained models on four finetun-
ing tasks: (a) Named Entity Recognition (NER): ex-
tracting radiology-specific anatomies and observa-
tions. (b) Relationship Extraction (RE): extracting
relationships between anatomies and observations.

Model NER-M NER-C RE-M RE-C Class RadQA
RadBERT 0.91 0.90 0.97 0.93 0.99 69.09
PubMedBERT 0.86 0.89 0.78 0.69 0.98 60.08

RadLing-MLM 0.89 0.89 0.98 0.94 0.98 60.96
RadLing-SS 0.89 0.88 0.96 0.94 0.97 60.23
RadLing-KG 0.92 0.92 0.98 0.94 0.99 62.55

Table 1: Downstream task Results: For Named
Entity Recognition (NER), Relationship Extraction
(RE) and Abnormal classification (Class) tasks, macro
F1 is reported. For Radiology Question Answer-
ing (RadQA), F1 score is reported. NER-M=NER-
MIMIC, NER-C=NER-CheXpert, RE-M=RE-MIMIC,
RE-C=RE-CheXpert.

(c) Abnormal classification: classifying reports into
normal and abnormal based on the presence or ab-
sence of pathologies, and (d) Radiology Question
Answering: providing answers to questions based
on radiology reports. We have used RadGraph
dataset (Jain et al., 2021) for NER and RE tasks,
RadQA dataset (Soni et al., 2022) for Radiology
Question Answering, and (Demner-Fushman et al.,
2016) for abnormal classification. The datasets for
these tasks are explained in details in Appendix
Section A.5.

In this section, we present the results from all
three RadLing models, which were each fine-tuned
on downstream tasks after being pretrained on
three different self-supervised objectives (see Sec-
tion 3.3).
NER. RadLing-MLM and RadLing-SS do compar-
atively well on RadGraph test dataset with refer-
ence to the state-of-the-art model RadBERT, with
F1 scores of 0.89. RadLing-KG however does bet-
ter than all the other models with F1 score of 0.92.
Similar results are seen for CheXpert test dataset,
and RadLing-KG performs better than other mod-
els with F1 of 0.92. The breakdown of F1 scores
in table 2 show that RadLing-KG outperforms the
other variants in all the classes, and has significant
improvement in the underrepresented class Obser-
vation:Uncertain.
Relation Extraction. Both RadLing-MLM and
RadLing-KG outperform the state of the art in re-
lationship extraction task, with F1 scores 0.98 and
0.94 on MIMIC and CheXpert test datasets, respec-
tively. Meanwhile, RadLing-SS falls a little short
with F1 of 0.96 for MIMIC test dataset. The dataset
imbalance does not affect the performance of these
models for the underrepresented class [3]. Radiolo-
gist benchmark macro F1s for this task are 0.91 and
0.704 for MIMIC-CXR and CheXpert respectively,
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and our models have surpassed it.
Abnormal Classification. RadLing-KG matches
the high performance of RadBERT in this task,
with a macro F1 of 0.99, accuracy 99.3% and AUC
of 0.995.
Question Answering. For RadQA dataset,
RadLing-KG performs the best among the RadLing
model variants at F1 of 62.55 and Exact Match of
49.78, but this is lower than the state of the art
(69.09 for RadBERT).

4.2 Discussion

RadLing is one of the first models that has been
trained on a radiology report dataset, and the first to
use ELECTRA. RadLing-KG is the first radiology
PLM to use RadLex in its training. For this reason,
there are not many benchmarks we can compare
our results with. Knowledge-aware masking has
led to better results in almost all downstream tasks
compared to RadBERT. However, RadLing-MLM
has comparable performance, and we attribute the
robustness to ELECTRA architecture. The choice
of ELECTRA in our experiments is influenced by
its unique architecture that has been shown to yield
high performance with low data (Clark et al., 2020),
making it perfect for industry setting. RadLing-
KG improves the performance in underrepresented
classes for both NER and RE significantly, where
all other models perform poorly. To provide an ex-
ample, uncertain observations comprise only 4.7%
of the NER training data. Now, for a sentence
“mild basilar atelectasis without definite focal con-
solidation.", “focal consolidation" is an uncertain
observation. Models other than RadLing-KG are
not able to capture the whole text as an uncertain
observation. Similarly, for relationship extraction
task, ‘suggestive of’ reflects 4.7% of the training
data. A sentence like “Findings are suggestive of
mild pulmonary edema with basilar atelectasis" has
two ‘suggestive of’ relations : 1. ‘Findings’ and
‘edema’, 2. ‘Findings’ and ‘atelectasis’ However,
models other than RadLing-KG finetuned for re-
lationship extraction are unable to detect both of
these, especially the latter relationship. We surmise
that knowledge infusion is a key factor in these
stellar results. ELECTRA has been shown to have a
lack of uniformity and alignment where two closely
related sentences may have more different repre-
sentations (Meng et al., 2021). We hypothesize that
this might be one of the main factors contributing
to low F1 scores for RadQA. However, we also

note that RadLing-KG attempts to counteract this
effect and improves on both Exact match and F1.

5 Conclusion

In this work we have explored a cost-effective
method to train a high performing radiology PLM,
RadLing with a small dataset. RadLing models
took 2 days to train on Tesla V100 SXM2 machines
with 8 GPUs and 16 GB memory per GPU, which
using larger models like ELECTRA-large required
5 days. We developed a knowledge-aware mask-
ing strategy to use RadLex to infuse context into
radiology PLMs to train RadLing-KG. This led
us to the following observations. First, ELECTRA

architecture, without any special pretraining objec-
tives, is able to produce good results with most of
the downstream tasks. In a task like relationship
extraction, it even outperforms Radgraph radiolo-
gist benchmarks. Second, RadLing-KG is the best
performing RadLing variant, and outperforms the
downstream task benchmarks in all the tasks except
QA. Third, Domain specific vocabulary is helpful
in better performance of models. In addition, in
tasks that use cross attention like vision-language
tasks or explainable AI, having unfragmented ra-
diology tokens is helpful. For example, BERT
fragments biomedical terms like ‘Thalamus’ into
‘Tha’, ‘##lam’, ‘##us’, thereby losing the domain-
specific meaning, whereas in our work, due to do-
main specific tokenization, the word ’Thalamus’ is
retained. Fourth, Infusion of RadLex information
counteracts ELECTRA limitations in QA dataset.
Finally, we have tested the model on proprietary
NER datasets and RadLing-KG has yielded 0.92-
0.93 macro F1 on less represented anatomies like
neck, while for the highly represented anatomies,
F1 is as high as 0.98. This actually shows the po-
tential of using RadLex in radiology pretraining.
Thus, in a real world setting with high imbalances
in datasets, RadLing-KG is more robust.

In future we would like to explore more ways
to infuse knowledge by (a) Using text description
of context like (Yuan et al., 2021), (b) Retrieving
context from biomedical knowledge graphs like
SNOMED 4 and UMLS, and (c) more robust knowl-
edge embedding methods. We would like to exper-
iment with larger datasets and models, and work
with more downstream radiology applications.

4https://www.nlm.nih.gov/healthit/snomedct/index.html
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MIMIC CheXpert
Model ANAT OBS:DP OBS:U OBS:DA ANAT OBS:DP OBS:U OBS:DA

RadLing-MLM 0.97 0.94 0.75 0.98 0.97 0.98 0.72 0.95
RadLing-SS 0.97 0.94 0.72 0.98 0.97 0.98 0.68 0.95
RadLing-KG 0.98 0.95 0.8 0.98 0.98 0.98 0.81 0.96

Table 2: Downstream Task Results: Named Entity Recognition (NER) on RadGraph (Jain et al., 2021). Macro F1
scores reported on two test datasets: MIMIC and CheXpert. ANAT refers to Anatomy, OBS refers to Observation,
DP: Definitely Present, U: Uncertain, DA: Definitely Absent.

MIMIC CheXpert
Model Modify Located At Suggestive Of Modify Located At Suggestive Of

RadLing-MLM 0.99 0.98 0.96 0.96 0.93 0.92
RadLing-SS 0.98 0.97 0.94 0.95 0.94 0.9
RadLing-KG 0.99 0.98 0.97 0.96 0.95 0.92

Table 3: Downstream Task Results: Relation Extraction on RadGraph macro F1 scores. Macro F1 scores reported
on two test datasets: MIMIC and CheXpert for 3 relation types: Modify, Located At and Suggestive Of.

Limitations

There are a few limitations pertaining to the train-
ing data we used. Some of them are listed below.

1. RadLing has been trained on English reports
only, and therefore will not work out of the
box in a multilingual setting.

2. There is data imbalance with respect to imag-
ing modalities and anatomies covered by our
training data. For example, regions like ex-
tremities, neck, spine and shoulder are un-
derrepresented in the dataset, and expected
understanding of observations related to those
regions may be limited.

3. There needs to be a study on the diversity of
the patients and radiologist expertise repre-
sented in the data, and how it impacts the per-
formance of the model for underrepresented
communities.

4. Different radiologists (and radiology depart-
ments) have different preferences and styles of
writing reports. In addition, clinical referrals
sometimes dictate to what extent some details
are documented the report e.g. the Clinical
statement. There was no study on the consis-
tency, uncertainty or information richness of
the report.

Asides from the training data, there may be space
and time throughputs of the model which could
make them unsuitable for at-the-edge applications
with limited bandwidth.
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to the Association for Computing Machinery
(ACM) Code of Ethical and Professional Con-
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anonymized and access-controlled to protect PHI
information by our dedicated data handling team
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errors in our model-generated outputs, our mod-
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A Appendix

A.1 Preprocessing
Preprocessing of the anonymized radiology reports
corpus consists of the following tasks:

(a) Regex-based cleaning and normalization:
Some of the reports have been converted to
text using optical character recognition (OCR).
This led to common OCR errors like misspelled
character substitutions and insertion of spuri-
ous characters. We used manual identification
of common errors, followed by Regex-based
substitutions for these errors.

(b) Section identification: We follow a Regex-
based method to split the text in a radiology
report into the five sections.

(c) Section-based chunking: BERT-like transform-
ers can use maximum 512 tokens as sequence
length (Michalopoulos et al., 2022). We made
sure that an entire section of a report is in one
section, and divided the report into chunks to
fit this restriction.

A.2 AVocaDo tokenization
In AVocaDo, a contrastive learning framework is
employed, and the regularization term Lreg is cal-
culated using the cosine similarity between the sen-
tence encoding outputs from the general PLM and
the PLM with a domain-adapted tokenizer as be-
low:

Lreg(h
(l)
A ,h

(l)
P ) =

1

B
log

B∑

i=1

exp( sim(h
(l)
A,i,h

(l)
P,i)/τ∑B

j=1 exp
( sim(h

(l)
A,i,h

(l)
P,j)/τ

,
(1)

where h
(l)
A,i and h

(l)
P,i are l-th layer outputs from

the general (P) and adapted (A) PLM encoders for
each sentence xi in a batch of sentences x of size
B. sim(·) refers to cosine similarity between the
encodings, and τ is the softmax temperature.
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Figure 3: Radiology reports dataset anatomy split

A.3 Losses in Continuous pretraining
objectives

This section discusses the loss functions we have
used for each of our pretraining objectives.

A.3.1 Masked Language Modeling.

This objective has the separate losses for the gen-
erator and discriminator of ELECTRA, denoted
by LMLM (x, θG) and LDisc(x, θD) respectively.
They are accompanied by the regularisation term
from 1, and calculated as follows:

LMLM (x, θG) = λALreg+

E
(∑

i∈m

− log pG(xi|xmasked)
)

LDisc(x, θD) = λALreg+

E
( n∑

t=1

−1(xcorrupt
t = xt) logD(xcorrupt, t)

−1(xcorrupt
t ̸= xt) log(1−D(xcorrupt, t))

)
,

(2)

where pG is the probability of generating a par-
ticular token xi given the masked token xmasked,
D(·) is a sigmoid output of the discriminator that
predicts whether the token is “real", λA is a regu-
larisation parameter, which is set to 1.

A.3.2 Knowledge-Aware Masking
The regularisation loss for knowledge-aware mask-
ing is denoted by LKG, and calculated as follows:
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Figure 4: Illustration to show a case where random
masking masks all context. Knowledge aware masking
masks either anatomy or observation, preserving the
context.

LKG(x, θD) =

E
( n∑

t=1

−1
(
PA(xcorrupt

t ) ∈ PA(xt)
)

logD(xcorrupt, t)

−1
(
PA(xcorrupt

t ) /∈ PA(xt)
)

log(1−D(xcorrupt, t))
)
,

(3)

where PA(·) stands for the anatomical site prop-
erty of the observation. The final loss for the dis-
criminator is calculated as

LKG
disc = LDisc + λKGLKG (4)

where λKG is the knowledge graph regularisation
parameter, and is set to 1 for our experiments.

A.4 Experimental setup
We have trained RadLing using Tesla V100 SXM2
machines, with 8 GPUs and 16 GB memory per
GPU. The base model is ELECTRA-small which
has 14M parameters, 12 layers and 256 hidden size.
RadLing-MLM was trained in 230 steps, using
learning rate 3e-5, AdamW optimizer and polyno-
mial decay schedule with warmup. RadLing-SS
needed 220K steps while RadLing-KG was trained
in 235K steps.

The best performance for NER was achieved af-
ter 6 training epochs with learning rate 4e-5, and
AdamW optimizer with RadLing-MLM, after 13
steps with RadLing-SS and 9 steps with RadLing-
KG. Relationship extraction model was finetuned
on RadLing-MLM for 8 epochs with 5e-5 learn-
ing rate and AdamW optimizer; 14 epochs with
RadLing-SS and 9 with RadLing-KG. Abnormal
classification took 19 steps with RadLing-MLM, 10
steps with both RadLing-SS and RadLing-KG with
2e-4 learning rate, dropout 0.2 and AdamW opti-
mizer with 1e-7 epsilon. RadQA finetuning took 8

Figure 5: Radiology reports dataset modality split

epochs with 2e-4 learning rate, maximum sequence
length 384, document stride 128, maximum query
length 128. All of these models have been trained
with early stopping and patience of 3 epochs, and
best model selected based on validation loss. For
comparison of the results we have used RadBERT-
RoBERTa-4m for RadBERT, and the finetuning
follows that of RadLing. PubMedBERT results are
collected for NER and RE from (Jain et al., 2021).
Finetunining for RadQA and Abnormal classifica-
tion follows finetuning for RadLing and RadBERT.

A.5 Fine-tuning task details
The different finetuning tasks in this paper are
described in this section.

Named Entity Recognition. The named en-
tity recognition task that we chose to finetune our
model on focuses on extracting the anatomy and ob-
servations information from the unstructured radi-
ology reports. RadGraph (Jain et al., 2021) dataset,
annotated by board-certified radiologists, is a col-
lection of annotated training data from MIMIC-
CXR dataset and test data from both MIMIC-CXR
and CheXpert(Irvin et al., 2019) dataset. The
anatomies in this schema consists of two concepts:
Anatomy and Observation. Anatomy refers to body
parts referenced in the radiology reports. Observa-
tions refer to the visual findings noted by the radiol-
ogist in the medical images (e.g., nodules or opaci-
ties), and pathophysiological processes (diseases)
that the radiologist has mentioned (e.g., pneumo-
nia). Observation is further divided into three uncer-
tainty levels: definitely present, uncertain and defi-
nitely absent. Training and validation datasets are
created by annotating 500 radiology reports from
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MIMIC-CXR datasets, while test dataset comprises
50 annotated radiology reports from MIMIC-CXR
and CheXpert collections. There are 12,388 and
2191 entities in the training and validation datasets
respectively. In the test set, there are 1293 and 1473
entities in MIMIC-CXR and CheXpert respectively.
Overall, we have an imbalanced dataset with less
than 5% uncertain observations. The evaluation
criteria is class-level and aggregate macro F1 and
micro F1. Radiologist benchmark macro F1s for
this task are 0.981 and 0.894 for MIMIC-CXR and
CheXpert respectively.

Relationship extraction. RadGraph dataset also
contains relationships between the annotated enti-
ties. Relationship extraction refers to the classifica-
tion of the entity–entity relations given the context
of the report. The schema contains three possi-
ble relations: ‘Suggestive Of’, ‘Located At’, and
‘Modify’. Suggestive Of is a relation between two
observations that indicate that the first observation
indicates the likelihood or leads to the second one.
For example, Streaky densities at the lung base
might suggest pneumonia’ means the observation
‘streaky densities’ at the lung base indicates that the
patient might have pneumonia. Located At is a re-
lation between an observation and anatomy. In the
above example, ‘streaky densities’ are ’Located At’
the anatomy ‘lung’ base. Modify is a relation be-
tween two anatomies or two observations where the
first entity is a qualitative or quantitative descriptor
of the second entity. There are 9251 relations in
the training dataset, 1638 in the validation dataset,
902 in MIMIC-CXR test dataset and 1107 in CheX-
pert dataset. This dataset is imbalanced with < 6%
of relations being ‘Suggestive of’. The evaluation
metrics for this dataset are macro F1 and micro F1,
both on an aggregate level and for each relation-
ship class. Radiologist benchmark macro F1s for
this task are 0.91 and 0.704 for MIMIC-CXR and
CheXpert respectively.

Abnormal classification. This dataset has been
collected from 2 large hospital systems within the
Indiana Network for Patient Care database. It
contains narrative chest x-ray reports for poste-
rior–anterior (PA) chest x-ray examinations. The
dataset(Demner-Fushman et al., 2016) contains
3996 de-identified reports, manually and indepen-
dently annotated by two coders trained in medical
informatics. Acute or chronic disease findings, im-
planted medical devices, or surgical instruments
are classified as not normal in this dataset. This

dataset also coded in and normalised the abnormali-
ties present in the reports. There are 2564 abnormal
reports and the rest are normal. The evaluation met-
rics for this dataset are macro- and micro-F1 on
test dataset.

Radiology Question Answering. This down-
stream task is an extractive Question Answering
application in radiology domain. We use RadQA
dataset (Soni et al., 2022) made from 1009 reports
sourced from MIMIC-III- (Johnson et al., 2016)
database, by sampling 100 patients with 1–36 ra-
diology reports. Question creation for this dataset
follows a novel approach of basing questions only
on clinical referrals of physicians that prompted the
radiography being done instead of the whole report.
This focuses on the questions that the physicians
are the most interested in, as well as the answers to
which would most likely be contained in the report.
The answer annotations are done by annotators
with the full radiology report, with them needing
to annotate from Findings and Impression sections.
Annotations have been carried out using haystack
by expert annotators. There are 6148 questions
in the dataset, among which 1745 are unanswer-
able. The rest of the answers are extractive and
have median and average lengths of 7 and 16.2
respectively. The evaluation of this dataset uses
standard Machine Reading Comprehension (MRC)
(Gardner et al., 2019) metrics, i.e., stricter metric
Exact match (EM) and F1 where word level match
is calculated between reference and predicted an-
swers.
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