
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 616–628

July 10-12, 2023 ©2023 Association for Computational Linguistics

Context-Aware Query Rewriting for Improving Users’ Search Experience
on E-commerce Websites

Simiao Zuo⋄, Qingyu Yin∗†, Haoming Jiang†, Shaohui Xi†, Bing Yin†,
Chao Zhang⋄ and Tuo Zhao⋄

{simiaozuo, chaozhang, tourzhao}@gatech.edu
{qingyy, jhaoming, shaohux, alexbyin}@amazon.com

⋄Georgia Institute of Technology †Amazon

Abstract

E-commerce queries are often short and am-
biguous. Consequently, query understanding
often uses query rewriting to disambiguate user-
input queries. While using e-commerce search
tools, users tend to enter multiple searches,
which we call context, before purchasing.
These history searches contain contextual in-
sights about users’ true shopping intents. There-
fore, modeling such contextual information is
critical to a better query rewriting model. How-
ever, existing query rewriting models ignore
users’ history behaviors and consider only the
instant search query, which is often a short
string offering limited information about the
true shopping intent. We propose an end-to-end
context-aware query rewriting model to bridge
this gap, which takes the search context into
account. Specifically, our model builds a ses-
sion graph using the history search queries and
their contained words. We then employ a graph
attention mechanism that models cross-query
relations and computes contextual information
of the session. The model subsequently calcu-
lates session representations by combining the
contextual information with the instant search
query using an aggregation network. The ses-
sion representations are then decoded to gener-
ate rewritten queries. Empirically, we demon-
strate the superiority of our method to state-of-
the-art approaches under various metrics.

1 Introduction

Query rewriting is a task where a user inputs a
potentially problematic query (e.g., typos or insuf-
ficient information), and we rewrite it to a new one
that better matches the user’s real shopping intent.
This task plays an important role in e-commerce
query understanding, where without proper rewrit-
ing, search engines often return undesired items,
rendering the search experience unsatisfactory.

One major issue that impedes query rewriting is
the ambiguity of queries. For example, Figure 1

∗Correspondence to Qingyu Yin (qingyy@amazon.com).

Figure 1: Searching for “bumblebee costumes” with
(right) and without (left) history searches.

(left) demonstrates searching for “bumblebee cos-
tumes” without considering search context. From
the query alone, it is implausible to tell if the user’s
intent is for costumes of actual bumblebee (i.e.,
the animal) or the character from the movie fran-
chise. This type of ambiguity is common in e-
commerce search, where queries are usually short
(only 2-3 terms) and insufficiently informative (He
et al., 2016b). Therefore, it is not possible to dis-
ambiguate queries using only the instant search.
A common solution is to use statistical rules to
differentiate the possible choices. Specifically, in
our example, suppose a total of 100 users entered
the “bumblebee costumes” query, and 70 of them
eventually purchased the movie character costume.
When a new user searches for the same query, the
recommended products will consist of 70% movie
character costumes and 30% animal costumes. This
procedure is problematic because each user has a
specific intent, i.e., either the movie character cos-
tume or the animal costume, but rarely both, which
the aforementioned method fails to address.

We propose to explore contextual information
from users’ history searches to resolve the query
ambiguity issue. Taking the “bumblebee costumes”
example again, in Figure 1 (right), suppose a rewrit-
ing model recognizes that the user searched for
“Transformers movie” earlier, then it could infer

616



that the user’s purchase intent is the movie char-
acter costume, and hence can remove the input
ambiguity. There have been existing works that
utilize search logs for query rewriting. For ex-
ample, Wang and Zhai (2007, 2008) use tradi-
tional TF-IDF-based similarity metrics to capture
relational information among the user’s history
searches. These approaches are too restrictive to
handle the increasingly complex corpus nowadays.
As such, the rewritten queries significantly differ
from the original one in intent. More recently, neu-
ral network-based query rewriting algorithms (He
et al., 2016b; Xiao et al., 2019; Yang et al., 2019)
are proposed. Most of such approaches employ a
multi-stage training approach. Consequently, they
involve complicated hand-crafted features or re-
quire excessive human annotations for the interme-
diate features (sometimes both).

To overcome the drawbacks of existing meth-
ods, we propose an end-to-end context-aware query
rewriting algorithm. Our model’s backbone is the
Transformer (Vaswani et al., 2017). In our context-
aware model, the Transformer encoder learns rep-
resentations for individual history queries. The rep-
resentations are further transformed to carry cross-
query relational information using a graph atten-
tion mechanism (GAT, Velickovic et al. 2018). The
GAT computes contextual information of a session
based on a session graph, where its nodes contain
the history queries and the tokens contained in the
history queries. After obtaining the contextual in-
formation from the GAT, it is aggregated with the
instant search using an aggregation network. The
augmented information is subsequently fed into the
Transformer decoder to generate rewritten queries.

Our proposed method improves upon existing
works from three aspects. First, our model does
not involve recursion, unlike conventional recur-
rent neural network-based approaches (He et al.,
2016b; Yang et al., 2019; Xiao et al., 2019). This
facilitates training deep models containing dozens
of layers capable of capturing high-order informa-
tion. Second, our end-to-end sequence-to-sequence
learning formulation eliminates the necessity of ex-
cessive labeled data. Previous approaches (Yang
et al., 2019; Xiao et al., 2019) require the judg-
ment of “semantic similarity”, and thus crave for
human annotations, which are expensive to obtain.
In contrast, our method uses search logs as super-
vision, which does not involve human effort, and
are cheap to acquire. Third, our method can lever-

age powerful pre-trained language models, such as
BART (Lewis et al., 2020). Such models contain
rich semantic information and are successful in nu-
merous natural language processing tasks (Devlin
et al., 2019; Liu et al., 2019; Radford et al., 2019).

We demonstrate the effectiveness of our method
on in-house data from an online shopping plat-
form. Our context-aware query rewriting model
outperforms various baselines by large margins.
Notably, comparing with the best baseline method
(Transformer-based model), our model achieves
11.6% improvement under the MRR (Mean Recip-
rocal Rank) metric and 20.1% improvement under
the HIT@16 metric (a hit rate metric). We further
verify the effectiveness of our approach by conduct-
ing online A/B tests.

2 Related Works

One line of work uses statistical methods. For ex-
ample, Cui et al. (2002, 2003) extract probabilistic
correlations between the search queries and the
product descriptions. Other works extract features
that are related to the user’s current search (Huang
et al., 2003; Huang and Efthimiadis, 2009), or
from relational information among the user’s his-
tory searches (Billerbeck et al., 2003; Baeza-Yates
and Tiberi, 2007; Wang and Zhai, 2007; Cao et al.,
2008; Wang and Zhai, 2008). There are also sta-
tistical machine translation-based models (Riezler
et al., 2007; Riezler and Liu, 2010) that employ
sequence-to-sequence approaches. The aforemen-
tioned statistical methods suffer from unreliable
extracted features, such that the rewritten queries
differ from the original one in intent.

Another line of work focuses on neural query
rewriting models (He et al., 2016b; Xiao et al.,
2019; Yang et al., 2019). These models adopt re-
current neural networks (RNNs, Hochreiter and
Schmidhuber 1997; Sutskever et al. 2014) to learn
a vectorized representation for the user’s search
query, after which KNN-based methods are used
to find queries that yield similar representations.
One major limitation is that the rewritten queries
are limited to the previously presented ones. Also,
these methods often involve complicated and un-
grounded feature function designs, e.g., He et al.
(2016b) and Xiao et al. (2019) hand-crafted 18
feature functions, or require excessive labeled
data (Yang et al., 2019). Other works (Sordoni
et al., 2015; Dehghani et al., 2017; Jiang and Wang,
2018) use RNNs for generative query suggestion,

617



but they inherit the weaknesses of RNNs and yield
unsatisfactory performance in practice.

Note that Grbovic et al. (2015) construct context-
aware query embeddings using word2vec (Mikolov
et al., 2013). In their approach, an embedding is
learned for each distinct query in the dataset. As
such, the quality of the learned embeddings rely
heavily on the number of occurrences of each query.
This method is not applicable to our case because
in our dataset, almost all the queries are distinct.

3 Problem Setup

The session data are collected from search logs.
First, we collect all the searches from a specific
user within a time window, and we call the searches
a “session”. After the user purchases a product, the
session ends, i.e., we do not consider subsequent
queries and behaviors after a purchase happens.
This is because after a purchase, the user’s intent
often change. Note that different sessions may be
collected from different users.

Each session contains multiple searches from
the same user. We call the last query in the session
the “target” query, the second to the last query the
“source” (or the “instance) query, and the others the
“history” queries. The intuition behind this is that
because sessions always end with a purchase, the
last search (i.e., the target) reflects the user’s real
intent. When the user enters the second to the last
search (i.e., the source), if we can rewrite it to the
target query, the user’s intent will be fulfilled.

Below is an example of a search session. From
the history queries, the user is interested in car
related banners/posters. The source query contains
a typo (“doger” is a baseball team) and we should
rewrite it to the target query (“dodge posters”).

History: {dodge banners; mopar poster}

Source (Instance): dodger posters

Target: dodge posters

We collect about 3 million (M) sessions, where
each session consists of at least 3 history queries,
a source query (i.e., the one we need to rewrite),
and a target query (i.e., the ground-truth query that
is associated with the purchase). We have roughly
18.7M queries, and on average, each session con-
tains 4 history queries. Query rewriting is con-
sequently formulated as a sequence-to-sequence
learning problem. We highlight that per our formu-
lation, we do not need human annotations, unlike
existing approaches.

4 Method

Figure 2 illustrates our context-aware query rewrit-
ing model. The model contains four parts: a con-
ventional Transformer (Vaswani et al., 2017) en-
coder, a graph attention mechanism (Velickovic
et al., 2018) that captures the user’s purchase intent,
an aggregation network that encodes the history
searches, and a conventional Transformer decoder
that generates the rewritten query candidates.

Figure 2: Overview of model.

4.1 Transformer Encoder

For a given source query, we first pad it with a
<boq> (begin-of-query) token. Then, we pass
the padded query through a Transformer encoder,
after which we have its hidden representation Hs ∈
RLs×d. Here Ls is the length of the padded query,
and d is the hidden dimension. We also pass all the
history queries corresponding to this source query
through the encoder, and we have the history query
representation Uh ∈ RNh×Lh×d, where Nh is the
number of history queries and Lh is the padded
length. More details are presented in Appendix A.

4.2 Contextual Information from Session
Graphs

After we obtain the history query representations
Uh, the next step is to refine them. Such refinement
is necessary because the Transformer encoder con-
siders the history queries separately, such that their
interactions are not taken into account. However,
since each search depends on its previous searches
in the same session, modeling cross-query relations
are imperative for determining the user’s purchase

618



Figure 3: Left: Illustration of a session graph, where
“T” stands for tokens and “Q” stands for queries. Right:
One-step update based on the session graph.

intent. To this end, we use a graph attention mech-
anism (Velickovic et al., 2018; Wang et al., 2020)
to capture contextual information from Uh.

4.2.1 Session Graph Construction

First we specify how to build a graph for each ses-
sion, which we call the session graph. Suppose we
have a session that contains three history queries:

Q1 :
{

Search query : T1, T3},
Q2 :

{
Search query : T1, T2, T3

}
,

Q3 :
{

Search query : T1, T2, T4, T5

}
,

(1)

where Q1, Q2, Q3 are the three queries, and
T1, · · · , T5 are the five tokens that appear in the
three queries. Recall Section 3 for the problem
setup. Figure 3 (left) illustrates the session graph.

4.2.2 Node Representations

The next step is to refine the node representations.
Each of the nodes in the session graph has its own
representation. The token representations are sim-
ply the corresponding representations of the tokens,
extracted from the token embedding matrix. The
query representations are the representations of the
<boq> token in each padded history query, i.e.,
the representation of the Q1 query node in Figure 3
is found by Uh[0, 0, :] ∈ Rd. Denote Gq = {qi}Nq

i=1

and Gt = {ti}Nt
i=1 the sets of representations for the

query and token nodes, respectively. Here Nq is
the number of query nodes and Nt is the number of
token nodes. Note that all the node representations
have the same size, i.e., qi, ti ∈ Rd.

4.2.3 Update Node Representations

We use a multi-head graph attention mechanism
to update the node representations. For simplicity,
denote Ng = Nq+Nt the number of distinct nodes
in the session graph, and G = Gq ∪ Gt = {gi}Ng

i=1

the set of all the node representations.
With the above notations, a single-head graph

attention mechanism is defined as

hi = gi + ELU


∑

j∈Ni

αijWvgj


 ,

where αij =
exp(zij)∑

ℓ∈Ni
exp(ziℓ)

,

zij = LeakyReLU (Wa[Wqgi;Wkgj ]) .

(2)

Here ELU(x) = x · 1{x > 0} + (exp(x) − 1) ·
1{x ≤ 0} is the exponential linear unit, Ni de-
notes the neighbor of the i-th node, and Wa, Wq,
Wk, Wv are trainable weights. Note that a residual
connection (He et al., 2016a) is added to the last
equation in Eq. 2. This has proven to be an effec-
tive technique to prevent gradient vanishing, and
hence, to stabilize training.

The session graph only induces attention be-
tween nodes that are connected. For example, in
Figure 3 (right), the model updates Q1 and Q2

using T3, while Q3 is unchanged, i.e., NT3 =
{Q1, Q2}. A multi-head graph attention mech-
anism is then defined as the concatenation of
[h1i , h

2
i , · · · , hKi ], where K is the number of heads,

and each of the hi is calculated via Eq. 2.
The token node representations and the query

node representations are updated iteratively. First,
we update the token representations (Gt) using the
query representations (Gq), in order that the tokens
acknowledge to which queries they belong. Then,
Gq is re-computed using the updated version of Gt,
which essentially evaluates cross-query relations,
using the token nodes as intermediaries. Note that
the graph attention mechanism (GAT) used in each
of the two steps are distinct, i.e., there are two
different sets of weights [Wa,Wq,Wk,Wv].

Eventually, we obtain the updated vectorized rep-
resentations {hi}Ng

i=1 for all the nodes, and we treat
them as the contextual information of the session.

We remark that the GAT mechanism explicitly
models cross-query relations by associating query
representations with word representations. Such
an approach is fundamentally different from exist-
ing methods, where the relations are either ignored
(e.g., conventional Transformer attention) or cap-
tured via recursion (e.g., RNN-based approaches).

4.3 Session Representations

Recall that we pass the source query through a
Transformer encoder and obtain Hs ∈ RLs×d.
The matrix Hs contains representations for all the
tokens in the source query. We use that of the

619



Figure 4: Aggregation network.

prepended <boq> token as the representation of
the source query, which is denoted hs ∈ Rd. We
adopt an aggregation network to extract useful in-
formation with respect to hs from the contextual
information {hi}Nh+Nt

i=1 . The network employs an
attention mechanism that determines to what extent
each vector hi contributes to the source query hs.
Figure 4 illustrates the architecture of the aggrega-
tion network. Concretely,

Hsess = Hs +
∑Ng

i=1 αiWvhi, (3)

where αi = exp(zi)∑Ng
j=1 exp(zj)

, zi = (Wkhi)
⊤hs, Wk

and Wv are trainable weights. The summation in
the last equation in Eq. 3 is conducted row-wise,
wherein Hsess , Hs ∈ RLs×d, and v ∈ Rd. The
matrix Hsess serves as the representation of the ses-
sion. Intuitively, by incorporating the aggregation
network, we can filter out redundant information
from the session history and only keep the ones
pertinent to the source query.

After the Transformer encoder, the graph atten-
tion mechanism, and the aggregation network, we
obtain Hsess , the session representation that con-
tains information on both the source query and
its history searches. Subsequently, Hsess is fed
into the Transformer decoder to generate rewrit-
ten query candidates. The algorithm is detailed in
Algorithm 1 in Appendix D.

5 Experiments

We conduct experiments on some in-house data.
We implement two methods with different model
architectures: Transformer+Aggregation+Graph
and BART+Aggregation+Graph. The first one is
constructed in the previous section, and the sec-
ond one employs a fine-tuning approach instead of
training-from-scratch. The training details are de-
ferred to Appendix B.3. More experimental results
are shown in Appendix C.

5.1 Baselines

For baselines with pre-training, we use MeshBART
(Chen and Lee, 2020) and BART (Lewis et al.,
2020). For baselines without pre-training, we use
LQRW (He et al., 2016b), HRED (Sordoni et al.,
2015) and MeshTransformer (Chen and Lee, 2020)
(a variant of MeshBART where we train the model
from scratch). We also compare our algorithm with
two model variants: Transformer+Aggregation and
BART+Aggregation, where we use the aggregation
network but not the GAT mechanism. Please refer
to Appendix B.1 for details.

5.2 Evaluation Metrics

We use BLEU, MRR (Mean Reciprocal Rank),
HIT@1, and HIT@16 to evaluate the query rewrit-
ing models. For all metrics except BLEU, we report
the gains over the the results calculated by using
only source queries. We remark that MRR, HIT@1,
and HIT@16 (the percentage that the actual prod-
uct is ranked within the first 16 products i.e., the
first page when we search the rewritten query) are
more important than BLEU, because MRR and HIT
are directly linked to user experience. Please refer
to Appendix B.2 for details about these metrics.

5.3 Experimental Results

Table 1 summarizes experimental results. Recall
that in our formulation, we rewrite a source query
to a target query. The “target query” entry in Ta-
ble 1 is the performance gain of the ground truth
target query, i.e., this entry signifies upper bounds
of performance gain that any model can achieve.

We can see that the attention-based models (i.e.,
BART, MeshBART, Transformer and MeshTrans-
former) outperforms the recurrent neural network-
based approach (i.e., LQRW and HRED). This is
because RNNs suffer from forgetting and training
issues. In contrast, Transformer-based models use
the attention mechanism instead of recursion to cap-
ture dependencies, which has proven to be more ef-
fective. Moreover, by aggregating history searches,
BART+Aggregation and Transformer+Aggregation
consistently outperform their vanilla alternatives.
Essentially performance of these two methods indi-
cate that integrating history queries into training is
critical. The performance is further enhanced by in-
corporating the session graphs. Specifically, Trans-
former+Aggregation+Graph achieves the best per-
formance under almost all the metrics. Notice that
the HIT@16 metric gain improves from +15.9 to

620



Table 1: Experimental results. The results of MRR, HIT@1, and HIT@16 are shown as gain over the source query.
The best results are shown in bold.

Number of candidates #Candidates=5 #Candidates=10 BLEUMetric MRR HIT@1 HIT@16 MRR HIT@1 HIT@16

Source Query 0 0 0 0 0 0 —
Target Query +16.1 +10.6 +29.0 +16.1 +10.6 +29.0 —

Baseline methods
LQRW +3.5 +2.5 +6.4 +6.8 +4.9 +12.6 29.4
HRED +4.7 +3.2 +8.4 +8.1 +5.7 +14.2 25.7
BART +4.6 +3.1 +8.2 +8.2 +5.5 +14.8 30.9
Transformer +4.3 +2.6 +9.2 +8.5 +5.6 +15.9 25.3
MeshBART +5.0 +3.8 +8.7 +8.3 +5.8 +14.3 31.7
MeshTransformer +4.0 +2.7 +8.4 +8.3 +5.6 +15.7 25.9

Our methods
BART+Aggregation +6.3 +3.9 +10.9 +9.7 +6.4 +17.1 31.9
Transformer+Aggregation +5.2 +2.9 +10.8 +10.2 +7.0 +17.3 27.2
BART+Aggregation+Graph +6.9 +4.6 +11.8 +10.5 +7.5 +17.6 32.9
Transformer+Aggregation+Graph +6.6 +4.6 +12.0 +11.6 +8.3 +20.1 28.2

+20.1 when employing both the aggregation net-
work and the session graph formulation for the
Transformer-based models. We highlight that the
graph attention mechanism can directly captures
cross-query relations, which is implausible for all
the baselines. We can see that this property indeed
contributes to model performance, i.e., HIT@16 in-
creases from +17.3 to +20.1 when we equip Trans-
former+Aggregation with the GAT mechanism.

Notice that BLEU is not a definitive metric. For
example, the MRR and HIT metrics of HRED
are consistently higher than those of LQRW, even
though the BLEU score of the former is signifi-
cantly lower than the latter. Also, compared with
Transformer-based models, the BLEU score is con-
sistently higher when using the BART model as
the backbone. This is because a pre-trained lan-
guage model contains more semantic information.
However, the MRR and HIT metrics of the BART-
based models are slightly worse than those of the
Transformer-based models.

However, the BLEU score is comparable for
models with the same backbone. For example,
for Transformer vs. Transformer+Aggregation
vs. Transformer+Aggregation+Graph, the BLEU
scores are 25.3 vs. 27.2 vs. 28.2. Such a tendency
coincides with the online metrics. We observe the
same results from BART-based models.

5.4 Online A/B Test
We conduct online A/B experiments on a large-
scale e-commerce shopping platform with our
query rewriting models. For a given search query
within a session, we generate one reformulated
query using the proposed model, and we feed both
the original query and rewritten query into the

Table 2: Two examples of context-aware query rewriting
with and without context.

Example 1 dodge led sign;

History
dodge banners;
mopar banner;
mopar poster

Source dodger posters

Target dodge posters

Rewritten w/o context dodger flag

Rewritten w/ context dodge poster
Example 2 samsung galaxy case;

History samsung galaxy a11 case;
samsung a11 case

Source samsung galaxy a7

Target samsung galaxy a7 case

Rewritten w/o context samsung galaxy a7 charger

Rewritten w/ context samsung galaxy a7 case

search system. Experiments are conducted over
five days, during which our system processed over
30 million sessions. The proposed method im-
proves business metrics in terms of revenue; and
also significantly decreases the number of refor-
mulated searches. This indicates that the rewrit-
ten queries better meet customers’ shopping intent
since customers are able to find their desired prod-
ucts with less number of searches.

5.5 Case Studies
⋄ Advantages of leveraging history information
Two examples are shown in Table 2. The first exam-
ple is error correction. In the example, the customer
wishes to purchase dodge (a car brand) posters,
but she mistakenly searches for dodger (a baseball
team) posters. Without history information, it is
impossible to determine the customer’s true intent.

621



Table 3: Two examples of generated queries and their associated likelihood.

Type Query Likelihood Query Likelihood

History

iphone 11 pro case pokemon; colorado 2005 tail lights;iphone 11 pro case eevee; — colorado 2005 door —iphone 11 pro case hetalia; colorado 2005 accessoriesiphone 11 pro case sailor moon

Source iphone 11 pro case snow leopard — colorado headlights —

Target iphone 11 pro case tiger — colorado 2005 headlights —

Rewritten

iphone 11 pro case disney 0.497 2005 colorado headlights 0.566
iphone 11 pro case sailor moon 0.492 colorado headlights 2005 0.458
iphone 11 pro case harry potter 0.445 colorado headlights led 0.357

iphone 11 pro case 0.440 colorado headlights assembly 0.301
iphone 11 pro case cute 0.419 colorado tail lights 0.289

iphone 11 pro case leopard 0.391 colorado headlights housing 0.237
iphone 11 pro case clear 0.379 colorado led headlights 0.234

iphone 11 pro case disney princess 0.372 2004 colorado headlights 0.230
iphone 11 pro case pink 0.364 colorado 2004 headlights 0.214

iphone 11 pro case totoro 0.353 colorado headlights 2004 0.208

However, by looking at session histories, we find
that all the previous searches are related to auto-
mobiles (e.g., dodge and mopar), and therefore the
query should be rewritten to “dodge posters”. Our
model successfully captures this pattern. Notice
that the rewritten query without leveraging context
does not match the user’s intent.

The second example is keyword refinement. In
the example, by looking at the history searches, it
is obvious that the customer wishes to find phone
cases, instead of phones. However, this intent is im-
possible to capture by using only the source query.
Our model automatically adds the keyword “case”
to the source query and matches the target query.
On the other hand, without the context information,
the rewritten result is not satisfactory.

⋄ Diversity of query generation Table 3 demon-
strates two examples. In the first example (the left
three columns), notice that our model can grep in-
formation from history queries, e.g., “iphone 11
case sailor moon”, and can delete keywords that
are deemed insignificant or too restrictive, e.g.,
“iphone 11 case leopard” instead of “snow leop-
ard”. Also, our model can effectively capture do-
main information. For example, some of the history
query keywords (e.g., pokemon, eevee) are often
described as “cute”, and our model recommends
this keyword. All the history keywords are from
Japanese anime series, therefore our model sug-
gests another popular character, “totoro”. Addition-
ally, the “disney” and “disney princess” keywords
are generated based on the interest to virtual char-

acters. Finally, notice that the likelihood of all
the suggested queries is similar, which means our
model cannot single out a significantly better query
than the others. Therefore our model generated a
diverse group of queries.

In the second example (the right two columns),
the generated query successfully matches the target
query. Note that the top two generated queries have
high likelihood, and the likelihood decreases dras-
tically as the suggested queries become more and
more implausible. In this example, the first query
is 172% more likely than the tenth query, whereas
this number is only 41% in the previous example.
This suggests that our model can differentiate be-
tween good quality suggestions and poor quality
alternatives.

6 Conclusion and Discussion

We propose an end-to-end context-aware query
rewriting model that can efficiently leverage user’s
history behavior. Our model infers a user’s pur-
chase intent by modeling her history searches as
a graph, on which a graph attention mechanism
is applied to generate informative session repre-
sentations. The representations are subsequently
decoded into rewritten queries. Our proposed ses-
sion graph can be extended to incorporate more
information. Here, we present a bipartite graph,
which contains words and queries. Additional com-
ponents can be added as extra layers. For example,
we can add product information such as categories
to the session graph, which will create 3-partite
session graphs (word, query and product).

622



References
Ricardo Baeza-Yates and Alessandro Tiberi. 2007. Ex-

tracting semantic relations from query logs. In Pro-
ceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 76–85.

Bodo Billerbeck, Falk Scholer, Hugh E Williams, and
Justin Zobel. 2003. Query expansion using asso-
ciated queries. In Proceedings of the twelfth inter-
national conference on Information and knowledge
management, pages 2–9.

Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao,
Enhong Chen, and Hang Li. 2008. Context-aware
query suggestion by mining click-through and ses-
sion data. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery
and data mining, pages 875–883.

Ruey-Cheng Chen and Chia-Jung Lee. 2020. Incorpo-
rating behavioral hypotheses for query generation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3105–3110, Online. Association for Computa-
tional Linguistics.

Hang Cui, Ji-Rong Wen, Jian-Yun Nie, and Wei-Ying
Ma. 2002. Probabilistic query expansion using query
logs. In Proceedings of the Eleventh International
World Wide Web Conference, WWW 2002, May 7-
11, 2002, Honolulu, Hawaii, USA, pages 325–332.
ACM.

Hang Cui, Ji-Rong Wen, Jian-Yun Nie, and Wei-Ying
Ma. 2003. Query expansion by mining user logs.
IEEE Transactions on knowledge and data engineer-
ing, 15(4):829–839.

Mostafa Dehghani, Sascha Rothe, Enrique Alfonseca,
and Pascal Fleury. 2017. Learning to attend, copy,
and generate for session-based query suggestion. In
Proceedings of the 2017 ACM on Conference on In-
formation and Knowledge Management, CIKM 2017,
Singapore, November 06 - 10, 2017, pages 1747–
1756. ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Mihajlo Grbovic, Nemanja Djuric, Vladan Radosavl-
jevic, Fabrizio Silvestri, and Narayan Bhamidipati.
2015. Context- and content-aware embeddings for
query rewriting in sponsored search. In Proceedings
of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
Santiago, Chile, August 9-13, 2015, pages 383–392.
ACM.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016a. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, pages 770–778. IEEE Com-
puter Society.

Yunlong He, Jiliang Tang, Hua Ouyang, Changsung
Kang, Dawei Yin, and Yi Chang. 2016b. Learning
to rewrite queries. In Proceedings of the 25th ACM
International Conference on Information and Knowl-
edge Management, CIKM 2016, Indianapolis, IN,
USA, October 24-28, 2016, pages 1443–1452. ACM.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Chien-Kang Huang, Lee-Feng Chien, and Yen-Jen
Oyang. 2003. Relevant term suggestion in interactive
web search based on contextual information in query
session logs. Journal of the American Society for
Information Science and Technology, 54(7):638–649.

Jeff Huang and Efthimis N Efthimiadis. 2009. Analyz-
ing and evaluating query reformulation strategies in
web search logs. In Proceedings of the 18th ACM
conference on Information and knowledge manage-
ment, pages 77–86.

Jyun-Yu Jiang and Wei Wang. 2018. RIN: reformula-
tion inference network for context-aware query sug-
gestion. In Proceedings of the 27th ACM Interna-
tional Conference on Information and Knowledge
Management, CIKM 2018, Torino, Italy, October 22-
26, 2018, pages 197–206. ACM.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

623

https://doi.org/10.18653/v1/2020.emnlp-main.251
https://doi.org/10.18653/v1/2020.emnlp-main.251
https://doi.org/10.1145/511446.511489
https://doi.org/10.1145/511446.511489
https://doi.org/10.1145/3132847.3133010
https://doi.org/10.1145/3132847.3133010
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/2766462.2767709
https://doi.org/10.1145/2766462.2767709
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/2983323.2983835
https://doi.org/10.1145/2983323.2983835
https://doi.org/10.1145/3269206.3271808
https://doi.org/10.1145/3269206.3271808
https://doi.org/10.1145/3269206.3271808
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703


Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
8024–8035.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Stefan Riezler and Yi Liu. 2010. Query rewriting using
monolingual statistical machine translation. Compu-
tational Linguistics, 36(3):569–582.

Stefan Riezler, Alexander Vasserman, Ioannis Tsochan-
taridis, Vibhu Mittal, and Yi Liu. 2007. Statistical
machine translation for query expansion in answer re-
trieval. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
464–471, Prague, Czech Republic. Association for
Computational Linguistics.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi,
Christina Lioma, Jakob Grue Simonsen, and Jian-Yun
Nie. 2015. A hierarchical recurrent encoder-decoder
for generative context-aware query suggestion. In
Proceedings of the 24th ACM International Confer-
ence on Information and Knowledge Management,
CIKM 2015, Melbourne, VIC, Australia, October 19
- 23, 2015, pages 553–562. ACM.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Mon-
treal, Quebec, Canada, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In 6th International
Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu,
and Xuanjing Huang. 2020. Heterogeneous graph
neural networks for extractive document summariza-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6209–6219, Online. Association for Computational
Linguistics.

Xuanhui Wang and ChengXiang Zhai. 2007. Learn
from web search logs to organize search results. In
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 87–94.

Xuanhui Wang and ChengXiang Zhai. 2008. Mining
term association patterns from search logs for effec-
tive query reformulation. In Proceedings of the 17th
ACM conference on Information and knowledge man-
agement, pages 479–488.

Rong Xiao, Jianhui Ji, Baoliang Cui, Haihong Tang,
Wenwu Ou, Yanghua Xiao, Jiwei Tan, and Xuan
Ju. 2019. Weakly supervised co-training of query
rewriting andsemantic matching for e-commerce. In
Proceedings of the Twelfth ACM International Con-
ference on Web Search and Data Mining, WSDM
2019, Melbourne, VIC, Australia, February 11-15,
2019, pages 402–410. ACM.

Yatao Yang, Jun Tan, Hongbo Deng, Zibin Zheng, Yu-
tong Lu, and Xiangke Liao. 2019. An active and
deep semantic matching framework for query rewrite
in e-commercial search engine. In Proceedings of the
28th ACM International Conference on Information
and Knowledge Management, CIKM 2019, Beijing,
China, November 3-7, 2019, pages 309–318. ACM.

624

https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.1162/coli_a_00010
https://doi.org/10.1162/coli_a_00010
https://doi.org/10.1145/2806416.2806493
https://doi.org/10.1145/2806416.2806493
https://doi.org/10.18653/v1/2020.acl-main.553
https://doi.org/10.18653/v1/2020.acl-main.553
https://doi.org/10.18653/v1/2020.acl-main.553
https://doi.org/10.1145/3289600.3291039
https://doi.org/10.1145/3289600.3291039
https://doi.org/10.1145/3357384.3358012
https://doi.org/10.1145/3357384.3358012
https://doi.org/10.1145/3357384.3358012


A Transformer Encoder Details

For a given source query, we first pad it with a
<boq> (begin-of-query) token. Then, we pass the
padded query through a token embedding layer
and a position embedding layer, and we obtain
Ys ∈ RLs×d. Here Ls is the length of the padded
source query, and d is the embedding dimension.
Note that the position embedding can either be a
sinusoidal function or a learned matrix.

After the initial embedding layers, we pass Ys
through the self-attention module. Specifically, we
compute attention output S by

S = Softmax

(
QKT

√
dk

V

)
,

where Q = YsWq, K = YsWk, V = YsWv.

(4)

Here Wq,Wk ∈ Rd×dK , Wv ∈ Rd×dV are learn-
able weights. In practice we use multi-head self-
attention to increase model flexibility. To facil-
itate this, different attention outputs S1, · · · , SH

are computed using different sets of weights
{W h

q ,W
h
k ,W

h
v }Hh=1. The final attention output is

S = [S1, S2, · · · , SH ]Wo, (5)

where Wo ∈ RHdV ×d is a learnable aggregation
matrix. The attention output is then fed through a
position-wise feed-forward neural network to gen-
erate encoded representation Hs ∈ RLs×d for the
source query:

Hs = ReLU
(
S W 1

FFN
+ b1

)
W 2

FFN
+ b2. (6)

Here {W 1
FFN

,W 2
FFN

, b1, b2} are weights of the neu-
ral network. Equations 4, 5, and 6 constitute as
an encoder block. In practice we stack multiple
encoder blocks to build the Transformer encoder,
as demonstrated in Figure 2.

For the history queries in this session, we also
pad them with <boq> tokens. Suppose that we
have Nh padded history queries (recall a session
contains multiple history queries), and their respec-
tive length is denoted by L1

h, · · · , L
Nh
h . We pad the

history queries to the same length, and we obtain
the history query matrix Xh ∈ RNh×Lh , where
Lh = max{L1

h, · · · , L
Nh
h }. Then, following the

same procedures as encoding the source query, we
pass Xh through the embedding layers and the en-
coder blocks, after which we obtain the history
query representations Uh ∈ RNh×Lh×d.

B Experiments Details

B.1 Baselines

The baselines are split into two groups: without
pre-training and with pre-training. For the w/o
pre-training group, we build the following models:

⋄ Learning to Rewrite Queries (LQRW) (He et al.,
2016b) is one of the first methods that applies deep
learning techniques to query rewriting. Specif-
ically, the LQRW model combines a sequence-
to-sequence LSTM (Hochreiter and Schmidhuber,
1997; Sutskever et al., 2014) model with statisti-
cal machine translation (Riezler and Liu, 2010)
techniques to generate queries. The candidates
are subsequently ranked using hand-crafted feature
functions.

⋄ Hierarchical Recurrent Encoder-Decoder
(HRED) (Sordoni et al., 2015) employs a hierarchi-
cal recurrent neural network for generative query
suggestion. The model is a step forward from its
predecessors in that HERD is sensitive to the order
of queries and the method is able to suggest rare
and long-tail queries.

⋄ Transformer (Vaswani et al., 2017) has achieved
superior performance in various sequence-to-
sequence (seq2seq) learning tasks. To adopt Trans-
former to query rewriting, we treat the source query
as the source-side input, and the target query as the
target-side input. Then we train a model using only
these constructed inputs, similar to machine trans-
lation. Note that this setting resembles most of the
existing works. We adopt the Transformer-base ar-
chitecture, which contains about 72M parameters.

⋄ MeshTransformer (Chen and Lee, 2020) is a
variant of MeshBART, where the pre-trained BART
module is replaced by a Transformer and the model
is trained from scratch. The method concatenates
history queries to the source query in order to inte-
grate contextual information. See the MeshBART
method below for details.

⋄ Transformer+Aggregation is the model where
we use the aggregation network to encode history
search queries, i.e., without the graph attention
mechanism. Specifically, we first obtain the rep-
resentations of the source query and the history
queries from the Transformer encoder. Then, we
extract information related to the source query from
the history representations using an aggregation
network. Such information is added to the source
representation, and we follow a standard decoding

625



procedure using these two factors. See Section 4.3
for details.

The second group of methods adopt pre-trained
language models for query rewriting.

⋄ BART (Lewis et al., 2020) is a pre-trained
seq2seq model. We adopt this particular model
instead of, for example, BERT (Devlin et al.,
2019) or GPT-2 (Radford et al., 2019), because
we treat query rewriting as a seq2seq task. And
the aforementioned architectures have either the
Transformer encoder (e.g., BERT) or the Trans-
former decoder (e.g., GPT-2), but not both. In our
experiments, BART is fine-tuned in a setting sim-
ilar to training the Transformer model. We adopt
the BART-base architecture in all the experiments,
which contains about 140M parameters.

⋄ MeshBART (Chen and Lee, 2020) is a BART-
based model that first concatenates the history
queries to the source query, and then feeds the
concatenated input to a pre-trained BART model
for query generation. Note that the original method
requires click information. We remove this com-
ponent as the proposed method do not need such
data.

⋄ BART+Aggregation is similar to Trans-
former+Aggregation, except we replace the Trans-
former backbone with the pre-trained seq2seq
BART model.

B.2 Evaluation Metrics

We use the BLEU score (Post, 2018) as an eval-
uation metric. This metric is constantly used to
evaluate the quality of translation. We adopt it here
because similar to machine translation, we formu-
late query rewriting as a seq2seq learning task. The
correlation between the rewritten query and the tar-
get query reflects the model’s ability to capture the
user’s purchase intent.

The MRR metric describes the accuracy of the
rewritten queries. For each source query in the test
set, we generate 10 candidate queries r1, · · · , r10.
Then we search each of these candidates using our
production search engine, and we obtain the re-
turned products, of which we only keep the top
32. Recap that we know the actual product that
the customer purchased. The next step is to cal-
culate the reciprocal of the actual product’s rank
for each of r1, · · · , r10. For example, suppose
for r1, the actual purchased product is the sec-
ond within the 32 returned products, then the score

for r1 is score1 = 1/2 = 0.5. The score of the
rewritten queries r1, · · · , r10 is then defined as
max{scorei}10i=1. Finally, the score for the query
rewriting model is the average over all the source
query scores.

We also use HIT@1 and HIT@16 as evaluation
metrics. The HIT@16 metric is the percentage
that the actual product is ranked within the first
16 products (the first page) when we search the
rewritten query. And the HIT@1 metric is similarly
defined.

B.3 Training Details

We use the Fairseq (Ott et al., 2019) code-base with
PyTorch (Paszke et al., 2019) as the back-end to
implement all the methods. All the experiments are
conducted using 8 NVIDIA V100 (32GB) GPUs.

For training a Transformer model from scratch,
we adopt the Transformer-base (Vaswani et al.,
2017) architecture. We use Adam (Kingma and
Ba, 2015) as the optimizer, and the learning rate
is chosen from {3 × 10−4, 5 × 10−4, 1 × 10−3}.
We use 4 heads for the multi-head graph attention
mechanism, where the head dimension is set to be
128 (note that the Transformer-base architecture
has embedding dimension 512).

For fine-tuning a BART model, we adopt the
BART-base (Lewis et al., 2020) architecture. We
use AdamW (Loshchilov and Hutter, 2019) as the
optimizer, and the learning rate is chosen from
{3 × 10−5, 5 × 10−5, 1 × 10−4}. Similar to the
training from scratch scheme, we adopt 4 heads,
each with dimension 192, for the graph attention
mechanism.

For both training-from-scratch and fine-tuning,
please refer to1 Ott et al. (2019) for more de-
tails such as pre-processing steps and other hyper-
parameters.

C More Experimental Results

C.1 Analysis

⋄ BART vs. Transformer Even though BART
contains twice the number of parameters compared
with Transformer (140M vs. 70M), models fine-
tuned on BART yield lower MRR and HIT metrics
(Table 1). One reason is that publicly available pre-
trained models are pre-trained on natural language
corpus, but queries are usually short and have dis-
tinct structures. This raises doubts on whether cur-

1https://github.com/pytorch/fairseq/blob/
master/examples/translation/README.md

626

https://github.com/pytorch/fairseq/blob/master/examples/translation/README.md
https://github.com/pytorch/fairseq/blob/master/examples/translation/README.md


rent pre-trained models are suitable for the query
domain. Indeed, the rich semantic information en-
ables a much better BLEU score (32.9 vs. 28.2), but
the MRR and HIT metrics suggest the fine-tuned
models’ unsatisfactory performance.

Another reason is that in a conventional fine-
tuning task, a task-specific head is appended to
the pre-trained model, and the head usually con-
tains only a small number of parameters. But in
the query rewriting task, both the aggregation net-
work and the graph attention mechanism contain
a significant amount of parameters (about 10%
of BART). This is problematic because in fine-
tuning, the learning rate is usually small since
nearly all the weights are supposed to be mean-
ingful and should not change much. Yet, in our
case, we need to properly train a large amount of
randomly initialized parameters. Moreover, the
aggregation network and the GAT are added in-
side the pre-trained model (more specifically, they
are added to the BART encoder) instead of ap-
pended after BART. Essentially this nullifies the
pre-trained parameters on the decoder side, impos-
ing additional challenges to the fine-tuning task.
Nevertheless, the BART+Aggregation model still
outperforms the vanilla BART model, and the per-
formance is further improved by adding the GAT
(i.e., BART+Aggregation+Graph).

⋄ Training from scratch vs. fine-tuning Figure 5
plots the training and validation perplexity (ppl)
of the training-from-scratch approach and the fine-
tuning approach. From Figure 5a and Figure 5b, we
can see that by employing the aggregation network,
Transformer+Aggregation fits the data better and
exhibits enhanced generalization. The training and
validation ppls are further significantly improved
by incorporating the graph attention mechanism,
i.e., by using Transformer+Aggregation+Graph,
we achieve even better performance.

Notice that in Figure 5c, BART+Aggregation out-
performs BART+Aggregation+Graph in terms of
training ppl, which is different from the training-
from-scratch approach. As indicated by Figure 5d,
BART+Aggregation shows clear sign of over-fitting.
This is because even though pre-trained language
models contain rich semantic information, much of
it is considered “noisy” for query rewriting. Thus
feature enhancement initiated by the graph atten-
tion mechanism is needed.

⋄Model size vs. performance Figure 6 illustrates

the relation between model size and performance,
where we decrease the embedding dimension (cor-
respondingly the FFNs’ hidden dimensions) and
the number of layers. We can see that even with
1/8 of the parameters, model performance does
not decrease much. Moreover, our model is more
than 20% smaller than a BERT-base model (85M
vs. 110M), rendering online deployment more than
possible.

⋄ Query length vs. performance Figure 7 demon-
strates model performance regarding length of the
instant query. We can see that the BLEU score grad-
ually decreases when the length increases. This is
because long queries are often very specific (e.g.,
down to specific models or makes), making the
rewriting task harder.

D Detailed Algorithm

627



(a) Transformer (train). (b) Transformer (valid). (c) BART (train). (d) BART (valid).

Figure 5: Training and validation perplexity using Transformer and BART as backbone.

Figure 6: Model performance (in BLEU scores) vs. model size. The
model size (in millions of parameters) are shown above the bars.

Figure 7: Query length vs. rewrit-
ing quality.

Algorithm 1: Context-aware query rewriting.
Input: D: dataset containing sessions; Initial parameters for the Transformer encoder and the

Transformer decoder; Initial parameters for two graph attention mechanism (Eq. 2):
GATt→q, GATq→t; Initial parameters for the aggregation network (Eq. 3); K: the number
of updates on the session graph; N : the number of rewritten queries for each session.

Output: A list that contains N generated queries for each session in the dataset.
Rewritten results: rewritten = {};
for each session in D do

/* Encode input data. */
Compute source representation Hs and history representation Uh using the Transformer

encoder;
/* Apply graph attention. */
Obtain initial representations G0t , G0q ;
for k = 1 · · ·K do
Gkt = GATq→t(Gk−1

q ,Gk−1
t );

Gkq = GATt→q(Gkt ,Gk−1/2
q );

end
Set history representation {hi}Nt+Nh

i=1 = GKt ∪ GKh ;
/* Apply aggregation network. */

Compute session representation Hsess from Hs and {hi}Nt+Nh
i=1 using Eq. 3;

/* Generate rewritten queries. */
Generate N rewritten queries {qi}Ni=1 using the Transformer decoder and a beam search

procedure;
rewritten← rewritten ∪ {qi}Ni=1;

end
Output: The rewritten queries.

628


