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Abstract

Item categorization (IC) aims to classify prod-
uct descriptions into leaf nodes in a categorical
taxonomy, which is a key technology used in
a wide range of applications. Along with the
fact that most datasets often has a long-tailed
distribution, classification performances on tail
labels tend to be poor due to scarce supervision,
causing many issues in real-life applications.
To address IC task’s long-tail issue, K-positive
contrastive loss (KCL) is proposed on image
classification task and can be applied on the IC
task when using text-based contrastive learn-
ing, e.g., SimCSE. However, one shortcoming
of using KCL has been neglected in previous re-
search: false negative (FN) instances may harm
the KCL’s representation learning. To address
the FN issue in the KCL, we proposed to re-
weight the positive pairs in the KCL loss with
a regularization that the sum of weights should
be constrained to K+1 as close as possible. Af-
ter controlling FN instances with the proposed
method, IC performance has been further im-
proved and is superior to other LT-addressing
methods.

1 Introduction

Item categorization (IC) aims to classify a product
into a node of a taxonomy hierarchy. The textual
descriptions of the products are used as the input
and thus the task can be formulated as a text clas-
sification problem. IC is a fundamental task in
e-commerce and the base for many applications
such as personal recommendation and query under-
standing. One of the major challenges in building
a highly effective real-life IC system is the seri-
ous long-tailed (LT) problem—A few head classes
have the majority of the product items, while each
of the remaining (large number of) tail classes
contains only a few items. Consequently, the
scarce supervision available for these tail classes
tends to cause unsatisfactory classification perfor-
mance. In the most recent years, several novel

LT-addressing methods, e.g., methods utilizing self-
supervision (Yang and Xu, 2020) and contrastive
learning (CL) (Kang et al., 2021), have emerged
in computer vision. However, the related research
on natural language processing (NLP) tasks is still
limited.

However, when utilizing unsupervised con-
trastive learning, e.g., K-positive contrastive loss
(KCL) (Kang et al., 2021), the issue of appearing
False Negative (FN) samples hurts model learning.
Figure 1 shows an example of the FN issue and
the performance impact reported in (Huynh et al.,
2020). In this paper, to build IC models and use
KCL to solve the LT issue, we propose a novel
method to control the FN issue, which entails as-
signing different weights for each positive sample
in the KCL loss and tries to keep the sum of these
weights equal to a predefined value. The experi-
mental results on the three Amazon product cate-
gory datasets show that the proposed contrastive
learning methods help on improving the model per-
formance on tail classes and the FN controlling can
further improve CL-based LT-addressing method.
Our main contributions can be summarized as:

Figure 1: False Negative (FN) samples may appear
when applying contrastive learning. Addressing the
FN issue can improve the learned model’s downstream
performance. Result is from the Table 2 in (Huynh et al.,
2020) regarding image classification on the ImageNet
data using the model learned by SimCLR (Chen et al.,
2020)
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• We recognize the false negative sample issue
in K-positive contrastive loss.

• We propose a novel false negative controlling
method to mitigate the its negative impact and
show the effectiveness of proposed model.

• To the best of our knowledge, we are the first
to apply contrastive learning to address the LT
challenge in the IC text classification.

2 Related Work

Many methods have been proposed to address
the LT issue. One category of those methods re-
samples the data to balance the label distribution,
e.g., SMOTE (Chawla et al., 2002). Another cat-
egory of methods assign different weights to sam-
ples based on their label frequencies, e.g., Focal
loss (Lin et al., 2017) Class-balanced loss (Cui
et al., 2019), Label-Distribution-Aware Margin loss
(LDAM) (Cao et al., 2019) and so on. Some of
those loss-balanced methods are also applied to the
NLP domain in (Huang et al., 2021). In addition,
few shot learning (Liu et al., 2019) and transfer
learning (Xiao et al., 2021) methods are also pro-
posed for long tail classification.

Recently, a two-stage training strategy (exam-
pled in (Kang et al., 2019; Zhou et al., 2020)),
which decouples the learning a feature encoder
and the learning of a classifier, has become influ-
ential in computer vision and shows its superior
performance on addressing the LT issue.

Contrastive learning (CL) has been found to be
effective in providing high-quality encoders in a
simple self-learning fashion. The CL-based text
representation learning has become a hot research
topic in NLP. SimCSE (Gao et al., 2021) uses
dropout operations to be an effective text augmen-
tation and can learn effective text representations.

In the LT-addressing two-stage method, self-
learning which discards the influence of label dis-
tribution has been used in its representation learn-
ing stage, e.g., (Yang and Xu, 2020; Kang et al.,
2021). Besides simply using self-supervision, in-
cluding the supervision signal from existing labels
can improve the representation learning (Khosla
et al., 2020). However, introducing semantics infor-
mation may suffer from the LT issue and hurt the
performance of tail classes. To address this issue,
K-positive contrastive loss (Kang et al., 2021) is
proposed to learn balanced feature representations.

An instance is called false negative (FN), if any
in-batch negative instance shares the label carried

by the anchor sample. FN samples are found to
be harmful to CL methods and corresponding miti-
gation methods are proposed (Huynh et al., 2020;
Chen et al., 2021).

3 Methodology

Let x denote the title of a product and y its category
label. Then IC can be formulated as a text classifi-
cation problem: given a product title x, we a model
to predict the class label y, where h and h+ are the
representations of the anchor sample x and its cor-
responding positive sample x+, respectively. H−

is the representations of negative sample set X− of
the given the anchor sample x and positive sample
x+. h− ∈ H− is the representation of the negative
sample x− in X− where X− is the negative sam-
ple set given the anchor sample x and its positive
sample x+. τ is a temperature hyper-parameter and
sim(·, ·) denotes the cosine similarity of the two
vectors.

3.1 Recap of KCL

The KCL is a state-of-the-art model that learns bal-
anced feature representations for long-tailed label
distribution. It defines a positive sample set by
sampling K samples belonging to the same class
as the anchor if such samples are more than K in
existing mini-batch. The KCL can be calculated by
the Eq. 1.

LKCL =
1

(K + 1)

∑

h∈H

∑

h+∈{h′}∪H+
K

L(h, h+)

L(h, h+) = −log
esim(h,h+)/τ

∑
hi∈H−{h} e

sim(h,hi)/τ

(1)

where h is the anchor sample representation and h′

the self-augmented representation of h. H+
K repre-

sents the representation set of sampled K positive
samples from the batch. H denotes the samples in
the same batch. K is the hyper-parameter repre-
senting the defined number of positive pairs.

In NLP, to generate h′, we propose to use the
SimCSE (Gao et al., 2021) method. In particular,
an anchor sample x is encoded using a BERT (De-
vlin et al., 2018) model with varying dropout masks.
The encoded representations can be represented as:

h = tanh(MLP (BERT (x, z)))

h′ = tanh(MLP (BERT (x, z′)))
(2)
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where BERT (x, z) denotes the BERT encoder
using a random dropout mask. For MLP , we use
a layer of fully connected network with the tanh
activation, while z and z′ are two different random
dropout masks in BERT at rate of 0.1.

negative H-positive H+

p0 p1 p2 p3 p4

Anchor

z'
BERTdropout z dropout z'

Figure 2: KCL applied on a batch with five samples, P0
to P4. Color on input blocks shows labels. P0 serves
as an anchor and its positive pair is obtained by Sim-
CSE with a different dropout mask. When K = 1, P1 is
added into the positive set H+. P2, however, is assigned
into the negative set H− and a false negative case ap-
pears and is marked as a red cross.

Fig. 2 illustrate how the KCL represented in
Eq. 1 is applied on a mini-batch with five sam-
ples. Since P2 and P0 share the same label, their
encoded representations are expected to be close.
However, when running KCL with K = 1, P2
will be wrongly pushed away from P0 being a FN
sample.

3.2 False Negative Control
As shown in Fig 2, a significant drawback of KCL
is that some positive samples can be treated as neg-
ative if there are more than K + 1 samples belong-
ing to the same class in a batch. The occurrence of
the false negative instances will degrade the qual-
ity of the learned representations and further hurt
the classification performance. To alleviate the
false negative, we propose a novel method named
false negagive control (FNC), which assigns vary-
ing weights to positive samples in the KCL loss
based on the embeddings of the anchor sample and
the positive samples, represented as:

wh,h+ = ReLU(MLP (h⊕ h+)) (3)

where wh,h+ is the weight for the positive sample
h+ with respect to the anchor sample h. ⊕ is the
vector concatenation operation.

With the learned weights, we propose the
weighted contrastive loss by re-weighting the pos-

itive samples in the original InfoNCE loss, which
can be defined as:

Lw(h, h
+) = −log

esim(h,h+)/τ

∑
h+
i ∈H+ wie

sim(h,h+
i )/τ +

∑
h−
i ∈H− esim(h,h−

i )/τ

(4)

To satisfy the property of balancing the feature
space for classes with different frequencies in KCL
while controlling the FN issue at the same time,
we propose the KCL-FNC loss with the aforemen-
tioned defined weighted contrastive loss with the
constraint that the summation of these weights is
as close to a predefined value (K + 1) as possible.
The KCL-FNC loss is defined as:

LKCL−FNC =
∑

h∈H

∑

h+∈{h′}∪H+
K

Lw(h, h
+) + λLreg(h,H

+)

(K + 1)

(5)

where λ is the balanced parameter and
Lreg(h,H

+) is the regularization loss denoted as:

Lreg(h,H
+) = |

∑

h+∈H+

wh,h+ −K − 1| (6)

The advantages of the proposed KCL-FNC loss
over exiting FN controlling methods are two-folds:
(1) learning balanced feature representations and
(2) applying as much available information as pos-
sible. The attraction strategy (FNA) in (Huynh
et al., 2020; Chen et al., 2021), which include all
positive samples rather that K sampled positive
samples, makes the KCL roll back to the supervised
contrastive loss when the ground-truth labels are
known, and therefore destroys the KCL’s property
of learning balanced representations. The elimina-
tion (FNE) strategy, which ignores the FN samples
in calculating the contrastive loss, loses valuable in-
formation and further degrades the representation-
learning performance, especially the number of
such instances are large, such as for head labels in
a imbalanced data set.

4 Experiments

Datasets. The experiments are performed on the
public Amazon dataset (McAuley et al., 2015; He
and McAuley, 2016) which is a widely used bench-
mark. Following (Tayal et al., 2020), we use three
categories of Amazon product datasets: Automo-
tive, Beauty, and Electronics. Each sample in the
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Automotive Electronics Beauty AutoH AutoM AutoT

F1w F1m↑ F1w F1m↑ F1w F1m ↑ F1m↑ F1m↑ F1m↑
BERT-CE 78.03 63.95 67.68 52.94 71.44 56.64 75.42 64.51 51.78

cRT 77.85 63.72 67.54 52.99 71.55 55.88 75.20 63.99 51.78
SimCSEus 76.36 64.25 65.82 53.30 70.99 58.06 74.16 64.92 54.65

KCL 76.87 65.17 65.18 53.39 71.44 58.26 74.99 65.06 55.36
KCL-FNA 76.54 64.65 66.08 53.69 71.65 58.31 74.46 64.88 54.53
KCL-FNE 77.96 65.82 65.73 53.67 71.43 57.95 75.97 65.78 55.61
KCL-FNC 78.05 66.20 66.24 54.02 71.84 58.56 76.02 66.50 56.07

Table 1: Model Performance on Long-tailed IC. The left part of the table shows the performance on the three
datasets: Automotive, Electronics and Beauty. The right part shows the results on the three subsets of the Automotive
dataset, where AutoH , AutoM and AutoT consist of the head, medium and tail classes in Automotive. The best
results are highlighted using bold fonts. F1w and F1m denote the weighted F1 and macro-F1.

datasets has a title and a category label. All three
datasets have long-tail issue.1

Overall Performance. We compare the proposed
method with the following models: BERT with
cross-entropy loss (BERT-CE), cRT (Kang et al.,
2019), unsupervised SimCSE (SimCSEus), and
controlling false negative instances with attraction
(KCL-FNA) and elimination (KCL-FNE). Note
that except for BERT-CE, all other baseline mod-
els use the two-stage approach to address the long
tail issue, in which the classifier is trained using a
balanced data set.

The experimental results are shown in Table 1.
We can observe that all contrastive learning-based
models outperform BERT-CE and cRT in terms of
macro-F1, which demonstrates the effectiveness
of contrastive learning in addressing the long tail
issue in IC. The calculated FN sample rates are
0.036 (Automotive), 0.068 (Electronics) and 0.102
(Beauty), showing that there are significant number
of FN samples when using KCL1. When compar-
ing the false negative controlling methods with the
KCL, we observed that those false negative control-
ling methods achieved better performance in terms
of macro-F1. The results demonstrate the necessity
of controlling the FN issue in KCL. Among those
false negative controlling methods, the proposed
method outperforms all other methods, showing its
advantage over existing methods.

Performance on Subsets. To investigate the per-
formance of the models on the classes with dif-
ferent label frequencies, we split the Automotive
dataset into three subsets according to the label
frequency: Head, Median and Tail and evaluate
the models by macro-F1 on the subsets1. The

model performance on the subsets are included in
Table 1. We can see that the performance decreases
along with the decrease of the label frequencies
for each single model, illustrating the lacking of
samples limits the model performance. Moreover,
the methods based on KCL outperforms all other
baselines. The proposed FN controlling method
achieves the best performance on all subsets which
demonstrates the false negative controlling method
can help address the long tail issue in IC task with-
out hurting the overall performance. The details
can be found in the Appendix.

5 Conclusion

In large-scaled item categorization tasks, category
labels are naturally distributed in a long tail pattern,
which challenges the performance on tail classes
due to severe supervision missing. To address this
challenge, we adopt a two-stage LT-addressing
method that was originally proposed in the image
classification task. To make this method work on
our text classification task, we use the recently
proposed SimCSE (Gao et al., 2021) to do an
effective text transformation and KCL loss in
the representation learning stage. Furthermore,
we recognize there are false negative samples
caused by using the KCL loss and propose a novel
controlling method to reduce the corresponding
negative influences. The experimental results
prove that the proposed method helps improve
the performance on long-tailed data and the false
negative controlling can further help boost the
performance when using KCL. While we worked
on item classification in this paper, we will extend
the model to other problems.
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6 Limitations

A major limitation of this research work is only
item classification, one specific type of NLU tasks,
is used in our experiments. To better evaluate our
proposed KCL-FNC method, an expanded testing
task set will provide more convincing power. In ad-
dition, we only used cross-entropy (CE) loss when
training models, in both representation and clas-
sifier learning stages. It will be interesting to see
the compound effect when applying our proposed
method together with some advanced loss types,
such as LDAM (Cao et al., 2019).
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A Dataset Statistics

The statistics of the three data sets: Automotive,
Beauty and Electronics are shown in Table A. 1
and the histogram of the label frequencies of the
three data sets are shown in Figure A. 1.

Labels Samples Title Length

Automotive 953 160,725 9.90± 5.51
Beauty 229 159,805 10.26± 5.61

Electronics 500 86,357 14.90± 9.56

Table A. 1: Statistics of Datasets

B Implementation Details

For all the models except for the BERT, we fol-
low the two-stage training protocol in (Kang et al.,
2019). The batch size is set to 32 and initial learn-
ing rate is 1e− 5 with a linear decay. The datasets
are preprocessed following (Tayal et al., 2020). We
split the training datasets into two subsets: train vs.
dev that is used to select hyperparameters and vali-
date the performance 2. The models are evaluated
using two metrics: macro-F1 (F1m) and weighted
F1 (F1w). Note that macro-F1 is frequently used
in evaluating LT-addressing methods. Since it cal-
culates the F1 for each class and averages them, it
is significantly influenced by the performance of
tail classes. We report the results on the test set
using the best models on the dev set measured by
macro-F1.

C False Negative Rate Calculation

To calculate the false negative rate, we use the
obtained embeddings of SimCSE-KCL in the first
stage after 10 epoch and report the average of five
runs. We calculate the false negative rate of those
three datasets where the batch size is set to 32 and
K is set to 1. Following (Chen et al., 2021), we
calculate the false negative rate in SimCSE-KCL
for the three datasets. The false negative rate fnr
is the number of false negative samples among top
25% the most similar samples of the anchor in a
batch, which can be represented as:

fnr =

∑N
i=1

∑
xj∈Bi

max(0, |Bj
i | − (K + 1))

∑N
i=1(0.25× |Bi| × (|Bi| − 1))

N is the number of batches. Bi is the set of samples
in batch i and |Bi| is the number of samples in

2The code will be available after acceptance.

batch i. |Bj
i | is the number of samples belonging

to the same class as xj in the 25% most similar
samples with the sample xj .

D Data Statistics of the Subsets

The classes are sorted based on their frequencies.
The Head subset consists of the samples in the most
frequent 1

3 classes and the Tail subset includes the
samples belonging to the least frequent 1

3 classes.
The rest samples belonging to the 1

3 median fre-
quent classes consists of the Median subset. The
statistics of the subsets are shown in the Table D. 1.

Automotive

Head Median Tail

Label 318 318 317
Sample 132, 590 20, 318 7, 817

Table D. 1: Data statistics of the subsets of the three
original training data sets based on the label frequencies.
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(a) Automotive (b) Beauty (c) Electronics

Figure A. 1: Label Frequency Histogram of Automotive, Beauty and Electronics Datasets
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