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Abstract

In real-world systems, an important require-
ment for model updates is to avoid regressions
in user experience caused by flips of previously
correct classifications to incorrect ones. Multi-
ple techniques for that have been proposed in
the recent literature. In this paper, we apply
one such technique, focal distillation, to model
updates in a goal-oriented dialog system and
assess its usefulness in practice. In particular,
we evaluate its effectiveness for key language
understanding tasks, including sentence classi-
fication and sequence labeling tasks, we further
assess its effect when applied to repeated model
updates over time, and test its compatibility
with mislabeled data. Our experiments on a
public benchmark and data from a deployed di-
alog system demonstrate that focal distillation
can substantially reduce regressions, at only mi-
nor drops in accuracy, and that it further outper-
forms naive supervised training in challenging
mislabeled data and label expansion settings.

1 Introduction

Machine learning models that are deployed in real-
world applications typically require regular updates
to accommodate data distribution shifts or changes
to the output label space. The retraining process,
even if it leads to stable or improved overall ac-
curacy, can result in different sample-level predic-
tions due to its stochastic nature. In an application
setting, that in turn can change (or even break) spe-
cific functionalities. A key requirement for model
updates in real-world applications is therefore to
minimize regressions in user experience.

For classification models, Yan et al. (2021) for-
malized this requirement as minimizing the number
of negative flips of a model, defined as the number
of previously correct classifications that turn incor-
rect for a new model. Previous work proposed sev-
eral methods towards that goal (Shen et al., 2020;
Yan et al., 2021; Zhao et al., 2022; Träuble et al.,

2021) that rely on knowledge distillation, model
ensembling or Bayesian learning.

In this work, we focus on model update-caused
regressions in goal-oriented dialog systems, and
in particular on updates of spoken language under-
standing models. In real-world dialog systems, a
negative flip would mean that a request that was
previously correctly understood is now interpreted
as a different intent (or with different slots) and
therefore leads to a regression in user experience.

While previous work explored the reduction of
negative flips on various tasks, spoken language
understanding remains unexplored (see section 2).
We therefore apply focal distillation (Yan et al.,
2021), the most applicable existing technique, to
this use case. Moreover, the use in a real-world
goal-oriented dialog system raises additional ques-
tions that we address. Specifically, we study the
following:

Effectiveness for DC and IC: We test focal dis-
tillation on domain classification (DC) and intent
classification (IC), two key tasks in spoken lan-
guage understanding, using public data as well as
internal datasets from a real-world dialog system.

Applicability to SL: We further test the effec-
tiveness for slot labeling (SL), a sequence labeling
task that requires an extension of focal distillation
to handle tasks with token-level supervision.

Repeated Model Updates: We simulate mul-
tiple iterations of retraining with focal distillation
to study its long-term effect, in particular, whether
the coupling of new and old model via distillation
restricts the model’s ability to learn new features.

Noisy Labels: Finally, we also study the effect
of mislabeled data. In the presence of annotation er-
rors, focal distillation bears the risk that it enforces
prediction consistency on samples that have sup-
posedly correct classifications in the old model, but
are actually mislabeled, preventing the new model
to predict the true correct label.

We run extensive experiments for DC, IC and
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SL tasks on SLURP (Bastianelli et al., 2020), a
public benchmark, and internal datasets from our
real-world goal-oriented dialog system. We find
that focal distillation is effective for DC and IC
and reduces negative flips by up to 30% relative
at no or only marginal decreases in accuracy. For
SL, a naive application as a token-level loss is ef-
fective as well and brings 8% relative reduction
on average. When simulating repeated retraining
over time, focal distillation can restrict the model’s
ability to learn new labels, but this can be reme-
died by warm-starting the model with the previous
model’s weights. Finally, we also show that focal
distillation is beneficial even under annotation er-
rors, and can be made even more robust by adding
noise-awareness to the loss.

2 Related Work

Enabling regression-free model updates is a rela-
tively recent line of research. Shen et al. (2020)
first studied it for computer vision problems with
the goal of learning backwards-compatible im-
age representations. Yan et al. (2021) intro-
duced the notion of negative flips for classifica-
tion tasks and coined the minimization of them
as positive-congruent training. They proposed fo-
cal knowledge distillation, a variant of traditional
teacher-student distillation (Hinton et al., 2015),
and model ensembling as techniques to achieve
positive-congruent training. Zhao et al. (2022) con-
tinued this line of work by extending and combin-
ing the distillation and ensembling ideas into a sin-
gle method called ELODI. With a slightly different
focus, namely accepting or rejecting the predictions
of a new model rather than training it, Träuble et al.
(2021) proposed a Bayesian approach to reduce
negative flips. In our work, we focus on Yan et al.’s
(2021) focal distillation method as it is most appli-
cable to our real-world use case where we cannot
afford the use of model ensembles because of their
computation, storage and latency overhead.

Xie et al. (2021) first applied the methods to
NLP tasks. They found that negative flips are also
prevalent during model updates for NLP tasks and
demonstrated mitigations with distillation and en-
sembling methods in line with the earlier work.
Concurrent to our work, Cai et al. (2022) extended
positive-congruent training ideas to structured pre-
diction tasks like parsing, which require exten-
sions such as sequence distillation (Kim and Rush,
2016) or reranking. Also concurrent to our work,

Schumann et al. (2023) introduced an importance-
weighted interpolation method that they find to
outperform focal distillation on intent classification
benchmarks. We plan to incorporate their findings
in our future work.

Continual learning (also known as incremental
learning, sequential learning or lifelong learning) is
closely related to our work (McCloskey and Cohen,
1989; Silver and Mercer, 2002; Biesialska et al.,
2020). While we focus specifically on avoiding
negative flips, continual learning is more general
and studies continuous training of models on evolv-
ing data and tasks, with a particular focus on avoid-
ing catastrophic forgetting. The latter is a challenge
if data for previously learned features is no longer
available; it is however less relevant for our appli-
cation scenario, a real-world goal-oriented dialog
system, with ongoing user interactions covering all
features.

3 Methods

Application Scenario Spoken language under-
standing models are a core component in many
goal-oriented dialog systems. They map a natural
language request to a machine-readable meaning
representation that the system can act upon to ful-
fill the request. In our experiment setup, this is
modelled as a combination of domain classification
(DC), intent classification (IC) and slot labeling
(SL). Consider the example Play Michael Jack-
son. DC recognizes this request as a Music request,
IC detects a PlayMusic intent and SL identifies
Michael Jackson as Artist slot, whereas Play does
not represent a slot in this case.

Negative Flips Let x ∈ X be a model input (e.g.
an utterance), y ∈ Y its ground truth label (e.g.
an intent label) and p(y|x) a model that can be
used to predict ŷi = argmaxy p(y|xi). A negative
flip occurs if a new model incorrectly predicts a
sample that the previous model predicted correctly,
i.e. if ŷnewi ̸= yi and ŷoldi = yi. The negative flip
rate (NFR) measures the fraction of samples where
a correct prediction turns incorrect between two
models in a dataset with size N . Yan et al. (2021)
define it as

NFR =
1

N

N∑

i=1

1(ŷnewi ̸= yi ∧ ŷoldi = yi) (1)

Focal Distillation (FD) Focal distillation, as in-
troduced by Yan et al. (2021) and illustrated in Fig-
ure 1, aims to reduce negative flips by minimizing
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Figure 1: Illustration of focal distillation (FD): When training model t, a cross-entropy (CE) loss against ground
truth labels is combined with a mean-squared error (MSE) loss against logits of model t− 1, weighted by t− 1’s
sample-level accuracy to focus the distillation. This is applied iteratively, when training model t+1, model t acts as
the reference model for distillation (indicated in gray).

the loss

LCE(ŷ
new, y) + λLFD(p

new(y|x), pold(y|x))
(2)

whereLCE denotes the standard cross entropy (CE)
loss between new model and ground truth and LFD

is the additional focal distillation (FD) loss term
that discourages negative flips, with a trade-off pa-
rameter λ. This loss term is formally defined as

LFD = −F(x, y) · D(pnew, pold)
F(x, y) = α+ β · 1(ŷold = y),

(3)

where D is a distance between the output distribu-
tions of the new and old model, and F(x, y) is a
“filtering” function. It applies a weight α to all sam-
ples in the training set and an additional weight β
to the samples correctly predicted by the old model.
When α = 1 and β = 0, focal distillation reduces
to ordinary distillation. When α = 0 and β > 0,
we are only applying the distillation objective to
the training samples predicted correctly by the old
model.

In their work, Yan et al. (2021) experiment
with two choices for D: Kullback-Leibler (KL)
divergence between temperature-scaled p(y|x) and
mean-squared error (MSE) between pre-softmax
logits. Since the latter performed better in their
experiments, we adopt it. Hence, D is defined as

D(pnew, pold) = 1

K

K∑

j=1

(znewj (x)−zoldj (x))2 (4)

where zj(x) is element j of the K-dimensional
pre-softmax logit vector for x.

FD for Slot Labeling In slot labeling, a sequence
of labels has to be predicted instead of just a sin-
gle label as in DC or IC. Naturally, there are two
options to apply distillation in that case: either ap-
ply the loss independently to each token or use
the reference model’s sequence-level decision for
supervision. For the latter, Wang et al. (2020) pro-
posed multiple techniques. In this work, we resort
to the simpler token-level distillation for now and
leave sequence-level distillation for future work.

We compute the FD loss for each token j in the
sequence i with length M as

LFD
Tok = −

M∑

j=1

F(xj , yj)D
Ä
pnewj , poldj

ä
(5)

Notice that this formulation works both if the mod-
els perform token-level decisions, and if they per-
form sequence-level decisions. In the latter case,
when training the new model, the token-level FD
loss is summed to the sequence-level loss.

FD with Noisy Labels FD biases the new model
towards the old model’s predictions when those pre-
dictions are correct. To discern correct predictions
we rely on accurate labels. However, real-world
data is often noisy. Therefore we investigate the
combination of FD with label noise detection. We
experiment with Area Under the Margin (AUM),
a method suggested by Pleiss et al. (2020). The
method leverages the observation that mislabeled
data hurts generalization, and thus monitors the
training dynamics to define the margin of a sample.
The margin M at epoch t of sample (x, y) mea-
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sures how much larger the assigned logit is than
the largest other logit. Let zt(x) ∈ Rc be the logit
vector of sample (x, y) at epoch t. Then M at t is

M (t)(x, y) = z(t)y (x)−maxk ̸=y z
(t)
k (x) (6)

where logit z(t)k corresponds to class k. The first
term corresponds to the assigned logit, while the
second is the largest other logit. If a sample is mis-
labelled, the assigned logit tends to receive weaker
gradient updates due to the tension between gen-
eralization from similar, correctly labeled samples
and memorization of the sample itself. For instance,
an utterance that is semantically similar to others
labelled as PlayMusic, but is incorrectly labelled
as GetWeather, results in the model predicting the
true class with more confidence (higher logit) and
assigning lower logit (confidence) to the incorrect
label. As a consequence, a correctly labeled sample
will have a larger margin than a mislabeled sample
in expectation. Each sample’s margin is measured
during training and averaged over all epochs T :

AUM(x, y) =
1

T

T∑

t=1

M t(x, y) (7)

We then use this measure as an additional term
in the FD objective to re-weight the FD loss contri-
butions of mislabeled samples:

LFD
AUM = − g(AUM(x, y))︸ ︷︷ ︸

noise-aware weight

F(x, y)D(pnew, pold)︸ ︷︷ ︸
standard FD loss

(8)
where g(·) simply rescales AUM into [0, 1].

4 Experimental Setup

We run experiments on both public and internal
data. For our experiments on public data, we
use SLURP (Bastianelli et al., 2020), an English
multi-domain dataset for NLU spanning across
18 domains, 60 intents and 55 slot types (ca.
16,000 utterances). In addition, we present results
on our internal datasets for English and German.
These datasets comprise live traffic utterances, de-
identified and anonymized for privacy reasons, then
annotated to enable supervised training. For the in-
ternal datasets, the number of slot types is domain-
specific. In the experiments for SL we employ three
domain-specifc internal datasets, referred to as INT-
G, INT-M and INT-S, that have 88, 101 and 35 slot
types, respectively. Results on public data are aver-
aged across 5 seeds, while we only train once on

Task Method
Accuracy ↑ NFR ↓
abs. rel. abs. rel.

DC
Baseline 91.36±0.35 – 2.17±0.16 –
FD 90.67±0.59 -0.75 1.57±0.59 -27.64

IC
Baseline 88.63±0.45 – 2.47±0.41 –
FD 88.24±0.51 -0.44 1.63±0.53 -33.79

Table 1: Test results for applying FD to DC and IC on
SLURP under data update.

Task Dataset Accuracy ↑ NFR ↓

DC English +0.12 -54.94
German -0.07 -9.31

IC English Cross-Domain 0.39 -35.59
German INT-M -0.02 -3.31

Table 2: Test results (rel. change to baseline) for apply-
ing FD to DC and IC on internal data under data update.

internal data. In our experiments we examine two
settings: (i) A data update scenario, in which we
only update the training data leaving the model ar-
chitecture unchanged. In this scenario, 50% of the
samples are left out when training the old model,
while the complete dataset is used when training
the new model, either with the baseline approach
or FD. (ii) A label introduction scenario, in which
we gradually introduce a new label in the dataset,
training n models in sequence on datasets in which
we uniformly increase the support for that label.
For implementation details, we refer the reader to
Appendix C. Across all experiments, we compare
FD with the baseline approach of simply retrain-
ing the model on the whole training data, without
any additional signal from the previous model. All
models employ a BERT-based (Devlin et al., 2018)
architecture: a pre-trained encoder extracts con-
textualized semantic word embeddings, then fed
either to a Multi-Layer Perceptron (MLP) in case
of DC and IC, or to a Conditional Random Field
(CRF) (Lafferty et al., 2001; Lample et al., 2016)
in case of SL, to obtain either sequence-level or
word-level predictions. We experiment also with
the introduction of warm start for the new model,
i.e. the model’s weights are initialized with those
of the previous model. See Appendix A for more
details.

5 Experimental Results

We present results for each of the research ques-
tions raised in the introduction.
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Figure 2: Metrics for repeated application of FD versus baseline for training DC models. Bottom row includes warm
start. A, E: Overall accuracy. B, F: Overall NFR. C, G: Accuracy on the new label. D, H: NFR on the new label.
Graphs for the new label, and those for NFR, skip the first iteration(s) as there is no previous model to compare to.

Task Method Accuracy ↑ NFR ↓
abs. rel. abs. rel.

SL Baseline 92.9±0.2 - 1.6±0.1 -
FD 92.4±0.1 -0.46 1.5±0.1 -7.93

Table 3: Test results for applying FD to slot labeling on
SLURP under data update.

Task Dataset Accuracy ↑ NFR ↓

SL
English INT-G +0.09 -15.94
English INT-M -0.01 -3.66
English INT-S -0.01 -2.86

Table 4: Test results (rel. change to baseline) for apply-
ing FD to slot labeling on internal data.

Is FD effective for DC and IC? Results on pub-
lic data are displayed in Table 1. FD reduces
NFR for both DC and IC in similar magnitude,
by 27.64% for DC and by 33.79% for IC, while
only decreasing accuracy slightly by 0.75% for
DC and 0.44% for IC. Results on internal data are
shown in Table 2. On internal data, we can only
disclose relative changes to baseline, no absolute
metrics. For experiments on German data we use
the full dataset and the production model. While
we consider all domains for DC, we only consider
intents within a single domain for IC since training
is expensive and time-consuming. For English we
only use 10% of the full training set and a surrogate
model from Huggingface to speed up the experi-
ments (see Appendix A). Also on internal data, FD
reduces NFR for both DC and IC. Again accuracy
is only slightly reduced, for DC on English data we
even see a slight increase in accuracy. NFR reduces
less significantly on German data, which can be ex-
plained by the fact that the training set for the old

and the new model are the same and negative flips
only stem from randomness in training. For the
English dataset, we simulate an increase in training
data, as explained in Section 4.

Can FD be used for token-level SL? As men-
tioned above, we employ models with a CRF layer
for SL, able to make structured predictions. How-
ever, we experiment with token-level FD (see Equa-
tion (5)) that takes as input the token logits directly,
instead of the top-scoring label path from the CRF.
Therefore, the CRF layer of the student model is
not affected by the additional distillation objective.
Results on public data are shown in Table 3. With
only a slight decrease in accuracy of -0.46%, NFR
can be reduced by 7.93%. Results on internal data
are reported in Table 4. Here we see an even larger
reduction of 15.94% in NFR on the INT-G dataset,
while a less significant reduction is observed on
the other datasets: -3.66% on INT-M and -2.86%
on INT-S. For all datasets, changes in accuracy are
negligible. We conclude that FD on token-level SL
reduces NFR without harming accuracy.

Does repeated FD restrict learning? Figure 2
reports the comparison of the baseline approach
with FD in the label introduction scenario (span-
ning 5 iterations). We can observe how FD does
not seem to negatively influence the overall accu-
racy over time of the model; on the contrary, the
additional loss term seems to be moderately benefi-
cial in helping the model learn the task compared to
the baseline. The approach also behaves well in re-
ducing the overall NFR of the new model. Interest-
ingly, standard CE is slightly superior in absolute
terms with respect to FD in learning the new label
distribution. However, the gap remains fixed over
time, therefore FD is not hindering the ability of
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Task Approach
Original 20% Noise 40% Noise 60% Noise

Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓

DC
Baseline – – – – – – – –
FD 0.34% -53.02% 0.46% -43.07% 0.10% -32.84% 0.75% -47.81%
FD+AUM 0.11% -24.01% 0.46% -43.46% -0.21% 6.13% 0.72% -31.53%

IC
Baseline – – – – – – – –
FD 0.09% -30.05% -0.04% 30.56% 0.05% -37.49% 0.12% -35.68%
FD+AUM 0.20% -34.33% 0.09% -8.37%. 0.02% -18% 0.12% -32.88%

Table 5: Test results (rel. change to baseline) for applying FD with AUM both on original internal dataset and on
internal dataset with artificially added noise.

Task Approach
Original 20% Noise 40% Noise 60% Noise

Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓

DC
Baseline 0.90742 2.2416 0.7215 2.5331 0.505 5.9067 0.3692 3.5194
FD -0.06% -52.50% -0.08% -21.24% 6.91% -77.42% 3.79% -63.38%
FD+AUM 0.03% -52.50% 0.29% -29.65% 6.24% -63.19% 2.65% -42.36%

IC
Baseline 0.8807 2.5106 0.6518 4.2319 0.4913 4.1913 0.2887 4.1034
FD -0.01% -25.89% -6.15% 4% -3.26% 22.97% -3.05% 31.91%
FD+AUM -0.28% -12.59% -1.58% 2.06% 0.98% -14.15% -6.44% 12.48%

Table 6: Test results (rel. change to baseline) for applying FD with AUM both on SLURP original dataset and on
SLURP with artificially added noise.

the model to learn, but only introducing an initial
delay. Remarkably, FD is able to reduce regression
on the newly introduced label already with a hand-
ful of samples, and consistently remains lower than
the baseline on the NFR metric. Interestingly but
not surprisingly, warm start helps both approaches
in both metrics, with respect to the non-warm start
alternative. This suggests that, in general, warm
start is a useful strategy for retaining model per-
formance during an update. However, it is clear
from the results how FD benefits more from warm-
start than the baseline, in terms of both accuracy
improvement and NFR reduction. Further results
for this setting (and the specular one of gradual
removal of a label) are reported in Appendix E.

Can FD cope with noisy labels? In order to ver-
ify the extent to which FD coupled with AUM is
capable of dealing with increasing level of noise
we experiment both on the public SLURP dataset
as well as on the internal English dataset, and we
also test the approach on specific versions of those
datasets manipulated to artificially introduce vary-
ing levels of noise: 20%, 40%, 60%. The algorithm
used to generate noise, together with a study of how
AUM is able to detect it, is reported in Appendix D.
Results on the internal dataset and SLURP are re-
ported in tables 5 and 6, respectively. Overall we
observe that integrating AUM into FD does not lead
to significant improvement over vanilla FD. We be-

lieve the reason behind the lack of improvement is
twofold: first, there might be a more effective way
to integrate the AUM signal into the FD objective;
secondly, the models trained with the baseline, es-
pecially on internal data, already exhibit low NFR,
therefore there is little margin for improvement. On
the other hand, FD with AUM is not detrimental,
neither on original nor the noisy datasets: when the
level of label noise is significant, AUM helps FD
recovering its performance; when the label noise if
less present (if at all), AUM does not significantly
decrease FD performance.

6 Conclusions

In this paper, we presented an extensive set of ex-
periments to evaluate the effectiveness of focal dis-
tillation to reduce negative flips in a real-world
goal-oriented dialog system. We found the tech-
nique to be effective in DC, IC and SL with only
minor accuracy drops. When used repeatedly over
multiple updates, the effect remains while still al-
lowing the model to learn new labels. In addition,
the method is also robust to labeling errors in the
training data. As future work, we plan to extend
our experiments to alternative techniques for neg-
ative flip reduction, in particular those proposed
concurrent to our work, and to experiment with po-
tentially more powerful sequence-level distillation
for slot labeling.
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Limitations

A first limitation of our contribution stems from
the fact that to compute the focal distillation term
in the loss, predictions from the old model are re-
quired. This additional stream of information will
therefore cause a slight increase in the required
computational power.
In this work, we only experimented with FD based
on mean-squared error between pre-softmax log-
its as that approach yielded best results in the pa-
per our experiments are based on, leaving experi-
ments using FD with Kullback-Leibler divergence
between temperature-scaled softmax outputs for
future research. Due to inference time limitations
in a production setting, we did not investigate the
reduction of negative flips with ensembles either.
Finally, we have not tested more principled ap-
proaches for NER distillation and focused on token-
level distillation leaving sequence-level distillation
for future work.
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A Experiment Details

The experiments have been run on p3.16xlarge
EC2 instances1, equipped with eight NVIDIA Tesla
V100 GPUs2. As optimization framework, Py-
Torch (Paszke et al., 2019) (version 1.10.0) has
been used, along with PyTorch Lightning (Falcon,
2019) (version 1.8.6) for easier development and
faster experimental iterations.

Across all the experiments on English corpora,
the encoder is based on pre-trained BERT (Devlin
et al., 2018) models from HuggingFace (Wolf et al.,
2019), with their weights unfrozen during train-
ing, hence allowing their fine-tuning. For DC and
IC experiments on German corpora, a custom pre-
trained tiny-bert (Jiao et al., 2020) is used. All
models feature a two-layer, fully-connected MLP
mapping word or sentence embeddings into label-
space. Additionally, the model for SL employs a
CRF layer to make structured predictions about
the label sequence, taking estimated label-label
transition probabilities into account. For the SL
experiments, we obtain subword token-level em-
beddings on the English corpora by summing the
hidden states of the last 3 layers of the encoder. On
the German corpora, the model considers the last
hidden states. In the latter, word-level embeddings
(aligned with slot labels) are obtained performing
an average subword pooling, i.e. for each input
text token we take the average embedding of all its
corresponding subword tokens. In the former, the
last subword token embedding is considered.

For models trained with Focal Distillation, we
follow the authors’ suggestion in Yan et al. (2021)
and set α = 1, β = 5 and λ = 1 for all experiments.
Table 7 reports the hyperparameters used to train
the models across all the experiments.

All models are trained to convergence using
early stopping, monitoring model performance on
a held-out validation set as convergence condition.

B Data Update Scenario

Over time, the data available to train a predictive
model can change for various reasons. In a super-
vised learning setting, one simple reason may be
the acquisition of more labeled data: human an-
notators review existing unlabeled instances and
assign labels to them, enlarging the training corpus.

1https://aws.amazon.com/ec2/instance-types/
p3/

2https://www.nvidia.com/en-us/data-center/
v100/

Parameter Value

Learning Rate 5e-5
Optimizer Adam
Max epochs 20
Embedding size 768
Hidden size 256
Dropout 0.1
Activation ReLU
Validation split 0.1
Early stopping metric Validation F1 score
Early stopping delta 1e-3
Early stopping patience 5 epochs
Focal Distillation α 1
Focal Distillation β 5
FD trade-off λ 1

Table 7: Hyperparameter values for models used in the
experiments.

In this work, we refer to this event as a data up-
date, and study the impact of applying FD in this
scenario.

The results presented in section 5 examine in par-
ticular a scenario in which the amount of available
training data is doubled for the new model. This is
realized by simply training the old model on 50%
of the overall training dataset, then training the new
model (with either the baseline or FD) on 100% of
the training samples.

C New Label Scenario

Another possible reason for a change in the training
data is the addition of data supporting new classes.
New classes appearing in the training dataset of
an already deployed model may be the result of
the definition of a new downstream feature that the
model has to support. In this work, we refer to this
event as a label introduction, and study the impact
of applying FD in this scenario.

Usually, data supporting a new feature is not
readily available, but rather comes in batches as
human annotators work to provide new labeled
data based on the feature definition. For this rea-
son, in this work we study the impact of FD on a
gradual introduction of a new label. In particular,
the scenario is implemented as follows: (i) a label
is chosen for scenario simulation and completely
removed from the dataset, i.e. all the samples be-
longing to that class are removed; (ii) a schedule
for introducing the label in the following n “re-
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leases” of the dataset is stated. For simplicity, we
assume the rate at which newly labelled data be-
comes available is constant over time, and therefore
the schedule simply dictates that a fixed amount
of labelled data is reintroduced at each iteration.
To do so, data pertaining to the removed labels is
evenly partitioned in n batches, and the i-th dataset
is simply the union of the previous dataset in the
sequence and the i-th batch.

In this work we set the number of releases to n =
5. We run experiments on the SLURP dataset for
Domain Classification using the qa domain and for
Intent Classification using the news_query intent.
This choice reflects two competing needs: on one
hand, we want to reflect the observed reality of new
features not becoming the predominant classes in
the dataset in terms of data, even after a long time;
on the other hand, to report statistically significant
results we need more than a handful of samples to
be removed. As a result, we choose labels that are
neither the prevalent classes nor the scarcest, but
are averagely represented.

When a label is introduced for the first time, we
set the MSE loss in FD to zero for samples with
the new label as the previous model cannot provide
useful information for those. That means we zero
out the logits for the new label coming from the
old model by concatenating a zero tensor to the
logits coming from the old model. As a result, the
contribution to the MSE loss in FD is zero for the
new label, falling back to only Cross Entropy loss
for samples with the new label.

D Area Under the Margin and Noise
Generation Procedure

Pleiss et al. (2020) introduce the concept of Area
Under the Margin (AUM), and demonstrate its abil-
ity to identify mislabelled samples in synthetically-
mislabeled versions of popular Computer Vision
datasets, such as CIFAR10. Their approach makes
no assumption about the specific task under consid-
eration, but only draws on the insight that a neural
network’s training dynamics contain salient signals
about noisy data and generalization. In this work,
however, before testing the interaction of AUM
with FD in a noisy data setting we test the ability
of AUM of spotting noise in our Natural Language
Understanding (NLU) setting to begin with. To do
so, we repeat the synthetically-mislabeled experi-
ment on our datasets.

Algorithm 1 Label noise generation

Input: true labels Y , noise level nl ∈ [0, 1]
Output: assigned labels Ỹ

1: N ← | Y |
2: L← {y | y ∈ Y }
3: Nflip ← ⌈nl ·N⌉
4: for i = 0→ Nflip do
5: yi ← sample an item uniformly at random

from Y without replacement
6: L̃← {y | y ∈ L ∧ y ̸= yi}
7: ỹi ← sample a label uniformly at random

from L̃
8: change yi into ỹi in Y
9: end for

Table 8 reports the noise levels estimated in
the synthetically-mislabeled datasets. Pleiss et al.
(2020) introduce threshold samples, purposefully
mislabeled samples belonging to an extra class, to
identify a AUM upper bound that isolates misla-
beled data (see algorithm 2). In particular, they
establish that the 99th percentile of threshold AUM
values separates correctly- and mislabeled data. No-
tice that this mechanism would introduce additional
complexity for coupling the AUM approach with
FD, since we do not wish for the extra class to be
present in the output distribution of the new model
trained with FD. Therefore, beside testing vanilla
AUM in the NLU setting, we test whether simply
observing the sign of the AUM values is a satisfy-
ing proxy metric of the true AUM metric. Synthetic
noise is injected using algorithm 2 for the former,
and algorithm 1 for the latter.

We can see how standard AUM is able to esti-
mate the noise level quite accurately, with an av-
erage (absolute) estimation error of 1.71%. The
simpler variant is less competitive in estimating
noise levels, reporting an average estimation error
of 3.70%. Interestingly, the variant consistently
overestimates noise levels for the SLURP dataset
in the IC setting, exhibiting a sensitivity to the ratio
between label space dimension and dataset size.
Indeed, moving from the DC task to the IC task,
the number of samples remains constant but the
label space nearly triples in dimension. While the
same holds roughly true also for the INT-G dataset,
its size is considerably larger than SLURP. We hy-
pothesize this is due to the approach having to rely
on fewer samples to observe training dynamics,
leading to a less informative metric computation.
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Algorithm 2 Label noise generation when using
threshold samples

Input: true labels Y , noise level nl ∈ [0, 1]
Output: assigned labels Ỹ , threshold samples Ī

1: N ← | Y |
2: L← {y | y ∈ Y }
3: Nflip ← ⌈nl ·N⌉
4: Nthreshold ← ⌈N · (| L |+ 1)⌉
5: ȳ ← (| L |+ 1) ▷ new class for threshold

samples
6: Ī ← { }
7: for i = 0→ Nflip do
8: yi ← sample an item uniformly at random

from Y without replacement
9: L̃← {y | y ∈ L ∧ y ̸= yi}

10: ỹi ← sample a label uniformly at random
from L̃

11: change yi into ỹi in Y
12: end for
13: for i = 0→ Nthreshold do
14: yi ← sample an item uniformly at random

from Y without replacement
15: change yi into ȳi in Y
16: Ī ← Ī ∪ {i}
17: end for

E Additional Results

Figure 3 reports results for repeated application
of FD to the IC task, in contrast with the DC task
reported in fig. 2.

Figures 4 and 5 present instead results for a
specular setting to the “label introduction” one,
in which we gradually remove data supporting a
label.

In figs. 6 to 9 we investigate the influence of
model size on repeatedly applying FD. In particular,
a tiny-bert encoder is used. Results suggest that
FD becomes detrimental when the older model
does not have sufficient “capacity” to accurately
provide a distillation signal for the new model
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Task Dataset
20% Noise 40% Noise 60% Noise

AUM < 99p AUM < 0 AUM < 99p AUM < 0 AUM < 99p AUM < 0

DC SLURP 23.80 % 26.42 % 39.53 % 42.14 % 58.36 % 61.89 %
English INT-G 23.32 % 25.02 % 40.25 % 40.59 % 57.24 % 58.60 %

IC SLURP 21.84 % 32.08 % 36.87 % 47.56 % 57.22 % 67.32 %
English INT-G 21.27 % 21.81 % 40.10 % 39.77 % 60.17 % 61.23 %

Table 8: Datasets noise estimation on synthetically-mislabelled dataset. In the first column, we consider standard
AUM, in which we estimate that a sample is noisy when its AUM value is lower than than the 99-th percentile of the
AUM values of the threshold samples. In the second column we consider the simpler variant, in which we estimate
that a sample is noisy when its AUM value is negative.
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Figure 3: Metrics for repeated application of FD versus baseline for training IC models. Bottom row includes warm
start. A, E: Overall accuracy. B, F: Overall NFR. C, G: Accuracy on the new label. D, H: NFR on the new label.
Graphs for the new label, and those for NFR, skip the first iteration(s) as there is no previous model to compare to.
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Figure 4: Metrics for repeated application of FD versus baseline for training DC models when gradually removing
data for a label. Bottom row includes warm start. A, E: Overall accuracy. B, F: Overall NFR. C, G: Accuracy on
the label being removed. D, H: NFR on the label being removed. Graphs for the new label, and those for NFR, skip
the first iteration(s) as there is no previous model to compare to.

Task Approach
Original 20% Noise 40% Noise 60% Noise

Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓ Accuracy ↑ NFR ↓

DC
Baseline 0.9074 2.2416 0.7215 2.5331 0.505 5.9067 0.3692 3.5194
FD 0.9069 1.0647 0.7209 1.9951 0.5399 1.3338 0.3832 1.2889
FD+AUM 0.9077 1.0647 0.7236 1.7821 0.5365 2.1744 0.379 2.0287

IC
Baseline 0.8807 2.5106 0.6518 4.2319 0.4913 4.1913 0.2887 4.1034
FD 0.8806 1.8605 0.6117 4.4013 0.4753 5.154 0.2799 5.4127
FD+AUM 0.8782 2.1968 0.6415 4.3192 0.4961 3.5982 0.2701 4.6157

Table 9: Absolute results for the experiment on applying FD with AUM on the noisy labels setting on SLURP.
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Figure 5: Metrics for repeated application of FD versus baseline for training IC models when gradually removing
data for a label. Bottom row includes warm start. A, E: Overall accuracy. B, F: Overall NFR. C, G: Accuracy on
the new label. D, H: NFR on the new label. Graphs for the new label, and those for NFR, skip the first iteration(s)
as there is no previous model to compare to.
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Figure 6: Metrics for repeated application of FD versus baseline for training DC models when using a smaller BERT
model. Bottom row includes warm start. A, E: Overall accuracy. B, F: Overall NFR. C, G: Accuracy on the new
label. D, H: NFR on the new label. Graphs for the new label, and those for NFR, skip the first iteration(s) as there is
no previous model to compare to.
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Figure 7: Metrics for repeated application of FD versus baseline for training IC models when using a smaller BERT
model. Bottom row includes warm start. A, E: Overall accuracy. B, F: Overall NFR. C, G: Accuracy on the new
label. D, H: NFR on the new label. Graphs for the new label, and those for NFR, skip the first iteration(s) as there is
no previous model to compare to.
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Figure 8: Metrics for repeated application of FD versus baseline for training DC models when using a smaller BERT
model and gradually removing a label. Bottom row includes warm start. A, E: Overall accuracy. B, F: Overall NFR.
C, G: Accuracy on the label being removed. D, H: NFR on the label being removed. Graphs for the new label, and
those for NFR, skip the first iteration(s) as there is no previous model to compare to.
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Figure 9: Metrics for repeated application of FD versus baseline for training IC models when using a smaller BERT
model and gradually removing a label. Bottom row includes warm start. A, E: Overall accuracy. B, F: Overall NFR.
C, G: Accuracy on the new label. D, H: NFR on the new label. Graphs for the new label, and those for NFR, skip
the first iteration(s) as there is no previous model to compare to.
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