Sharing Encoder Representations across Languages, Domains and Tasks in
Large-Scale Spoken Language Understanding

Jonathan Hueser", Judith Gaspers!, Thomas Gueudre!, Chandana Satya Prakash!, Jin Cao?,
Daniil Sorokin', Quynh Do!, Nicolas Anastassacos!, Tobias Falke!, Turan Gojayev',

Mariusz Momotko!, Denis Romasanta Rodriguez!, Austin Doolittle!, Kartik Balasubramaniam',

Wael Hamza', Fabian Triefenbach!, Patrick Lehnen!

I Amazon Alexa Al

Abstract

Leveraging representations from pre-trained
transformer-based encoders achieves state-of-
the-art performance on numerous NLP tasks.
Larger encoders can improve accuracy for spo-
ken language understanding (SLU) but are chal-
lenging to use given the inference latency con-
straints of online systems (especially on CPU
machines). We evaluate using a larger 170M
parameter BERT encoder that shares represen-
tations across languages, domains and tasks for
SLU compared to using smaller 17M param-
eter BERT encoders with language-, domain-
and task-decoupled finetuning. Running infer-
ence with a larger shared encoder on GPU is
latency neutral and reduces infrastructure cost
compared to running inference for decoupled
smaller encoders on CPU machines. The larger
shared encoder reduces semantic error rates by
4.62% for test sets representing user requests
to voice-controlled devices and 5.79% on the
tail of the test sets on average across four lan-
guages.

1 Introduction

Spoken Language Understanding (SLU) plays an
essential role in voice-controlled devices such as
Amazon Alexa, Apple Siri and Google Assistant.
Two commonly studied SLU subtasks are intent
classification (IC) and slot filling (SF). While IC
classifies an utterance into a set of pre-defined in-
tents, SF aims to extract relevant slot information.
For example, given an utterance “play madonna”
IC should determine PlayMusic as the intent and
SF should detect “madonna” as Artist. The two
subtasks are often modeled jointly (Do et al., 2020;
Chen et al., 2019; Guo et al., 2014). In large-scale
SLU systems intents can be split into separate do-
mains allowing the same intents to exist in differ-
ent domains and for domain-specific teams to work
independently of each other. Consequently, multi-
domain SLU models have been developed that ad-

*Corresponding author: hueserjh@amazon.de

2 Apple

ditionally address the task of domain classification
(DC). For example, relating back to the previous
example DC should detect Music as the domain.
In this paper, we focus on a multi-domain system
with domain-specific IC+SF models due to its ad-
vantages for large-scale SLU, such as the support
for independent development across domains and
the option of updating and deploying only certain
domain models instead of the whole system.

Neural network models for IC+SF and DC
tasks typically leverage language representations
from finetuned language modeling encoders as fea-
tures. Bidirectional Encoder Representations from
Transformers (BERT) pre-trained on large corpora
achieve state-of-the-art performance in SLU (De-
vlin et al., 2019; FitzGerald et al., 2022a; Chen
et al.,2019). Larger encoders can give better perfor-
mance on down-stream tasks after being finetuned
(Wang et al., 2020). However, increasing the num-
ber of encoder parameters for large-scale online
SLU systems is challenging due to increased infer-
ence latency and infrastructure cost constraints.

In this paper we present a method for bring-
ing the accuracy benefits of larger encoders to the
users of large-scale SLU systems. We propose to
share representations from a large frozen multi-
lingual encoder as features for all of the DC and
domain-decoupled IC+SF task heads across mul-
tiple languages. We compare a 170M parameter
(not counting embeddings) shared encoder for four
languages (German, Italian, Spanish, French) to
a set of language-, domain- and task-decoupled
17M parameter encoders. For reference, the com-
mon BERT-base and BERT-large models are 87M
and 306M parameters not counting the embed-
dings (110M and 340M parameters with embed-
dings). As a reference for infrastructure cost we
consider inference of the language-, domain- and
task-decoupled 17M parameter encoders on CPU
machines as GPU inference does not meet the in-
frastructure cost constraints of the specific industry

447

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 447-456
July 10-12, 2023 ©2023 Association for Computational Linguistics

SLU system that our baseline is based on. If the
170M parameter shared encoder inference is run
on GPU and representations are cached then the
inference latency is neutral compared to running
the 17M parameter encoder inference on CPU. The
infrastructure cost savings from not having to run a
17M parameter encoder inference for every domain
and language on CPU pay for the infrastructure
cost of the required GPU instances. In fact, the
shared encoder architecture obtains infrastructure
cost savings in practice.

To summarize, this paper contains the follow-
ing contributions. We present a novel shared en-
coder SLU architecture that enables the use of a
larger encoder to improve accuracy while staying
inference latency and infrastructure cost neutral.
We run large-scale experiments with both internal
data of an industry SLU system (23 domains in
four languages) and the public MASSIVE dataset
(18 domains in four languages) (FitzGerald et al.,
2022b). A 170M parameter shared encoder com-
pared to 17M parameter decoupled encoders re-
duces semantic error rates by 4.62% for test sets
representing user requests to voice-controlled de-
vices and 5.79% on the tail of the test sets on
average across four languages. We introduce a
light-weight encoder that is trained together with
the language- and domain-decoupled task heads to
learn representations for training data unseen by
the frozen shared encoder. We conduct empirical
analyses that study the shared encoder setup in the
context of feature expansion and distribution drift
across a real-world SLU system release cycle.

2 Related Work

Sharing language encoder representations across
tasks via multi-task learning has been a prominent
research thread in recent years that has resulted in a
vast literature. For example, Cer et al. (2018) evalu-
ate a transformer encoder (Vaswani et al., 2017) as
a universal sentence encoder trained across multi-
ple natural language processing tasks without prior
self-supervised pre-training. Liu et al. (2019) show
that multi-task learning can be leveraged on top
of self-supervised pre-training for BERT encoders
to improve performance across multiple natural
language understanding tasks. The multi-domain,
multi-task approach to joint domain classification,
intent classification and slot filling that we employ
in our shared encoder pre-finetuning was already
explored by Hakkani-Tiir et al. (2016).

Using a "text-to-text" approach large language
models (LLMs) have been demonstrated to be
multi-task learners with cross-task generalization
(Wang et al., 2022; Chung et al., 2022; Sanh et al.,
2021) and frozen LL.Ms can also be adapted to dif-
ferent tasks via prompt tuning approaches (Lester
et al., 2021).

Multilingual encoder representations for spo-
ken language understanding are often motivated
by cross-lingual transfer (Do and Gaspers, 2019;
Xu et al., 2020). Zhang et al. (2021) evaluate a
multi-head decoding architecture with a multilin-
gual encoder and language-specific task heads for
intent classification and slot labeling that is similar
to our proposed shared encoder architecture.

The impact of scaling the parameter count in
large language models and pre-trained models in
general has been explored extensively by Kaplan
et al. (2020); Brown et al. (2020); Radford et al.;
Abnar et al. (2021). Distillation can be used to
close some of the performance gap between smaller
and larger language encoders while meeting infer-
ence latency constraints (Jiao et al., 2019; Wang
et al., 2020; Soltan et al., 2021). But for example
FitzGerald et al. (2022a) show that using larger dis-
tilled encoders reduces the semantic error rates for
spoken language understanding which motivates
our exploration of a shared encoder architecture to
enable encoder scaling.

3 Methodology

Our goal is to introduce a larger BERT encoder
to increase accuracy for an SLU system with lan-
guage, domain and task-decoupled IC+SF and DC
models without regressions in inference latency and
infrastructure cost. Section 3.1 provides context on
practical challenges that need to be addressed by
a real-world SLU system and that we consider for
our proposed model architecture. We then describe
how encoder representations are shared across lan-
guages, domains and tasks and explain our shared
encoder model architecture in Section 3.2. In Sec-
tion 3.3 we describe the impact on training, infer-
ence latency and infrastructure cost.

3.1 Challenges

In real-world SLU systems the data distribution
keeps changing and new features such as intents
or slots may be added over time. A common
approach for feature expansion is via synthetic
datasets which are then combined with the exist-

448

DC SF Ic SF ICc DC
Head Head Head Head Head - Head

N I N, S S 1

Decoupled Decoupled Decoupled Decoupled
Encoder Encoder Encoder Encoder

Domain 1 Domain 2

Language 1 Language 2

SF ic
Head Head

t 1

SF Ic
Head Head

r 1

Shared Encoder

DC DC
Head Head

T

‘ Domain 1 ‘ Domain 2 ‘

Language 1 Language 2

(a) Multiple different encoders for languages, domains and tasks (b) Single shared encoder for languages, domains and tasks.

(decoupled baseline).

Figure 1: Sharing encoder representations in contrast to the decoupled baseline architecture.

ing training data and subsequently used for model
training. To support feature expansion and address
distribution drift over time it is critical that repre-
sentations available to the SLU task heads for DC
and IC+SF are distinct enough to be able to learn
the new data.

3.2 Model Architecture

Decoupled Baseline Our baseline is a multi-
domain system with per-language multi-class do-
main classifiers and per-domain joint IC+SF mod-
els. Figure 1a illustrates that decoupled encoders
are finetuned per-language, per-domain and per-
task. The decoupling of languages and domains
comes with the benefit of allowing teams to work
on features for different domains and languages in
parallel and we aim to keep this benefit. To meet la-
tency constraints for CPU inference the decoupled
baseline uses smaller BERT encoders with 17M pa-
rameters (not counting embeddings), 4 layers, 768
units, 1200 hidden units, and 12 attention heads
(Soltan et al., 2021). Before finetuning, the 17M
parameter BERT encoder is distilled from the 2.3B
parameter Stage2 Alexa teacher model BERT en-
coder using a generic language modeling objective
(FitzGerald et al., 2022a).

Shared Encoder As an alternative to smaller de-
coupled encoders we evaluate sharing encoder rep-
resentations of a larger encoder across languages,
domains and tasks while keeping the benefit of de-
coupled languages and domains for the task heads
(see Figure 1b). For the shared encoder we use a
larger BERT encoder with 170M parameters (not
counting embeddings), 16 layers, 1024 units, 3072
hidden units, and 16 attention heads.

To stay inference latency neutral compared to
the smaller decoupled encoders on CPU machines
we perform shared encoder inference on a separate
GPU machine. As illustrated in Figure 2 for the
example of IC+SF the shared encoder representa-
tions are communicated to CPU machines running

Output: Slot Sequence
r Output: Intent

l l

SF Head IC Head
. t
g max
o (Ny
k3 Light Encoder
g (1M parameters)
g ———
% Embedding
A

Shared Encoder
(170M parameters)

T

Embedding
A

GPU Inference

(@

Input: Utterance Sequence

Figure 2: IC+SF model utilizing shared encoder repre-
sentations. The DC model is analogous to the IC+SF
model with only a classification head, i.e. the DC model
has its own light encoder.

decoupled task head inference.

To address distribution drift and the feature ex-
pansion, the decoupled components are extended
with a tiny one-layer BERT encoder that we call
light encoder. If training data for a new feature is
added for a feature release without training a new
shared encoder then the shared encoder will not
be familiar with the new feature and its representa-
tions may not be sufficient for task heads to learn
the new feature. The light encoder is trained from
scratch to learn useful representations for examples
that the shared encoder was not trained on. The
representation from the light encoder is concate-
nated to the representation from the shared encoder
before being passed to the task heads.

The SF head is a sequence labeling model that
consumes the token level representations. The IC
head is a classification model that consumes the se-

449

quence level representation. We use max-pooling
to obtain the sequence level representation from
the token level representation sequence produced
by concatenating the shared and light encoder rep-
resentations. In Figure 2 the max denotes max-
pooling from the stack below that denotes the con-
catenated representation sequences.

3.3 Training and Inference

To finetune the shared encoder for SLU we intro-
duce an additional pre-finetuning step that uses
a multi-task DC+IC+SF objective on data from
all domains and languages combined. Before pre-
finetuning, the larger BERT encoder is distilled
from the 2.3B parameter Stage2 Alexa teacher
model BERT encoder using a generic language
modeling objective (FitzGerald et al., 2022a). Dur-
ing training of the task heads and light encoder the
shared encoder stays frozen to enable decoupling.
Caching the frozen encoder outputs for training
and validation examples can significantly reduce
training time (Liu et al., 2021). Training the task
heads and light encoder on top of a cached frozen
shared encoder is faster than finetuning the decou-
pled smaller encoders in the baseline. We provide
more details about reducing training time through
caching in Appendix A.3.

During online inference a cache for the encoder
representations can also be used to cover a large per-
centage of the user traffic distribution and reduce
inference latency at the corresponding percentile.
For the tail of the traffic distribution that is not
captured in the cached percentile GPU inference
is used for the shared encoder. In practice, co-
located GPU inference with a cache for the shared
encoder and CPU inference for the decoupled light
encoders and task heads reduces the infrastructure
cost compared to the decoupled baseline.

4 Results

4.1 Experimental Setup

Dataset We report results on both an internal
dataset that is representative of user requests to
voice-controlled devices and on the public MAS-
SIVE dataset (FitzGerald et al., 2022b). For the
internal dataset utterances were de-identified and
annotated with intent, slot and domain labels. The
data spans four languages and 23 domains per lan-
guage. The number of training, validation and test
utterances is on the order of several million, sev-
eral hundred thousand and at least several thousand,

respectively. The full test sets are representative
of the whole user requests distribution. The rail
test sets are representative of the tail of the user re-
quests distribution (low frequency utterances). The
tail test sets were generated from the full test sets
by filtering out utterances with a frequency greater
than one. Feature test sets are representative of
individual new features introduced in a release of
the SLU system where for simplicity each new fea-
ture introduces a new intent. The public MASSIVE
dataset contains 1M professionally labeled virtual
assistant utterances for 51 languages, 18 domains,
60 intents, and 55 slots out of which we report
overall and domain-wise results on four languages.

Metric For evaluation we report the relative Se-
mantic Error Reduction Percentage (SemERR%)
compared to the decoupled baseline model where
higher is better. Semantic error rate (SemER) mea-
sures intent classification and slot filling jointly and
is defined as

SemER = # (slot+intent errors)

#slots in reference + 1 M
If the domain prediction is incorrect then all slot
and intent predictions will be incorrect except
for cases where there is intent or slot overlap
between domains. SemERR% is computed as
SemERR% = 1 — SemERgp,/SemER 4. where
SemER 4. is the semantic error rate of the decou-
pled baseline model and SemER 4, is the semantic
error rate of a shared encoder model.

4.2 Main Results

In Table 1 we report the performance of the shared
encoder architecture as described in Section 3.2
on the full and tail tests sets of the following four
languages: German (DE), Italian (IT), Spanish (ES)
and French (FR). The shared encoder architecture
delivers consistent semantic error rate reductions
across all languages. The error rate reductions on
the tail test sets are larger than those on the full
test sets which demonstrates the larger encoders
ability to better generalize to harder user requests.
In fact, SLU systems can often cover the head of the
utterance distribution through deterministic rules
making a performance improvement on the tail test
set more relevant for neural network models.

In Table 2 we report the absolute semantic er-
ror rate performance of the decoupled and shared
encoder architectures trained and evaluated on
the same four languages in the public MASSIVE

450

Testset DE IT ES FR Avg.
full 475 338 577 459 4.62
tail 598 485 643 592 5.79

Table 1: SemERR% (1) for the shared encoder archi-
tecture evaluated on the full and tail test sets of four
languages.

Language dec sha SemERR% (1)
DE 22.85 18.00 21.24
IT 23.42 20.07 14.31
ES 27.57 21.34 22.61
FR 25.33 19.40 23.43
Table 2: SemER for the decoupled (dec) and

shared (sha) encoder architectures and corresponding
SemERR% (1) evaluated on the MASSIVE dataset for
four languages.

dataset. The shared encoder architecture again
delivers consistent semantic error rate reductions
across all languages.

4.3 Analysis

In this section we conduct ablation studies to bet-
ter understand the role of the light encoder, task-
specific pre-finetuning and shared encoder size. We
also explore feature expansion and the impact of en-
coder age, i.e. the time difference between shared
encoder pre-finetuning and task head finetuning
which can cause distribution drift in the training
data. The experiments in this section use the Ger-
man training data for light encoder and task head
finetuning while the encoder pre-finetuning is al-
ways multi-lingual.

Ablations In Table 3 we report the performance
of the shared encoder with light encoder (w/
LE), without light encoder (w/o LE), without pre-
finetuning (w/o PFT) and using a 17M parameter
encoder (17M params) instead of the 170M param-
eter encoder on the German full and tail test sets.
Removing the light encoder only has a slight
impact on performance on the full and tail test sets.
For this evaluation the shared encoder has already
seen the same training data during pre-finetuning
that is used for the light encoder and task head
finetuning so we do not expect the light encoder
to produce independent representations. The light
encoder is motivated by the distribution drift and
feature expansion that we analyze later in this sec-
tion. Since the light encoder ablation does not con-
trol for model capacity the improved performance

451

Model full tail

w/ LE 475 598
w/o LE 414 543
w/o PFT -2.773 -2.66
17M params -2.12 -2.18

Table 3: SemERR% (1) for shared encoder architecture
ablations on the German full and tail test sets.

from including the light encoder may simply be
due to an increased number of parameters in the
domain-decoupled model component.

Removing the pre-finetuning step means that the
encoder representations are not task-specific for
SLU which causes a performance regression on the
full and tail test sets. Without pre-finetuning, the
shared encoder is only pre-trained and distilled on
generic masked language modeling albeit on both
public data and SLU utterances (see FitzGerald
et al. (2022a) for details about Stage? distillation).

Using a 17M parameter encoder instead of the
170M parameter encoder means that the encoder
does not have enough capacity to learn good rep-
resentations for all domains in all four languages
which causes a performance regression on the full
and tail test sets. The smaller 17M parameter en-
coder with pre-finetuning step only slightly outper-
forms the larger 170M parameter encoder without
pre-finetuning step. For the 170M parameter en-
coder without pre-finetuning the performance re-
gression on the tail test set is not as large as on
the full test set while for the 17M parameter en-
coder the opposite is the case. A possible reason
for this difference is that generic representations
from the larger encoder without pre-finetuning can
help generalization while the smaller encoder with
pre-finetuning has to specialize on the seen SLU
training data more and may not generalize as well.

Encoder Age To leverage caching and reduce
costs, a frozen shared encoder should ideally re-
main deployed for several months without any up-
dates. We pre-finetune encoders on training data
of different age relative to the training data used
for light encoder and task head finetuning to in-
vestigate the impact of keeping the same encoder
deployed for longer time periods. In Table 4 we
report the performance of the shared encoder pre-
finetuned on zero (Omo), three (3mo) and six (6mo)
months old training data (on the same zero months
old test data in all setting). We report results for
shared encoder architectures with (w/ LE) and with-

Model Testset Omo 3mo 6mo
full 475 444 434
WILE i 598 583 5.63
full 414 414 3.84
WOLE i 543 5.63 523

Table 4: SemERR% (1) for shared encoder pre-
finetuning with older training data evaluated on the Ger-
man full and tail test sets.

out (w/o LE) light encoder to see the whether the
light encoder mitigates the negative effect from
distributional mismatches.

With the light encoder there is a small but consis-
tent and monotone decline of performance improve-
ment with encoder age for both the full and tail test
sets. Without the light encoder the performance
decline with encoder age is not as consistent. For
example, the three months old encoder is on-par
with the zero months old encoder on the full and
even better on the tail test set. Such effects can be
caused by seasonal changes in the training data that
may not be represented in the test data. The light
encoder consistently improves the performance for
all encoder ages on both the full and tail test sets
and, hence, seems to be able to fill in some of the
gaps of the shared encoder.

Feature Expansion For our feature expansion
evaluation we consider the case of adding three
completely new intents. In Table 5 we report the
performance of the shared encoder for the feature
expansion on both a worst-case and a best-case
scenario in relation to feature data availability dur-
ing pre-finetuning. The reported scores are the
unweighted average SemERRY% of three separate
feature test sets for the three new feature intents.
For the best-case scenario (PFT w/ feat) the encoder
pre-finetuning training data is the same as that for
the finetuning step and includes the three new fea-
ture intents. For the worst-case scenario (PFT w/o
feat) the encoder is pre-finetuned on training data
excluding all three new feature intents. The new
feature intents are added back into the training data
for the light encoder and task head finetuning step.
We report results for shared encoder architectures
with (w/ LE) and without (w/o LE) light encoder
to see whether the light encoder mitigates the neg-
ative effect of not having seen the new features
during encoder pre-finetuning. For the worst-case
scenario we also test upsampling (+ upsamp) one
of the features by doubling its training data dur-

Model PFT w/o feat PFT w/ feat
w/ LE -12.93 3.58
w/o LE -66.68 1.16

w/ LE + upsamp 5.18

w/o LE + upsamp -16.40

Table 5: SemERR% (1) for shared encoder pre-
finetuning with and without feature data evaluated on
the German feature expansion test set.

ing the finetuning step in order to better enable the
light encoder to learn this feature. We upsample
data for the feature with the smallest amount of
training data for the shared encoder model but not
the baseline.

For the best-case scenario of a shared encoder
with all feature data during pre-finetuing there is a
performance improvement on the feature test sets
both with and without light encoder meaning a
larger shared encoder can help learn new features
better. However, without feature data during pre-
finetuning and without light encoder there is a large
regression on the feature test sets meaning that the
shared encoder representations are not conducive to
learning the new feature quickly in the worst-case
scenario. Both the light encoder and upsampling
the smallest feature individually help reduce the
regression but do not remove it completely. When
combining the light encoder with the upsampling
a performance improvement on the new features
is obtained even for the worst-case scenario of not
having seen the new features during shared encoder
pre-finetuning.

5 Conclusions

We present a novel shared encoder architecture
that enables the use of larger encoders in a real-
world SLU system while staying inference latency
and infrastructure cost neutral. By sharing repre-
sentations from a larger encoder across languages,
domains and tasks the semantic error rates of the
SLU system can be reduced consistently across
languages for test sets representing both the full
user request distribution and its tail. Our empiri-
cal analyses reveal that a light-weight encoder can
be used in combination with the shared encoder
architecture to avoid retraining the frozen shared
encoder for every new feature release.

452

Limitations

In this paper we compare a shared encoder archi-
tecture for SLU to a baseline architecture that was
chosen based on the specific latency and cost con-
straints of an industry SLU system. Since encoder
model sizes were chosen based on specific con-
straints the results may not be directly comparable
to model sizes more commonly used in the litera-
ture such as BERT-large and BERT-base. We ex-
pect the general benefit and order of magnitude of
accuracy improvements shown in our evaluations
to transfer to comparable setups with different pa-
rameters.

The primary focus of this paper is on accuracy
improvements and addressing challenges of real-
world SLU systems such as distribution drift and
feature expansion. We do not elaborate on the
details of the computational cost and inference as-
pects. A detailed analysis of compute cost and
benchmarks of CPU and GPU inference would bet-
ter highlight the infrastructure cost benefits of a
shared encoder architecture for SLU.

Regarding the multi-lingual aspect of the en-
coder we only tested a single grouping of similar
European languages (German, French, Italian and
Spanish). A more extensive analysis of different
language groups would demonstrate that similar
trade-offs seen in other works on multi-lingual lan-
guage models also apply for the shared encoder
architecture.

Ethics Statement

The shared encoder architecture proposed in this
paper significantly reduces compute infrastructure
cost of large-scale SLU systems in practice. A
large absolute compute infrastructure cost reduc-
tion implies a positive environmental impact due
to less power consumption.

References

Samira Abnar, Mostafa Dehghani, Behnam Neyshabur,
and Hanie Sedghi. 2021. Exploring the limits of large
scale pre-training. arXiv preprint arXiv:2110.02095.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,

Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder for english.
In Proceedings of the 2018 conference on empiri-
cal methods in natural language processing: system
demonstrations, pages 169-174.

Q. Chen, Z. Zhuo, and W. Wang. 2019. Bert for joint in-
tent classification and slot filling. arXiv:1902.10909.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. Advances in
neural information processing systems, 32.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Quynh Do, Judith Gaspers, Tobias Roeding, and
Melanie Bradford. 2020. To what degree can lan-
guage borders be blurred in BERT-based multilingual
spoken language understanding? In Proceedings of
the 28th International Conference on Computational
Linguistics, Barcelona, Spain (Online). International
Committee on Computational Linguistics.

Quynh Ngoc Thi Do and Judith Gaspers. 2019. Cross-
lingual transfer learning for spoken language under-
standing. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5956-5960. IEEE.

Jack FitzGerald, Shankar Ananthakrishnan, Konstan-
tine Arkoudas, Davide Bernardi, Abhishek Bha-
gia, Claudio Delli Bovi, Jin Cao, Rakesh Chada,
Amit Chauhan, Luoxin Chen, et al. 2022a. Alexa
teacher model: Pretraining and distilling multi-
billion-parameter encoders for natural language un-
derstanding systems. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 2893-2902.

Jack FitzGerald, Christopher Hench, Charith Peris,
Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron
Nash, Liam Urbach, Vishesh Kakarala, Richa Singh,
et al. 2022b. Massive: A Im-example multilin-
gual natural language understanding dataset with
51 typologically-diverse languages. arXiv preprint
arXiv:2204.08582.

Daniel Guo, Gokhan Tur, Wen-tau Yih, and Geoffrey
Zweig. 2014. Joint semantic utterance classification
and slot filling with recursive neural networks. In
2014 IEEE Spoken Language Technology Workshop
(SLT), pages 554-559. IEEE.

453

Dilek Hakkani-Tiir, Gokhan Tiir, Asli Celikyilmaz, Yun-
Nung Chen, Jianfeng Gao, Li Deng, and Ye-Yi Wang.
2016. Multi-domain joint semantic frame parsing

using bi-directional ran-lstm. In Interspeech, pages
715-719.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2019.
Tinybert: Distilling bert for natural language under-
standing. arXiv preprint arXiv:1909.10351.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4487-4496.

Yuhan Liu, Saurabh Agarwal, and Shivaram Venkatara-
man. 2021. Autofreeze: Automatically freezing
model blocks to accelerate fine-tuning. arXiv
preprint arXiv:2102.01386.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Saleh Soltan, Haidar Khan, and Wael Hamza. 2021.
Limitations of knowledge distillation for zero-shot
transfer learning. In Proceedings of the Second Work-
shop on Simple and Efficient Natural Language Pro-
cessing, pages 22-31.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Advances in Neural In-
formation Processing Systems, 33:5776-5788.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva

Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, et al. 2022. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5085-51009.

Weijia Xu, Batool Haider, and Saab Mansour. 2020.
End-to-end slot alignment and recognition for cross-
lingual nlu. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 5052-5063.

Daniel Yue Zhang, Jonathan Hueser, Yao Li, and Sarah
Campbell. 2021. Language-agnostic and language-
aware multilingual natural language understanding
for large-scale intelligent voice assistant application.
In 2021 IEEE International Conference on Big Data
(Big Data), pages 1523—-1532. IEEE.

454

A Appendix

A.1 Implementation Details

Model Architecture The light encoders are one-
layer BERT encoders with 320 units, 1200 hidden
unites, and 16 attention heads. The task heads
are one-layer feed-forward networks with hidden
dimension 256 and dropout 0.3 for DC, two-layer
feed-forward networks with hidden dimension 256
and dropout 0.5 for IC and two-layer feed-forward
networks with hidden dimension 256 and dropout
0.2 for SF, and the SF head uses a CRF layer.

Training The shared encoder pre-finetuning uses
a multi-task DC, IC and SF training loss with equal
weights. Pre-finetuning uses Adam with Noam
learning rate scheduler (Vaswani et al., 2017, Sec-
tion 5.3), a learning rate multiplier of 0.4 and a
mini-batch size of 128. During pre-finetuning the
task heads are a two-layer feed-forward network
with hidden dimension 256 with dropout 0.3 for
DC, 0.5 for IC and 0.2 for SF, and the SF head does
not use a CRF layer.

To mix the training data from different languages
during pre-finetuning we use a temperature-based
rebalancing approach with language weights as
given in Conneau and Lample (2019, Section 3.1)
with o = 0.5, i.e. with language weights ¢; =
Pt/ >0, p§ with p; = n;/ 37, ng where n; is the
number of utterances of language <.

The decoupled finetuning trains a single multi-
class DC model and uses a per-domain multi-task
IC and SF training loss with equal weights for the
domain-specific joint intent/slot labelling model.
Finetuning uses Adam with Noam learning rate
scheduler (Vaswani et al., 2017, Section 5.3), learn-
ing rate multiplier of 0.1 for DC, 0.5 for IC+SF
and a mini-batch size of 256 for the decoupled en-
coders. The shared encoder models use a learning
rate of 0.5 across tasks and a mini-batch size of 256
for the light encoder and task head training. The
baseline model with the decoupled encoder setup
uses frozen embeddings and gradual unfreezing to
a learning rate multiplier of 1.0 for the encoder
weights for DC and a learning rate multiplier of
0.01 for the embeddings and gradual unfreezing
to a learning rate multiplier of 0.1 for the encoder
weights for IC+SF. The encoder dropout is set to
0.1 for the decoupled baseline. The shared encoder
model is trained with frozen encoder and encoder
dropout is disabled.

A.2 Domain-wise Results

In Table 6 we report domain-wise absolute seman-
tic error rate performance of the decoupled and
shared encoder architectures trained and evaluated
on German (DE), Italian (IT), Spanish (ES) and
French (FR) in the public MASSIVE dataset. The
shared encoder architecture outperforms the decou-
pled baseline on 67 out of 72 domain/language
pairs.

A.3 Training Cost Reduction

Building an SLU model on top of a frozen shared
encoder gives the opportunity to optimize training
cost and latency. Given that the shared encoder is
frozen and not updated over the course of training
and neural network models are trained over a fixed
data set for multiple epochs, the shared encoder is
redundantly engaged during the forward pass of
each epoch. We eliminate latency overhead and
improve training time by caching the output of the
shared encoder prior to training downstream SLU
components like the light encoder and task heads.
By storing the encoder representations of the train-
ing and validation data sets, we are engaging the
shared encoder only once and subsequent training,
forward/backward pass and parameter update, is
limited to the light encoder and task heads.

Figure 3 on the right shows the steps of train-
ing SLU models with a shared encoder cache. In
the first step, we run inference on the shared en-
coder and store the encoder representations on disk.
In the following step, we train the language- and
domain-decoupled task heads with cached encoder
representations as inputs.

455

Domain DE IT ES FR
dec sha A dec sha A dec sha A dec sha A

Alarm 1899 11.73 3823 18.89 1278 3235 23.6 1573 3335 16 17.14 -7.13
Audio 43.24 17.57 59.37 35.14 1486 57.71 2297 17.57 23.51 33.78 1892 43.99
Calendar 23.08 21.57 6.54 2794 2571 798 2684 24.62 827 26.79 2487 17.17
Cooking 27.27 2238 17.93 27.97 25.17 10.01 25.17 2098 16.65 28.47 25.69 9.76
Datetime 18.09 17.59 2.76 2273 18.69 17.77 2437 1472 39.6 20.6 13.57 34.13
Email 17.32 13.81 20.27 18.31 14.81 19.12 25.63 17.02 33.59 18.14 134 26.13
General 18.22 14.13 2245 1859 1599 13.99 20.82 1599 232 18.66 13.81 25.99
Tot 17.3 14.05 18.79 2054 173 1577 1875 16.85 10.13 1622 15.68 3.33
Lists 19.72 1549 2145 23 2207 4.04 2406 2642 -9.81 1991 18.01 9.54
Music 29.7 1485 50 23.76 18.81 20.83 30.69 19.8 3548 24.75 16.83 32
News 24.89 2236 10.16 29.11 26.16 10.13 35.02 27.85 2047 29.87 24.68 17.38
Play 3455 32.66 547 3491 29.51 1547 40 3834 4.15 3563 3534 0.81
QA 19.07 13.18 30.89 21.3 16.02 24.79 20.12 16.02 20.38 20.45 18.18 11.1
Recomm. 32.82 2821 14.05 33.33 31.28 6.15 46.88 29.69 36.67 47.18 30.26 35.86
Social 17.62 11.89 3252 1145 11.89 -3.84 18.06 1322 268 17.62 11.01 37.51
Takeaway 32.8 31.2 4.88 28.57 29.37 -2.8 2857 3095 -833 2698 254 5.86
Transport 183 1536 16.07 21.24 16.99 20.01 21.85 17.55 19.68 18.95 14.71 22.37
Weather 15.54 14.41 7.27 1893 1554 1791 22.82 1521 33.35 19.89 18.75 5.73
Overall 22.85 18 2124 2342 20.07 14.31 27.57 21.34 2261 2533 194 23.43

Table 6: SemER for the decoupled (dec) and shared (sha) encoder architectures and corresponding SemERR% (1)
denoted by A evaluated on the MASSIVE dataset for four languages.

Training without Caching

Training with Caching

Caching

Encoder
Tokens Representations

Shared
Encoder

Parameter update

Tokens

Shared Decoupled

Encoder Task Head Loss

Epoch 1

Parameter update
Encoder
Representations

Decoupled

Task Head > Loss

Parameter update

Tokens

Shared Decoupled

Encoder Task Head Loss

Epoch 2

Parameter update

Encoder
Representations

Decoupled

Task Head Loss

Figure 3: Training decoupled models without (left) and with (right) shared encoder caching

456

