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Abstract

Data drift is the change in model input data
that is one of the key factors leading to ma-
chine learning models performance degrada-
tion over time. Monitoring drift helps detect-
ing these issues and preventing their harm-
ful consequences. Meaningful drift interpreta-
tion is a fundamental step towards effective re-
training of the model. In this study we propose
an end-to-end framework for reliable model-
agnostic change-point detection and interpre-
tation in large task-oriented dialog systems,
proven effective in multiple customer deploy-
ments. We evaluate our approach and demon-
strate its benefits with a novel variant of intent
classification training dataset, simulating cus-
tomer requests to a dialog system. We make
the data publicly available.

1 Introduction

Contemporary data centers rely heavily on machine
learning services in their deployed systems. These
systems are vulnerable to the data drift problem:
the phenomenon where the statistical properties of
the underlying independent variable change over
time. As a concrete example, consider the case
where the distribution of data arriving to a super-
vised classifier gradually diverges from that the
model was trained on. Such a phenomenon intro-
duces one of the key challenges in maintaining
large models, where drift typically results in per-
formance degradation. Manual inspection of the
data is labor-intensive and error-prone, and actual
drift might remain unnoticed. Automatic monitor-
ing and detection of divergences in incoming data
streams facilitates early risk mitigation introduced
by drift.

Goal-oriented dialog systems1 have gained much
attention in both the academic and industrial com-
munities over the past decade. The core component

1Also referred to as "task-oriented" dialog systems, or
"virtual assistants" (VA).

of a task-oriented dialog system is the NLU mod-
ule: the user utterance is either transformed into a
modeled intent2 with an appropriate flow of sub-
sequent actions, or labeled as unrecognized and
stored in the unhandled pool of out-of-scope re-
quests. In practice, the NLU module makes use
of a supervised text classifier, where data drift is
triggered by "production" data (customer queries)
that changes away from the distribution the classi-
fier was trained on. Here we address the scenario
of data drift detection in the context of large de-
ployments of task-oriented dialog systems, where
emergence of novel topics or deviations in the way
customer introduce queries is not uncommon.

Existing approaches to data drift detection are
roughly categorized across two functional dimen-
sions: (1) model-dependent vs. model-agnostic
and (2) anomaly detection vs. change point de-
tection. In the context of first dimension, ‘model’
refers specifically to a predictive model (e.g., clas-
sifier) receiving the text stream as inputs. A model-
dependent method directly considers the underly-
ing model performance to detect drift, e.g., by track-
ing the posterior probability estimates of a classifier.
A model-agnostic method uses only the incoming
data itself for change detection, e.g., by measuring
changes in text representations, whether or not such
changes ultimately would affect the performance of
a classifier model trained on anchor data. Another
strength of the model-agnostic approach lies in its
direct access to data: once detected, the drift can
be explained and interpreted, thereby potentially
leading to actionable recommendations.

The second dimension distinguishes between
anomaly detection that identifies outliers at the sin-
gle chunk level, and change-point detection where
a window of recent samples is examined to de-

2An "intent" is the general topic label value under which
user utterances fall, and is identified by a pre-trained intent
classifier. For instance, utterances like "reset login" and "I lost
my password" fall under the intent label "account password".
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tect (with statistical guarantees) a point at time
where the underlying data distribution undergoes
a change; the latter models are robust to noise and
transient changes. We propose a pipeline for model-
agnostic change-point detection in task-oriented
dialog systems. Figure 1 illustrates the pipeline,
which is further described in detail in Section 4.

User requests towards a dialog system—natural
language utterances at the first point of interaction—
often contain personal and sensitive information,
and are subject to agreements that prevent providers
from sharing this data publicly. Extending a large,
diverse and publicly-available intent classification
dataset (Larson et al., 2019), we build a corpus that
closely resembles a dialog system request stream,
further using it for evaluation of the proposed drift
detection approach.3

The contribution of this work is, therefore, two-
fold. First, we propose and evaluate an end-to-end
pipeline for model-agnostic change-point detec-
tion in task-oriented dialog systems, that has been
proven effective in multiple large-scale customer
deployments. Second, we create and release a ex-
tension of an intent classification training dataset
that closely imitates the nature of streaming re-
quests towards a virtual assistant.

2 Related Work

The main approaches to drift detection in textual
streams are model-dependent: they rely on the per-
formance of the underlying classification model,
where decreasing classifier confidence (or increas-
ing error rate) are indicative of divergence in statis-
tical properties of the data the classifier was trained
on, and the newly arriving texts (Ryu et al., 2012;
Sethi and Kantardzic, 2017; Ackerman et al., 2021).
Model-agnostic (e.g., classifier-independent) ap-
proaches are commonly applied for novelty detec-
tion in textual streams that do not necessarily un-
dergo classification, like news or a tweet feed. As
an example, Spinosa et al. (2007) and Hayat and
Hashemi (2010) use concept-based clusters to rep-
resent data distributions of temporal textual chunks,
and then detect the hidden topic drifts in terms of
the difference between concept-based clusters in
two adjoining data chunks. A similar approach for
novelty detection in textual data was also applied
by Faria et al. (2013) and Li et al. (2017).

Both the model-aware and model-agnostic ap-

3The dataset is available at https://huggingface.co/
datasets/ibm/clinic150-sur.

proaches are commonly used to detect a point of
change, regardless of the subsequent trend of the in-
troduced novelty. As such, these methodologies are
best associated with "anomaly" or "outlier" detec-
tion, while in the case of a task-oriented dialog sys-
tem we are interested in detecting a systematic, con-
sistent drift trend – a potential trigger for intent clas-
sifier retraining. The only study addressing change
point detection in textual data that we are aware of
is Wang and Goutte (2018), who apply LDA (Blei
et al., 2003) for detecting change points in docu-
ment streams from twitter and news feed. While
LDA can be used effectively for modeling long
documents, it is practically inapplicable for short
(often 2–3 word) requests. Table 1 summarizes the
landscape of the prior art in the domain of drift
detection in textual streams. Our work bridges the
gap in the domain of model-agnostic, statistically-
robust change-point detection for streams of short
texts, while interpreting the detected drift.

study OD CPD M-AW M-AG
Ryu et al. (2012) 3 3

Sethi and Kantardzic (2017) 3 3

Ackerman et al. (2021) 3 3

Hayat and Hashemi (2010) 3 3

Faria et al. (2013) 3 3

Li et al. (2017) 3 3

Spinosa et al. (2007) 3 3

Wang and Goutte (2018) 3 3

our study (short texts) 3 3

Table 1: Representative landscape of prior art in the
domain of drift detection. "OD", "CPD", "M-AW"
and "M-AG" denote outlier detection, change-point de-
tection, model-aware and model-agnostic, respectively.
The LDA-based approach by Wang and Goutte (2018)
is only applicable to document-length texts.

3 Dataset

We study the phenomenon of data drift in the con-
text of (natural-language) user requests to a task-
oriented dialog system. Novel topics, or deviations
from existing topics can emerge as the result of
new services introduced by a company, failures in
existing service coverage, or external trends and
factors. Large or immature deployments face the
need to constantly monitor requests poorly-covered
by the existing service for identifying points where
the distribution of the input data has changed, for
effective and efficient model retraining.

Publicly-available datasets of real-word user
requests in customer deployments are extremely
scarce due to company agreements, confidentiality
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Figure 1: The end-to-end pipeline for drift detection and interpretation: (1) An autoencoder (AE) is trained on the
anchor dataset, reliably representing data distribution at the model training point; (2) each newly arriving batch
of requests is examined by the AE, yielding its overall similarity to the anchor dataset, while identifying a set of
outliers; (3) change-point detection module is applied on the growing list of similarity observations; and finally (4)
topical clustering is applied on a subset of the outlier pool, in case drift is detected.

and privacy considerations. While the proposed
pipeline has been evaluated on large customer de-
ployments, here we create a novel, carefully cu-
rated dataset that reliably imitates the character-
istics of user requests, and further conduct drift
detection evaluation on the collected data.

Intent classifier training examples are inherently
designed to reliably represent user requests a VA.
Naturalistic user requests, however, typically have
several characteristics in which they differ from
training examples: (1) the same request seman-
tics can be conveyed in many possible ways, while
training examples of the respective intent typically
cover the potential diversity only to a partial ex-
tent; (2) contrary to intent training examples that
only contain unique phrases, actual user requests
include many duplicates (multiple customers ask-
ing the same question); and (3) customer requests
in real-world systems are typically shorter (often
significantly so) than classifier training examples.

Using CLINC150 (Larson et al., 2019), a large
a diverse 150-intent classification dataset, we gen-
erate its extended version simulating the nature
of customer requests— CLINC150-SUR (simu-
lated user requests)—by addressing the mentioned
distinctions, as detailed below. A typical large
customer virtual assistant size varies between few
dozens to hundreds of intents, often spanning mul-
tiple domains. CLINC150 is multi-domain 150-
intent dataset, which makes it a suitable test-bed
for our drift detection experiments.

Data Augmentation for Diversity We achieve
higher request diversity by applying LAMBADA
(Anaby-Tavor et al., 2020), a tool for classifier
training set augmentation; LAMBADA generates
phrases sharing the same semantic charge as the

seed classification examples provided as input.
Next, we apply the Parrot paraphrasing framework,
generating up to five additional phrasing variants
for each data example. While the LAMBADA gen-
erates in-class semantic-preserving but lexically-
diverse examples, Parrot adheres to more conser-
vative choices by producing slight variations of
its input phrases. As an example, considering
the CLINC150 "insurance" intent training example
"can you tell me the name of my insurance plan?",
the request "can you tell me what insurance plan I
am signed up for?" was generated by LAMBADA,
and "can you tell me what insurance plan I have?"
was further added by Parrot.

Weighted Upsampling of Duplicates Figure 2
illustrates the differences in request length: the dis-
tribution of the relative ratio of user requests of
certain length (in tokens) observed in the intent
classification data (left) significantly differs from
that evident in a real-world large proprietary dataset
of streaming customer requests (right). In partic-
ular, over 66% of actual user utterances consist
of up to 5-token requests, while only 18% of the
CLINC150 data exhibit similar length. Short and
often non-informative requests challenge tools that
rely on textual semantic similarity, hence affecting
the process of drift detection. We therefore strive to
imitate the naturalistic length-based request distri-
bution in our dataset, by upsampling the augmented
data to preserve similar length-based distribution
as in Figure 2 (right). As a concrete example, short
requests like "insurance" and "my insurance" were
upsampled, mirroring their natural frequency in
a real-world VA, while only a single instance of
"I would like to know all of the covered benefits
that are given by my health care plan" remained in
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the final dataset. We report the CLINC150-SUR
statistics in Table 2. The final collection of ∼600K
requests is made publicly available.

Figure 2: Distribution of intent classification exam-
ples length from Larson et al. (2019) (left), and user
requests length in a large-scale customer deployment
(right). A bar’s height mirrors the relative ratio of utter-
ances with a certain number of words in the dataset.

dataset mean total
original (Larson et al. (2019)) 150.0 22.5K

+ generation (Rahamim et al. (2023)) 448.4 67.3K
+ rephrasing (Parrot) 1.65K 250K
+ upsampling 4K 600K

Table 2: Statistics of the created dataset CLINC150-
SUR. Mean number of requests per intent, and the total
amount of requests is reported per each expansion step.

4 Interpretable Drift Detection

We propose and evaluate a multi-step approach for
reliable and interpretable change point detection in
textual streams. The end-to-end pipeline of drift
detection and interpretation is illustrated in Figure
1; below we describe each step in more detail.

4.1 Drift Point Detection

Model Training The initial distribution of the
dataset was learned by training an autoencoder
(AE) on a seed dataset representing data distri-
bution at the beginning of monitoring window.4

An AE is a special type of neural network that is
trained to reproduce its input using the encoder-
decoder architecture. Given a dense text represen-
tation (embedding) e, an AE first encodes the text
into a lower-dimensional latent representation, then
decodes the latent representation back to the text
representation ê; it essentially learns to compress
the data while minimizing the reconstruction error
J (e, ê). The network’s "success" at reconstruct-
ing a new example at inference time reflects the
correlation of this instance to the nature of data

4We used the MLPRegressor implementation at sklearn
with three hidden layers of 600, 150 and 600. MLPRegressor
functions as an autoencoder when provided with identical
input and output representations.

the model was trained on. In the context of text
processing, autoencoders have been effectively ap-
plied to the task of anomaly and novelty detection
(Paula et al., 2016; Zhou and Paffenroth, 2017; Mei
et al., 2018).5 Operating at the individual instance
level, an autoencoder detects a pool of "outliers"
from within a given data. The Universal Sentence
Encoder (USE; Cer et al. 2018) was used for en-
coding requests into dense representations e, due
to its runtime efficiency.

Another intuitive approach to instance-level out-
lier detection employs the perplexity metric: the
extent of surprisal of a pretrained language model
by an unseen text. The approach has been studied
by Freeman et al. (2021) for detecting anomalies
in streams of short texts; we leave the investigation
of this alternative approach for future work.

Drift Candidates Detection Incoming request
data is split into fixed-sized batches (in terms of
the number of requests), and the model is ap-
plied on every new batch as it arrives, comput-
ing reconstruction similarity for each request in
the chunk. A request’s embedding e reconstruc-
tion similarity is computed as the cosine simi-
larity of its original representation to the repre-
sentation of its reconstructed counterpart ê, i.e.,
cosine(e, ê). Utterances poorly reconstructed by
the anchor model are considered outliers: requests
where cosine(e, ê)<γ, for a predefined γ, are
stored in the outlier pool O. For data chunk at the
time step ti, its similarity si to the anchor dataset
is calculated, producing a growing sequence of nu-
merical observations S={s1, s2, . . . , st−1, st}; at
each time step t, the sequence is passed to change-
point detection module.

Change-Point Detection Drift is indicated by a
change-point in the distributions of the observed
similarities S. That is, index ts < t is a change-
point, the true starting index of the change, if the
distributions of values {s1, . . . , sts−1} (before) and
{sts , . . . , st} (after) differ significantly. We apply
the change-point model (CPM; Ross and Adams
2012, implemented in R as cpm, Ross 2015) algo-
rithm repeatedly on the past {s1, . . . , st} at each
t. That is, at a given t, if the most significant can-
didate split point is significant enough (the CPM
p-value is a fixed< α, say 0.05), we say that td = t

5Our future work includes experimenting with variational
autoencoder (VAE), introducing a regularisation term into its
loss function for better generalization capabilities.
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is the detection index; moreover, the most signifi-
cant split index, tp —where tp < td — is t̂s, that
is, the best guess of the actual change point ts, if
it actually happened. The CPM is unique in that
it correctly maintains the false positive rate at α
(e.g., 0.05) even though it is applied repeatedly in
sequence, testing each potential change location
for each t. That is, if a detection is made at t,
the probability the detection was false (there was
no change point) is at most α. Furthermore, this
method makes no parametric assumptions about
the distributions. See Ackerman et al. (2020) for
further details and discussion.

4.2 Drift Interpretation

The predicted change point tp detected over a se-
quence of similarity observations S is further used
as an indicator for the start point of topical novel-
ties; all outlier utterances from the outlier pool O
that occurred after the predicted change point (with
time indices t ∈ [tp, td]) are utilized for semantic
grouping, or clustering. In our scenario, an effec-
tive clustering procedure should have several prop-
erties. First, the number of clusters is unknown, and
has to be discovered by the clustering algorithm.
Second, the nature of data typically implies several
large and coherent clusters, where users repeatedly
introduce very similar requests, and a very long tail
of unique (often noisy) requests that do not have
similar counterparts. We apply the RBC clustering
approach used by Rabinovich et al. (2022), that
was specifically tailored for the scenario of unhan-
dled requests in task-oriented dialog systems: the
procedure does not require a predefined number of
clusters, tolerating non-clusterable instances.

Figure 3 illustrates a typical outcome of the clus-
tering process; identified clusters—each represent-
ing likely instances of the same potentially novel
intent—are depicted in color, while non-clusterable
instances, constituting approximately half of the
instances, appear in grey.

5 Experimental Results

In this section we describe the experimental
setup and results for two major evaluation phases:
change-point detection and drift interpretation.

5.1 Drift Point Detection Results

5.1.1 Experimental Setup
Drift Scenarios Introducing drift into a VA re-
quest stream for thorough evaluation is a non-trivial

Figure 3: t-SNE projection of a sample of outlier user
requests in a production task-oriented dialog system.
Identified clusters are in color, instances that do not
firm up large enough clusters – in grey.

task. A realistic setup would entail simulating one
or more novel (unseen) topics that gradually com-
prise an increasing number of requests over time,
as in the case of a new feature introduced by a
service provider, being gradually adopted by cus-
tomers. Another plausible scenario is where novel
topics are introduced by service interrupt or unex-
pected failure; in that case, one may expect a steep
increase in atypical requests, followed by nearly
plateau distribution over time. We refer to these
scenarios as (a) and (b), respectively. Correctly
identifying scenarios where no drift was introduced
is of considerable importance as well, ensuring the
system is not prone to false positives. We cover
this scenario by two additional experimental se-
tups where (c) no drift is introduced, and (d) a
short-lived anomaly is introduced spanning a small
number of consecutive data batches. The various
drift scenarios, as reflected in data batch similari-
ties S={s1, s2, . . . , st−1, st} to the anchor model,
are depicted in Figure 4.

Figure 4: Illustration of data batch similarity signal to
the anchor model in various drift scenarios: (a) gradual,
(b) uniform, (c) no drift, (d) short-lived anomaly. Note
the slight signal decrease in (a) and (b); the dashed
green line denotes the actual drift point, the dashed red
line denotes the potential detection point.

Drift Detection Multiple setup decisions were
used for drift detection experiments in this study. A
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series of 32 temporally-ordered data batches of 5K
requests each was generated from shuffled request
dataset CLINC150-SUR, where ∼5% randomly se-
lected intents out of 150 were held out for drift
injection. Although drift detection is likely to be
more robust on large data chunks, we found con-
sistent behavior when working with batches con-
taining as few as a couple of hundreds of requests.6

The first two data chunks where used for training
the anchor AE model, and the remaining 30 for
simulating a temporal stream of requests.7 Drift
was introduced by adding requests from held-out
intents either gradually (a) or uniformly (b) starting
at the middle of the stream, i.e., at time step t=15.
The novel intents causing the drift, as well as the
subset of requests spanning the 32 data chunks,
were selected at random per every experiment.

A single parameter that was tuned for drift de-
tection is the outlier detection threshold γ (see Sec-
tion 4.1). While typically lying within the [0.75,
1] range, the optimal value of γ varies according
to the data nature. In multi-domain deployments,
higher γ would typically tolerate the inherent di-
versity of the incoming requests; in contrast, in
single-domain deployments, lower γ would impose
a stricter threshold for outliers detection. We tune
γ to optimize detection accuracy per deployment
using a held-out portion of data; for the CLINC150-
SUR used in this work, γ was set to 0.775.

5.1.2 Experimental Results
We compare the performance of the AE-based sim-
ilarity measurements to various dataset similarity
metrics suggested in literature. While computing
anchor-batch similarity, metrics operating at the
instance level (i.e., aggregating the similarity of in-
dividual requests to the anchor model) can be used
for seamless generation of the outlier pool, further
used for drift interpretation. Metrics that operate at
the batch level typically make use of measures of
central tendency and dispersion, comprising a less
natural (albeit adaptable) choice for our scenario.

Dataset Similarity Metrics A comprehensive
evaluation of various dataset semantic similarity
metrics has been conducted recently by Kour et al.
(2022). We evaluate our approach against several

6The precise definition of data chunk size varies between
deployments, and depends on a system traffic, the number of
intents and drift detection tolerance threshold, among others.

730 observations where found sufficient for effective de-
tection of drift in our experiments; consistent behavior was
observed when increasing the temporal stream length.

metrics from that work. IRPR (Zhao et al., 2017)
is a corpus distance metric based on information-
retrieval techniques focused on precision and recall.
Medoid (Kaufmann and Rousseeuw, 1987) applies
cosine similarity over the arithmetic mean of em-
beddings of two textual sets. MAUVE (Pillutla
et al., 2021) estimates the gap between two texts us-
ing KL-divergence over the area under the informa-
tion divergence frontiers. FID (Heusel et al., 2017)
calculates the 2-Wasserstein distance on fitted con-
tinuous multivariate Gaussian over two datasets.

Drift Detection Metrics In line with previous
work on drift detection (Wang and Goutte, 2018;
Ackerman et al., 2021) we report multiple results:
detection offset denotes the number of steps be-
tween the two points (ts, td): where the drift was in-
troduced (ts) and detected (td), i.e., |td−ts|; detec-
tion deviation measures the difference between the
actual drift injection point (ts), and the drift point
suggested by the CPM module (tp=t̂s), i.e., |t̂s−ts|;
finally, drift rate at detection denotes the relative
rate of drift requests within the entire amount of
requests in the batch corresponding to the detection
point td. We report these metrics for both grad-
ual (a) and uniform (b) drift scenarios in Figure 4.
An additional measurement of interest is the false
negative (FN) rate, the proportion of experiments
where drift was not detected over the series of 30
observations, despite drift that was injected.

We address the two no-drift scenarios—(c) and
(d)—in Figure 4, by reporting the rate of false
positives (FP): the proportion of experiments where
drift was erroneously detected by the CPM module
using each one of the similarity metrics.

Table 3 reports the results. Using AE for comput-
ing datasets similarity performs roughly on par with
IRPR, and outperforms other approaches, across
the board. Detection offset and deviation are higher
in the gradual drift scenario (7.08 and 2.03 vs. 5.82
and 1.07, respectively) reflecting the more challeng-
ing setup of a growing drift, compared to the stable
plateau drift spread starting a certain point. The
relatively low drift rate at detection (1.7%–2.2%)
implies that the procedure is sensitive to drift at
its early stage. On the other hand, the low rate
of false positive and negatives is indicative of the
robustness of the detection routine.

Finally, in the next paragraph, we show that
our approach outperforms the model-dependent
approach leveraging a classifier confidence scores.

443



metric
instance

level
false

detection rate
drift type: gradual drift type: uniform

FP FN
detection

offset
detection
deviation

drift rate at
detection

detection
offset

detection
deviation

drift rate at
detection

AE (our approach) 3 0.04 0.04 7.08 2.03 0.017 5.82 1.07 0.022
IRPR (Zhao et al., 2017) 7 0.08 0.04 7.02 1.79 0.015 5.71 1.01 0.020
Medoid (Kaufmann and Rousseeuw, 1987) 7 0.10 0.21 9.17 5.08 0.017 7.23 1.25 0.020
MAUVE (Pillutla et al., 2021) 7 0.15 0.11 7.02 3.05 0.023 5.91 1.09 0.021
FID (Heusel et al., 2017) 7 0.09 0.13 8.22 4.16 0.026 6.28 1.01 0.024

Table 3: Drift detection evaluation results; the lower, the better. Mean results over 100 experiments are reported,
where false detection rate is averaged over the gradual and uniform scenarios. AE is the only approach that operates
at the instance-level out-of-the-box. FN are averaged over gradual and uniform scenarios.

Model-dependent Experiments Additional set
of experiments was conducted using intent classi-
fier posterior estimates as indicator for data drift.
Identical experimental setup was applied, where
95% of intent training set from CLINC150 (seed
data) was used for training SVM classifier with
training instances’ embeddings. Roughly 5% of
intents were randomly selected and held-out as
"novel" at each experiment. The pretrained classi-
fier was then used to classify batches of requests
from CLINC150-SUR corresponding to the seed
data (before injecting drift), and to the seed data ex-
tended with drift requests (starting the drift point).
Mean classifier confidence was computed for ev-
ery request batch yielding a series of observations,
which was further inut to the change-point detec-
tion module (see Section 4.1).

Drift was detected in less than 20% of the experi-
ments, compared the 96% with the model-agnostic
approach, highlighting the benefits of the direct
access to data for drift detection.

5.2 Drift Interpretation Results

Drift interpretation is a two-step process: first, out-
lier requests are grouped together based on their
semantics, thereby, firming up dense clusters con-
veying the same intent; second, identified clusters
are assigned with names for better consumability.

The subset of outlier requests O starting from
the predicted drift point t̂s is further used for iden-
tifying novel topics, indicated by dense clusters of
requests that share similar semantics. The pool of
outliers is not limited to novelties but also contains
requests pertaining to existing ("known") intents
that could not be successfully reconstructed by the
anchor model, and requests that pertain to topics
that were left out of the VA scope by design.

We apply the RBC clustering approach by Ra-
binovich et al. (2022) with defaults for surfacing
topical clusters, and focus on topical coverage (re-

call) in our evaluation. Each cluster—a group of
similar outlier utterances—is assigned an intent la-
bel based on the majority of its members, and the
coverage is computed as the ratio of detected in-
tents out of injected drift intents for each individual
experiment. The mean recall in 100 experiments
was 0.709, meaning that on average, 70% of the
injected drift intents were identified as such.

Inspecting names (automatically) assigned by
the algorithm to detected outlier clusters, we can
identify a significant degree of overlap between
those names and drift intent labels, which were
presumably created by human annotators. As an
example, the "exchange_rate" drift intent was iden-
tified as such and assigned the label "exchange
rate" by the clustering algorithm; requests from the
"order_status" drift intent were named as "order
tracking", and "redeem_rewards" was surfaced as
"redeem rewards points".

6 Conclusions

We propose and evaluate a pipeline for model-
agnostic change-point detection in the context of
drift detection in task-oriented dialog systems NLU
module. We demonstrate the benefits of the pro-
posed approach on an expanded version of an intent
classification training dataset, that closely imitates
the nature of streaming requests towards a task-
oriented dialog system – the dataset that we make
available to the research community. We demon-
strate that AE can be used for effective and efficient
change-point detection, performing on par with
state-of-the-art dataset similarity metrics, while op-
erating at the instance level.

Our future directions include experimenting with
the (baseline) metric of language model perplexity
as well as variational autoencoders for the task of
drift detection in streams of short texts. Extending
experimental setup to the multi-lingual setting is
another direction we plan to pursue.

444



Acknowledgements

We are grateful to the three anonymous reviewers
for their constructive feedback. We would also like
to thank Orna Raz, Eitan Farchi and Haode Qi for
their kind help and fruitful discussions.

References
Samuel Ackerman, Parijat Dube, Eitan Farchi, Orna

Raz, and Marcel Zalmanovici. 2020. Detection of
data drift and outliers affecting machine learning
model performance over time. JSM Proceedings,
Nonparametric Statistics Section, pages 144–160.

Samuel Ackerman, Orna Raz, Marcel Zalmanovici,
and Aviad Zlotnick. 2021. Automatically detect-
ing data drift in machine learning classifiers. arXiv
preprint arXiv:2111.05672.

Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich,
Amir Kantor, George Kour, Segev Shlomov, Naama
Tepper, and Naama Zwerdling. 2020. Do not have
enough data? deep learning to the rescue! In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pages 7383–7390.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Céspedes, Steve Yuan, Chris Tar,
et al. 2018. Universal Sentence Encoder. arXiv
preprint arXiv:1803.11175.

Elaine R Faria, João Gama, and André CPLF Carvalho.
2013. Novelty detection algorithm for data streams
multi-class problems. In Proceedings of the 28th an-
nual ACM symposium on applied computing, pages
795–800.

Cynthia Freeman, Ian Beaver, and Abdullah Mueen.
2021. Detecting anomalies in sequences of short
text using iterative language models. In The Interna-
tional FLAIRS Conference Proceedings, volume 34.

Morteza Zi Hayat and Mahmoud Reza Hashemi. 2010.
A dct based approach for detecting novelty and con-
cept drift in data streams. In 2010 International Con-
ference of Soft Computing and Pattern Recognition,
pages 373–378. IEEE.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. 2017. Gans
trained by a two time-scale update rule converge to
a local nash equilibrium. Advances in neural infor-
mation processing systems, 30.

Leonard Kaufmann and Peter Rousseeuw. 1987. Clus-
tering by means of medoids. Data Analysis based on
the L1-Norm and Related Methods, pages 405–416.

George Kour, Samuel Ackerman, Eitan Farchi, Orna
Raz, Boaz Carmeli, and Ateret Anaby-Tavor. 2022.
Measuring the measuring tools: An automatic eval-
uation of semantic metrics for text corpora. In Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019.
An evaluation dataset for intent classification and
out-of-scope prediction. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP).

Peipei Li, Lu He, Haiyan Wang, Xuegang Hu, Yuhong
Zhang, Lei Li, and Xindong Wu. 2017. Learning
from short text streams with topic drifts. IEEE trans-
actions on cybernetics, 48(9):2697–2711.

Mei Mei, Xinyu Guo, Belinda C Williams, Simona
Doboli, Jared B Kenworthy, Paul B Paulus, and
Ali A Minai. 2018. Using semantic clustering and
autoencoders for detecting novelty in corpora of
short texts. In 2018 International Joint Conference
on Neural Networks (IJCNN), pages 1–8. IEEE.

Ebberth L Paula, Marcelo Ladeira, Rommel N Car-
valho, and Thiago Marzagao. 2016. Deep learn-
ing anomaly detection as support fraud investiga-
tion in brazilian exports and anti-money laundering.
In 15th IEEE international conference on machine
learning and applications (icmla), pages 954–960.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. Mauve: Measuring the gap be-
tween neural text and human text using divergence
frontiers. In Advances in Neural Information Pro-
cessing Systems, volume 34, pages 4816–4828.

Ella Rabinovich, Matan Vetzler, David Boaz, Vineet
Kumar, Gaurav Pandey, and Ateret Anaby-Tavor.
2022. Gaining insights into unrecognized user ut-
terances in task-oriented dialog systems. In Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Adir Rahamim, Guy Uziel, Esther Goldbraich, and
Ateret Anaby-Tavor. 2023. Text augmentation us-
ing dataset reconstruction for low-resource classifi-
cation. In forthcoming.

Gordon J. Ross. 2015. Parametric and nonparametric
sequential change detection in r: The cpm package.
Journal of Statistical Software, 66(3).

Gordon J. Ross and Niall M. Adams. 2012. Two non-
parametric control charts for detecting arbitrary dis-
tribution changes. Journal of Quality Technology,
44(2):102–116.

445

https://arxiv.org/abs/2012.09258
https://arxiv.org/abs/2012.09258
https://arxiv.org/abs/2012.09258
https://arxiv.org/abs/2111.05672
https://arxiv.org/abs/2111.05672
https://arxiv.org/abs/1911.03118
https://arxiv.org/abs/1911.03118
https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
https://arxiv.org/abs/1803.11175
https://dl.acm.org/doi/10.1145/2480362.2480515
https://dl.acm.org/doi/10.1145/2480362.2480515
https://ieeexplore.ieee.org/abstract/document/5686734
https://ieeexplore.ieee.org/abstract/document/5686734
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://link.springer.com/book/10.1007/978-3-0348-8201-9
https://link.springer.com/book/10.1007/978-3-0348-8201-9
https://aclanthology.org/2022.gem-1.35
https://aclanthology.org/2022.gem-1.35
https://www.aclweb.org/anthology/D19-1131
https://www.aclweb.org/anthology/D19-1131
https://ieeexplore.ieee.org/document/8039425
https://ieeexplore.ieee.org/document/8039425
https://ieeexplore.ieee.org/document/8489431
https://ieeexplore.ieee.org/document/8489431
https://ieeexplore.ieee.org/document/8489431
https://ieeexplore.ieee.org/document/7838276
https://ieeexplore.ieee.org/document/7838276
https://ieeexplore.ieee.org/document/7838276
https://proceedings.neurips.cc/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://arxiv.org/abs/2204.05158
https://arxiv.org/abs/2204.05158
https://doi.org/10.18637/jss.v066.i03
https://doi.org/10.18637/jss.v066.i03
https://doi.org/10.1080/00224065.2012.11917887
https://doi.org/10.1080/00224065.2012.11917887
https://doi.org/10.1080/00224065.2012.11917887


Joung Woo Ryu, Mehmed M Kantardzic, Myung-Won
Kim, and A Ra Khil. 2012. An efficient method of
building an ensemble of classifiers in streaming data.
In Big Data Analytics: First International Confer-
ence, BDA 2012, New Delhi, India, December 24-26,
2012. Proceedings 1, pages 122–133. Springer.

Tegjyot Singh Sethi and Mehmed Kantardzic. 2017.
On the reliable detection of concept drift from
streaming unlabeled data. Expert Systems with Ap-
plications, 82:77–99.

Eduardo J Spinosa, André Ponce de Leon F. de Car-
valho, and João Gama. 2007. Olindda: A cluster-
based approach for detecting novelty and concept
drift in data streams. In Proceedings of ACM sym-
posium on applied computing, pages 448–452.

Yunli Wang and Cyril Goutte. 2018. Real-time change
point detection using on-line topic models. In Pro-
ceedings of the 27th international conference on
computational linguistics, pages 2505–2515.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi.
2017. Learning discourse-level diversity for neural
dialog models using conditional variational autoen-
coders. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 654–664.

Chong Zhou and Randy C Paffenroth. 2017. Anomaly
detection with robust deep autoencoders. In Pro-
ceedings of the 23rd SIGKDD international confer-
ence on knowledge discovery and data mining. As-
sociation for Computing Machinery.

446

https://link.springer.com/chapter/10.1007/978-3-642-35542-4_11
https://link.springer.com/chapter/10.1007/978-3-642-35542-4_11
https://arxiv.org/abs/1704.00023
https://arxiv.org/abs/1704.00023
https://dl.acm.org/doi/10.1145/1244002.1244107
https://dl.acm.org/doi/10.1145/1244002.1244107
https://dl.acm.org/doi/10.1145/1244002.1244107
https://aclanthology.org/C18-1212/
https://aclanthology.org/C18-1212/
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P17-1061
https://dl.acm.org/doi/10.1145/3097983.3098052
https://dl.acm.org/doi/10.1145/3097983.3098052

