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Abstract 1 

In this paper, we introduce the benchmark 2 

datasets named CLUB (Chemical 3 

Language Understanding Benchmark) to 4 

facilitate NLP research in the chemical 5 

industry. We have 4 datasets consisted of 6 

text and token classification tasks. As far as 7 

we have recognized, it is one of the first 8 

examples of chemical language 9 

understanding benchmark datasets 10 

consisted of tasks for both patent and 11 

literature articles provided by industrial 12 

organization. All the datasets are internally 13 

made by chemists from scratch. Finally, we 14 

evaluate the datasets on the various 15 

language models based on BERT and 16 

RoBERTa, and demonstrate the model 17 

performs better when the domain of the pre-18 

trained models are closer to chemistry 19 

domain. We provide baselines for our 20 

benchmark as 0.7818 in average, and we 21 

hope this benchmark is used by many 22 

researchers in both industry and academia. 23 

The CLUB can be downloaded at 24 

https://huggingface.co/datasets/bluesky333/che25 

mical_language_understanding_benchmark. 26 

1 Introduction 27 

Transformer is the prevalent network architecture 28 

in natural language processing (NLP) (Vaswani et 29 

al., 2017). It uses self-attention to capture each 30 

word’s influence on another in a given text. 31 

Leveraging this architecture, recent advances in 32 

pre-training language models has reached state-of-33 

the-art performances on many NLP benchmark 34 

datasets, including results that surpassed human 35 

performance (Wang et al., 2019). Such 36 

advancements in language models and NLP 37 

technologies can potentially streamline and 38 

simplify the labor-intensive work for the literature 39 

and patent analysis, which are crucial in the 40 

research and development domain.  41 

The benchmark datasets such as GLUE and 42 

SuperGLUE played a pivotal role in facilitating 43 

the advancement of NLP using language models 44 

(Wang et al., 2018 and Wang et al., 2019). This 45 

has inspired efforts to create benchmark datasets 46 

in the science domain as well (Yu Gu et al., 2020). 47 

However, these attempts are limited within the 48 

field of biology and medicine. 49 

In chemistry, there are few datasets available, 50 

however, as far as we know there are no 51 

benchmark datasets that include tasks for both 52 

literature articles and patents (Mysore et al., 2019, 53 

Friedrich et al., 2020, He et al., 2021). Given the 54 

predominant reliance on patents in the chemical 55 

industry’s research, especially in the early stages 56 

of product development, it is important to have 57 

datasets with patent documents to enable 58 

language models to comprehend the distinctive 59 

patent writing style, thereby performing better on 60 

tasks with patent documents.  61 

On the other hand, academic literature often 62 

serves as the source of information that leads to 63 

new ideas for experimentation. Thus, it is critical 64 

to build a language model that understands both 65 

literature articles and patents and benchmark 66 

datasets with texts from both patents and papers 67 

for the evaluation.  68 

In this paper, we present Chemical Language 69 

Understanding Benchmark (CLUB) to facilitate 70 

NLP research in the chemical industry, especially 71 

the language model pre-training. CLUB consists of 72 

two datasets for patents and two datasets for papers. 73 

In terms of tasks, it includes two datasets for token 74 

classification such as chemical named entity 75 

recognition, and two datasets for text classification 76 

such as patent area classification. All these datasets 77 

are internally made by chemists. We do not rely on 78 

any preexisting publicly available datasets or 79 

shared tasks. Finally, we provide the performance 80 

of various language models including the ones pre-81 

trained with chemistry literature articles and 82 

patents as the baselines for our benchmark datasets. 83 
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 84 

Tasks 
Class Group  

(source corpus) 

 Sample 

Type 

(Number) 

Average 

token 

length 

(std) 

Class name Definition Train Dev 

Text  

CLS 

PETRO-

CHEMICAL  

(Patent)  

Paragraph 

(2,775) 

448.19 

(403.81) 

Household 
Patents for products used in 

household such as PET bottles 
436 120 

Construct 
Patents for products used in 

construction such as PVC pipes 
77 25 

Automobile 
Patents for products used in 

automobile such as Tires 
312 89 

HouseConst 
Patents for products used in 

household and construction 
481 93 

IndustConst 
Patents for products used in 

industrial and construction 
274 62 

Catalyst 
Patents for catalyst used for 

production 
334 94 

Process 
Patents for production process of 

the products 
306 72 

RHEOLOGY 

(Journal)  

Sentence 

(2,017) 

55.04 

(16.46) 

Biodegrad_Poly 
biodegradable polymer (plastic 

material) 
553 151 

Poly_Struc 

the crystal structure of polymer 

which is related with mechanical 

properties  

421 105 

Biodgrad_Prop 
biodegradable property of 

polymer  
470 97 

Mechanical_Prop mechanical property of polymer  90 31 

Rheological_Prop 

rheological property of polymer 

which is related with polymer 

processability  

78 19 

Token  

CLS 

CATALYST 

(Patent)  

Sentence 

(4,663) 

42.07 

(14.59) 

Precatalyst 
Pre-catalyst form of metallocene 

catalyst  
365 71 

Olefin 

Include monomers and 

comonomers that participate in 

the synthesis of supported 

catalyst  

947 153 

Solvent 
A solvent that creates a reaction 

environment  
1,287 356 

Additive 

Additives necessary for the 

catalyst synthesis reaction 

include scavengers and 

cocatalysts.  

402 131 

Support Support material for synthesis 417 83 

BATTERY 

(Journal)  

Sentence  

(3,750) 

40.73 

(10.79) 

Cathode_Material 

Lithium compound used for 

cathode electrode among the 

components of lithium ion 

battery 

1,411 402 

Coating_Material 

Materials coated for the purpose 

of improving structural stability 

and chemical resistance of 

cathode materials  

1,510 359 

Coating_Method 

Method for coating the coating 

material on the surface of the 

cathode material  

409 134 

Table 1: CLUB datasets for text and token classification (CLS). 

405



3 

 
 

2   Tasks 85 

The CLUB Benchmark is created from scratch to 86 

evaluate language models that understand the 87 

fields of chemistry and materials science. The 88 

benchmark dataset includes two types of tasks: text 89 

classification and token classification. To evaluate 90 

the representation power of the language model for 91 

both patents and literature articles, each task 92 

consisted of a dataset created from the patent text 93 

and a dataset created from the paper text. Various 94 

topics such as polymers, rheology, catalysts, and 95 

batteries were selected to evaluate different fields 96 

of chemistry and materials science. The detailed 97 

composition of the data set is summarized in Table 98 

1. 99 

2.1 Text Classification 100 

Text classification task is to assign a sentence or 101 

document to a proper class. In this paper, we 102 

present two classification datasets: RHEOLOGY 103 

for sentence classification and 104 

PETROCHEMICAL for document classification. 105 

These datasets comprise corpora from both 106 

patents and journal articles with a focus on the 107 

topics of polymers, rheology, and overall 108 

petrochemicals. Each dataset is available in JSON 109 

format with “id”, “sentence”, and “labels” as keys. 110 

 111 

RHEOLOGY sentence classification dataset 112 

contains the five groups that represent the 113 

polymer structures and properties, especially for 114 

biodegradable polymers. It consists of 2,017 115 

sentences collected from the research paper. Each 116 

sentence of the RHEOLOGY classification 117 

dataset is annotated by experts manually. The 118 

detailed explanation of each group is presented in 119 

Table 1.  120 

 121 

PETROCHEMICAL dataset categorizes patents 122 

into seven groups within the petrochemical 123 

industry. Each group of patents accounts for 124 

important parts of the industry. The petrochemical 125 

industry uses catalysts to make the final polymer 126 

products for different applications such as PET 127 

bottles (household applications), rubber 128 

(automobile applications), and PVC plastics 129 

(construction applications). This production is 130 

done on a factory scale, so it has its production 131 

process. The seven groups consist of 5 132 

applications: 1) household, 2) automobile, 3) 133 

construction, 4) household & construction, and 5) 134 

automobile & construction. The other two groups 135 

are catalysts and processes. 136 

2.2 Token Classification 137 

Token classification, which includes named entity 138 

recognition task, identifies tokens belonging to 139 

defined classes. Considering our interests, we 140 

defined the CATALYST class group and the 141 

BATTERY class group as shown in Table 1. We 142 

created the named entity recognition benchmark 143 

dataset based on these definitions. The labeling 144 

was performed by expert researchers with over 145 

five years of experience in relevant fields. The 146 

labeling was done in IOB format (inside, outside,  147 

beginning). The labeled data was then converted 148 

into JSON format with “id”, “tokens”, and “labels” 149 

as keys. 150 

We preprocess the token classification datasets 151 

to adjust the sentence length to be less than the 152 

maximum sequence length. As for named entity 153 

recognition, each token has labels, and tokens that 154 

come after the maximum sequence length would 155 

be discarded. Thus, the model would not be able 156 

to learn from those discarded tokens. We 157 

minimized this issue by making the distribution of 158 

the sequence length more like the gaussian 159 

distribution (Appendix A). 160 

 161 

CATALYST is a dataset for recognizing 162 

materials involved in catalyst synthesis reactions 163 

in the full text of patents. Pre-catalyst, additive, 164 

olefin, solvent, and supporting material are 165 

substances that participate in this reaction, and 166 

these are defined as classes. “Pre-catalyst” is the 167 

main substance to make the catalyst. “Additives” 168 

are added to make the polymer with different 169 

characteristics. “Olefin” is the monomer that 170 

makes the polymer using the catalyst. “Solvent” is 171 

for the polymerization of the monomer to the 172 

polymer for the catalyst. “Supporting material” is 173 

used to support the catalyst to do the 174 

polymerization better as well as more stable. 175 

 176 

BATTERY is a dataset for recognizing cathode 177 

materials from literature articles related to 178 

lithium-ion batteries including all-solid-state 179 

batteries. There are four key components of a 180 

battery: cathode material, anode material, 181 

separator, and electrolyte. “Cathode material” 182 

refers to the lithium compound used in the 183 

positive electrode of a battery and is the most 184 

important element in a battery because it has a 185 

decisive effect on the energy density, power 186 

output, and cycle life of the battery. This dataset 187 

also has "coating material" and "coating method" 188 

classes which are material and method to coat the 189 

surface of the cathode material.  190 
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3 Dataset Statistics 191 

All datasets have been divided into a training set 192 

and a development set (also known as the 193 

evaluation set), following an 80/20 split ratio.  194 

3.1 PETROCHEMICAL dataset 195 

The PETROCHEMICAL dataset is composed of 196 

2,775 paragraphs.  As the dataset is created with 197 

titles, abstracts, and claims of patents, so it has the 198 

average paragraph length of 448.19 tokens, which 199 

is considerably longer than the other three datasets. 200 

Also, the standard deviation for the paragraph 201 

length is 403.81 tokens, which is also larger than 202 

the others. For the seven classes of the dataset, the 203 

respective counts of paragraphs are as follows: 204 

“Household” – 556, “Construct” – 102, 205 

“Automobile” – 401, “HouseConst” – 574, 206 

“IndustConst” – 336, “Catalyst” – 428, and 207 

“Process” – 378. 208 

3.2 RHEOLOGY dataset  209 

The RHEOLOGY dataset is made up of 2,017 210 

sentences with an average sentence length of 211 

55.03 tokens.  The standard deviation of the 212 

sentence length is 16.46 tokens. 704 sentences 213 

were labeled as “Biodegrad_Poly” class and 526 214 

sentences were labeled as “Poly_Struc”. The 215 

“Biodegrad_Prop”, “Mechanical_Prop”, and 216 

“Rheological_Prop” classes, which are classes 217 

related to material’s properties, were labeled with 218 

567, 121, and 97 sentences, respectively. 219 

3.3 CATALYST dataset  220 

The CATALYST dataset consists of 4,663 221 

sentences. The average sentence length is 42.07 222 

tokens with 14.59 tokens for standard deviation. 223 

“Solvent” class was labeled the most with 1,643 224 

times, followed by “Olefin” class which as labeled 225 

1,100 times. “Precatalyst”, “Addtive”, and 226 

“Support” were labeled 436, 533, and 500 times, 227 

respectively. 228 

3.4 BATTERY dataset  229 

The BATTERY dataset consists of 3,750 230 

sentences, and the average sentence length is 231 

40.73 tokens with 10.79 tokens as standard 232 

deviation. The token classification breakdown 233 

shows that “Cathode_Material” and 234 

“Coating_Material” classes were labeled 1,813 235 

times and 1,869 times, respectively. Meanwhile, 236 

the “Coating_Method” class was 543 times. 237 

4 Methods 238 

4.1 Baseline Models 239 

BERT-Base We use the BERT-base weights 240 

released on Hugging Face model repository 241 

(Devlin et al., 2018). Both cased and uncased 242 

versions of the model are used. We refer to each 243 

version as BERT-cased and BERT-uncased 244 

respectively throughout our papers. The model is 245 

pre-trained with a corpus made up of BooksCorpus 246 

and text parts of English Wikipedia for 1 M steps. 247 

The corpus is about 16GB. The pre-training batch 248 

size is 256 sequences. This model utilizes a 249 

wordpiece vocabulary. The vocab size is 28,894. 250 

 251 

BioBERT We use BioBERT-v1.2 weights released 252 

on Hugging Face model repository (Lee et al., 253 

2020). This is a BERT-base-cased model pre-254 

trained with PubMed abstracts from the BERT-255 

base-cased initial checkpoints. It was trained for 256 

200K steps on PubMed abstracts, 270K steps on 257 

PubMed Central (PMC) full texts, and another 1 M 258 

steps on PubMed abstracts. The pre-training corpus 259 

is about 25GB. The pre-training batch size is 192. 260 

As a continued pre-trained model, it uses the same 261 

vocabulary as the BERT-base-cased model.  262 

 263 

SciBERT We use sciBERT-scivocab-uncased 264 

released on Hugging Face model repository 265 

(Beltagy et al., 2019). This is a pre-trained BERT 266 

model with 1.14 M Semantic Scholar papers, 267 

which is comprised of computer science (18%) and 268 

biomedical domain (82%). It differs from 269 

BioBERT as it is pre-trained from scratch. The 270 

papers are full texts and resulting in a corpus size 271 

of 20GB. The pre-training batch size and steps are 272 

unknown. It has its own wordpiece vocabulary 273 

made from the pre-training corpus. The vocabulary 274 

has more science terms. The vocab size is 30,990. 275 

 276 

RoBERTa We use RoBERTa-base model released 277 

on Hugging Face model repository (Liu et al., 278 

2019). It is an improvement of BERT model with a 279 

larger pre-training dataset and better optimized 280 

hyperparameter settings. The model is pre-trained 281 

with a 160GB corpus made up of BERT pre-282 

training corpus plus News and Web contents 283 

crawled. It is trained for 1 M steps. The pre-training 284 

batch size is 256 sequences. The model uses byte 285 

pair encoding (BPE) vocabulary, which is different 286 

from BERT’s wordpiece vocabulary. The vocab 287 

size is 50,000. 288 
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RoBERTa-PM-M3 We use RoBERTa-base-PM 289 

weights released on Hugging Face model 290 

repository (Lewis et al., 2020). It is a RoBERTa-291 

base model pre-trained with a text corpus made of 292 

27GB of PubMed abstracts, 60GB of PMC full 293 

texts, and 3.3 GB of the Medical Information Mart 294 

for Intensive Care (MIMIC-III). The model is 295 

trained for 500K steps on the corpus with a batch 296 

size of 8,192 sequences. It uses byte-pair encoding 297 

vocabulary made from the corpus, so it has a 298 

different BPE encoding vocabulary from 299 

RoBERTa-base. The vocabulary has more 300 

biomedical terms. The vocab size is 50,000. 301 

 302 

4.2 Pre-training 303 

For the chemistry pre-training, we gathered a 304 

large amount of chemistry patents and literature 305 

articles to train two different versions of models.  306 

RoBERTa-lit We use RoBERTa-PM-M3 307 

weights as the initial checkpoint to pre-train the 308 

model with chemistry articles. We collected the 309 

abstracts of the articles using Open Academic 310 

Graphs and used the chemistry field of study to 311 

filter the ones that belong to the chemistry domain 312 

(Tang et al., 2008 and Sinha et al., 2015). For the 313 

filtered ones, all the abstracts were used as the 314 

training corpus. We train the model with the 315 

corpus for 1 epoch.  316 

 317 

RoBERTa-lit-pat We use RoBERTa-lit weights 318 

as the initial checkpoint to pre-train the model this 319 

time with chemistry patents. We collected the 320 

patents using USPTO BulkDownload. We filtered 321 

the chemical patents using the CPC code. For the 322 

filtered ones, abstracts, claims, and embodiment 323 

texts were used as the training corpus together 324 

with the RoBERTa-lit’s corpus. We train the 325 

model with the corpus for 1 epoch.  326 

 327 

RoBERTa-lit and RoBERTa-lit-pat were pre-328 

trained with NVIDIA V100 GPU and the 329 

hyperparameter setting follows the pre-training 330 

setup for RoBERTa-PM-M3. We also used 331 

mixed precision for training. We used the masked 332 

language model objective for the pre-training.  333 

 334 

We expect that by pre-training the models with 335 

chemistry data, the models can learn the 336 

chemistry domain knowledge better and thus 337 

perform better on the CLUB benchmark. 338 

 339 

4.3 Finetuning Language Models 340 

For each dataset, we fine-tuned each models for 341 

10 epochs with a 5e-05 learning rate on a single 342 

V100 GPU. We used 0.1 warm-up ratio, and 343 

cosine with restarts as the learning scheduler type. 344 

The training batch size was 128 and the evaluation 345 

batch size was 128. The maximum input length 346 

was 256. AdamW was used as the optimizer with 347 

a weight decay of 0.01. We used mixed precision 348 

for efficient training. We fine-tuned the model for 349 

10 different seed initializations. 350 

 Text classification (Accuracy) Token classification (F1)  

Task RHEOLOGY PETRO- 

CHEMICAL 

CATALYST BATTERY Average 

BERT-cased 0.7970 0.8099 0.6601 0.7532 0.7550 

BERT-uncased 0.7921 0.8105 0.6944 0.7571 0.7635 

RoBERTa 0.7958 0.7990 0.6899 0.7658 0.7626 

BioBERT 0.7978 0.8086 0.7092 0.7636 0.7698 

SciBERT 0.7938 0.8045 0.7314 0.7602 0.7724 

RoBERTa-PM-M3 0.7983 0.8079 0.7194 0.7815 0.7767 

RoBERTa-lit 0.8017 0.8126 0.7332 0.7772 0.7811 

RoBERTa-lit-pat 0.7968 0.8205 0.7323 0.7777 0.7818 

Table 2: Performance of the model for the benchmark tasks. The evaluation for the text classification tasks 

was done using accuracy and the evaluation of the token classification tasks was done using macro-average 

of F1 scores. The evaluation result is the average of performances over ten runs. 
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4.4 Evaluation 351 

We evaluated all models using the accuracy for 352 

text classification tasks and the macro-average F1 353 

score for token classification tasks. We chose the 354 

accuracy as the evaluation metric for the text 355 

classification due to its interpretability in 356 

measuring the effectiveness of the models. For 357 

token classification tasks, the use of the IOB 358 

scheme, which resulted in the “O” label being the 359 

dominant class, limited us from using the 360 

evaluation metric as text classification tasks. To 361 

provide a more balanced evaluation, we computed 362 

the F1 score of each token class excluding the “O” 363 

class, and used the macro-average of these F1 364 

scores as the evaluation metric. For both types of 365 

tasks, the performance was averaged over ten runs 366 

with different seed initializations to reduce 367 

variance caused by randomness. 368 

5 Results and Discussion  369 

The performance of each model on the benchmark 370 

tasks is shown in Table 2. In general, our 371 

RoBERTa-lit-pat model outperformed the other 372 

models on average across the tasks. The result of 373 

BioBERT models pre-trained with a bio-related 374 

corpus was better than that of BERT base models, 375 

highlighting the impact of domain specific pre-376 

training. SciBERT model pre-trained with a broad 377 

scientific literature articles performed well, 378 

especially in CATALYST task, though it still had 379 

a lower performance than RoBERTa models pre-380 

trained with chemistry corpus. RoBERTa-PM-M3 381 

model outperformed other models in the 382 

BATTERY task, but its overall performance was 383 

lower than that of the RoBERTa-lit-pat model. 384 

In the text classification task, RoBERTa-lit 385 

model was the best model in the RHEOLOGY task 386 

and RoBERTa-lit-pat model score the highest in the 387 

PETROCHEMICAL task. This suggests that 388 

inclusion of patents in pre-training yields better 389 

performance in tasks with patent documents. As the 390 

PETROCHEMICAL dataset includes titles, 391 

abstracts, and representative claims of patents, the 392 

terminology used in the dataset is quite different 393 

from the terminology used in other datasets made 394 

up of literature articles. This is due to the nature of 395 

patents to protect an invention, leading them to be 396 

written in a more general manner to encompass a 397 

broader patent space.  398 

In the CATALYST task, it was very interesting 399 

that RoBERTa-lit model, solely pre-trained on 400 

academic papers, showed the best results in the task 401 

with patents. This task involved labeling only the 402 

embodiment section of the patent. The terminology 403 

used in the embodiment part of the patent is closer 404 

to academic language than the language used in 405 

patent claims. This could explain why a model 406 

trained only on articles could perform better in this 407 

task.  408 

For the BATTERY task, RoBERTa-PM-M3 409 

model had the best performance, closely followed 410 

by RoBERTa-lit-pat model. Notably RoBERTa-lit 411 

and RoBERTa-lit-pat models still showed good 412 

average performance despite only being pre-413 

trained for one epoch. It is plausible that the 414 

performance of RoBERTa-lit-pat improves further 415 

with additional training epochs. Due to our GPU 416 

infrastructure limitations, we leave this for future 417 

work. 418 

6 Conclusion 419 

Chemical Language Understanding Benchmark 420 

(CLUB) is the first benchmark in the chemistry 421 

industry aimed at chemical language model 422 

evaluation with tasks for both patents and journal 423 

articles. The introduction of this benchmark is 424 

expected to catalyze research in natural language 425 

processing, particularly in information extraction, 426 

within the chemistry domain. 427 

In the course of establishing baseline 428 

performance for the CLUB, we tested existing pre-429 

trained models as well as our novel pre-trained 430 

models. Remarkably, the RoBERTa model pre-431 

trained on cheimcal patents and literature articles, 432 

reached the highest average score, 0.7818. This 433 

performance highlights the advantage of pre-434 

training models with a corpus closely aligned with 435 

the target domain. 436 

Our benchmark provides a powerful tool for 437 

evaluating language models’ learning capacity in 438 

the chemistry context. In addition, the tasks in our 439 

benchmark can be leveraged to accelerate the 440 

literature and patent analysis by automatically 441 

extracting information such as new chemical 442 

molecules and experiment settings.  443 

Thus, these tasks can be the foundation of an 444 

information extraction based expert system. This 445 

system would generate structured knowledge from 446 

a large volume of papers and patents and help 447 

researchers to conduct their experiments on time 448 

without falling behind the research trends.  449 

Our benchmark sets the foundation for future 450 

advancements in chemical language understanding. 451 
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It contributes to the acceleration of scientific 452 

discovery in the field by integrating natural 453 

language processing into chemical research and 454 

development. 455 

Limitations 456 

Because we were doing the manual labeling with 457 

experts in the field, we were only limited to two 458 

types of tasks: token classification and text 459 

classification. We hope to expand the benchmark to 460 

include other types of tasks such as summarization, 461 

question and answering, and sentence similarity in 462 

the future. Sentence similarity for patents is the task 463 

we aim to add for the next version because it can 464 

be used to find the infringement in patents.  465 

While the CLUB provides a robust benchmark for 466 

evaluating language models in the context of 467 

chemistry, it is not without its limitations. The 468 

present version of CLUB only includes two types 469 

of tasks: token classification and text classification. 470 

This constraint arises primarily from the manual 471 

labeling process which involved domain experts. 472 

However, we aim to extend the benchmark in the 473 

future to include a wider range of tasks such as 474 

summarization, question answering, and sentence 475 

similarity assessments. We are particularly 476 

interested in the sentence similarity task for patents 477 

as this could be leveraged for identifying potential 478 

patent infringements. 479 
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A Adjust sentence length 602 

Figure 1. shows the distribution of sentence lengths 603 

in the dataset before and after the preprocessing. 604 

After adjusting the sentence length, the sequence 605 

length distribution follows more of a Gaussian 606 

distribution than before. In the case of CATALYST 607 

dataset, the number of sentences was reduced from 608 

12,368 to 4,663. However, in the case of 609 

BATTERY dataset, there was no change in the 610 

number of the sentences. We made this 611 

preprocessing to minimize the number of tokens 612 

that come after the maximum sequence.  613 

 614 
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 617 

 

Figure 1. Distribution of sequence length before 

and after sentence adjustment in token 

classification task datasets 
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