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Abstract

Off-Policy reinforcement learning has been a
driving force for the state-of-the-art conver-
sational AIs leading to more natural human-
agent interactions and improving the user sat-
isfaction for goal-oriented agents. However,
in large-scale commercial settings, it is often
challenging to balance between policy improve-
ments and experience continuity on the broad
spectrum of applications handled by such sys-
tem. In the literature, off-policy evaluation and
guard-railing on aggregate statistics has been
commonly used to address this problem. In
this paper, we propose a method for curating
and leveraging high-precision samples sourced
from historical regression incident reports to
validate, safe-guard, and improve policies prior
to the online deployment. We conducted exten-
sive experiments using data from a real-world
conversational system and actual regression in-
cidents. The proposed method is currently de-
ployed in our production system to protect cus-
tomers against broken experiences and enable
long-term policy improvements.

1 Introduction

Conversational AI systems such as Apple Siri,
Amazon Alexa, Google Assistant, and Mi-
crosoft Cortana rely on multiple components for
speech recognition, natural language understand-
ing (NLU), skill routing, and generating a response
to the user. A skill routing block selects the right
skill/provider and NLU interpretation to serve a
user’s request. Skill routing is a challenging prob-
lem due to the number of skills present in a real-
world conversational system. Furthermore, new
skills are being introduced every day, existing skills
may change behavior over time while some oth-
ers getting deprecated leading to an ever changing
customer-skill dynamic (Sarikaya, 2017; Park et al.,
2020).

To address such challenges, state of the art skill
routing systems cast the problem as a reinforcement

Figure 1: To immediately mitigate the business impact
of a reported defect usually a high-recall hot-fix is added
to the system such that the problematic traffic segment
is redirected away from the RL policy (Π) towards a
hand-crafted rule policy (Γ) representing this hot-fix;
We propose to maintain a dataset of regression and pro-
gression samples (R/P) associated with the defect to
guard-rail against future recurrence and eventually as-
similate the redirected traffic back to the RL policy.

learning (RL) problem where the agent performs
periodic off-policy updates. The RL agent continu-
ally improves or self-learns by exploring alternative
decisions and learning from the logged customer
interaction data (Kachuee et al., 2022). While the
RL-based approach has many merits around scala-
bility such as no need for expensive human anno-
tation, it also has a tendency to cause instabilities
in the agent’s behavior which not only regress user
retention and trust, but also manifest as revenue
loss for business-critical domains (Kachuee and
Lee, 2022; Ke et al., 2022).

Any policy update inherently entails a risk of
breaking certain current user experience, as each
deployment despite improving the overall aggre-
gate performance, may regress on certain sub-
populations and edge cases which is not acceptable
in a commercial system (Li et al., 2021). Further-
more, the frequent and automated nature of these
refreshes proportionately increases this risk for the
policy to deviate from its stable state when han-
dling edge cases. Techniques like pre-deployment
offline evaluation and constrained optimization are
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proposed to guardrail against such regressions but
are often limited by volatile predefined segmenta-
tion of data and metrics that only consider coarse
sub-populations (Kachuee et al., 2021, 2022; Hoff-
man et al., 2014; Balakrishnan et al., 2018).

These statistical approaches to learning and eval-
uation further struggle to let the agent protect, learn
and retain knowledge of historical regressions that
are self-reported by users. Such incidents are usu-
ally characterized as belonging to a narrow traffic
segment but of high importance where reward met-
rics are not very reliable. Typically, to mitigate
them, high-recall hot-fixes are deployed to override
policy and quickly address the incident as depicted
in figure 1. Note that these hot-fixes are often hand-
crafted rules that are not reliable for guard-railing
against recurrence and performing a long-term re-
mediation (Karampatziakis et al., 2019).

In this paper we posit that for business-critical
user-reported defects it is crucial to consider indi-
vidual cases so as to learn and gate on the instance-
level behavior directly. In other words, we propose
complementing the current learning and evalua-
tion mechanisms operating on aggregate metrics
with high-precision instance-level analysis. Herein,
we outline a novel architecture that extends RL-
based skill-routing to use a set of curated high-
value user-reported defective samples, for guard-
railing against re-occurrence and performing long-
term remediation to re-onboard those cases to the
policy; thereby retiring the hot-fixing rules intro-
duced during the short-term mitigation. A high-
level overview of the proposed system is presented
in figure 2.

To evaluate the suggested framework, we con-
ducted extensive online and offline experiments
using data from a real-world conversational agent.
We observe that the proposed approach leads to a
high assimilation (> 70%) of the defective traffic
back to RL policy i.e. long-term remediation and
eventual retirement of the hot-fixes. Further, the
deviation percentage in decision replication rate
and the expected reward in both offline and online
settings indicate that the proposed approach has no
statistically significant side-effect on the remaining
traffic segments.

2 Proposed Method

2.1 Problem Formulation

We consider the general formulation for an RL
agent characterized by Πθ(a|X) where θ are train-

Figure 2: Post mitigation, for more permanent remedi-
ation, we leverage the R/P dataset to provide an auxil-
iary signal during policy updates and assimilate the in-
stance level behavior from the samples back into policy,
thereby retiring the hot-fixes over time. We promote an
updated policy to production after evaluating it against
test R/P data and ensuring that the resulting metrics
clear a set of guard-rails that prevent recurrence of a
historically reported defect.

able parameters to specify the action selection dis-
tribution for each action a ∈ {1 . . . T} conditioned
on the current state/context, X . Here, after taking
an action, the agent observes a reward denoted by
r. The task for the agent is to learn from the experi-
ences collected from the current policy, Π0(a|X),
interactions in an off-policy setting, to train a new
policy parameterized by θ, Πθ(a|X).

Off-policy updates are not always stable and oc-
casionally lead to unsatisfactory decisions (Swami-
nathan et al., 2016; Joachims et al., 2018; Lopez
et al., 2021). These incidents are reported in the
form of a handful of samples reproducing the de-
fective action called regression samples. Alongside
the regression samples, typically, the report is fur-
ther supplemented with complementary and con-
trasting samples by the user that convey the desired
agent behavior. Such samples are referred to as
progression samples here. Collectively we denote
the dataset of all such reported regression and pro-
gression (R/P) samples across all incidents as DRP .
These high value samples are carefully stored with
additional meta-data and used in evaluating against
their recurrence of these incidents (section 2.2) as
well as for their long-term remediation by getting
assimilated into the policy (section 2.4). The meta-
data may contain information such as unique sam-
ple identifiers, description of the issue, type of the
sample (i.e. regression or progression), severity of
the corresponding incident, date which the sample
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was reported, and the current life-cycle status of
the sample (i.e. deprecated or active).

Remediation involves providing supervision sig-
nals for policy updates which is a non-trivial and
time-consuming process. Meanwhile, to imme-
diately mitigate business impact from an incident,
hot-fixing is usually employed by introducing hand-
crafted rules on the problematic segment. The
set of hand-crafted rules from all incidents re-
ported in a time period, define an eligibility cri-
teria, G(Πθ, X) that decides based on the input
sample X and the associated policy Πθ, if an input
sample is eligible for the RL policy or should be
handled by the hand-crafted rules. We use the nota-
tion G(Πθ, X) ∈ {0, 1} to represent the logic that
returns one if a sample should be handled by Πθ,
or zero if should be redirected to hot-fixes.

The set of hot-fixes can be thought of as a sepa-
rate abstract policy Γ(a|X) that runs on incoming
traffic whenever the eligibility criteria G(Πθ, X) is
not satisfied:

Πθ(a|X) =

{
Γ(a|X) G(Πθ, X) = 0

Πθ(a|X) otherwise
. (1)

2.2 Evaluation
The evaluation process starts by replaying the new
policy Πθ on the curated samples (X, a, r) ∈
{DRP } to get the policy action propensities Πθ(X).
Then, we compute the most likely action under the
new policy as â = argmax(Πθ(X)).

For progression samples, we report a sample as
pass if â is equal to the logged action a, other-
wise it is considered as a fail case. Alternatively,
for regression samples, it would be considered as
a fail if and only if the logged unsatisfactory ac-
tion was repeated by the new policy. Also, to as-
sign fail/pass certainties for each case, we compute
the likelihood of each assignment as Πθ(â|X) for
passed progression or failed regression, and other-
wise 1−Πθ(â|X).

Additionally, we can compute the expected eli-
gibility of a sample given the new policy as:

Q(X) : = E[G(Πθ, X)]

=
∑

i∈1...|a|
G(Πθ(ai|X))Πθ(ai|X) (2)

Intuitively, E[G(Πθ, X)] measures the expected
likelihood of handling sample X by policy Πθ

rather than a hot-fix.
Thus in short, we report the following evaluation

metrics for each R/P sample in the evaluation stage:

Figure 3: An example of report generated during R/P
evaluation consisting of unique identifier (uid), samples
type, pass/fail evaluation status, pass/fail certainty, and
likelihood of handing by policy rather than hot-fixes
(eligibility). In this example, the second sample failed
with high certainty but since eligibility is relatively low,
it would be less concerning for potential deployment.

1. Expected Eligibility (Q): probability that a
particular sample will be served by the RL
policy given the current state of hot-fixes in
place; 0 ≤ P (Q) ≤ 1.

2. Sample Status Certainty (C): confidence
on the assigned sample status (PASS/FAIL)
based on the evaluation of the policy output
for that particular sample; 0 ≤ P (C) ≤ 1.

The last step for the evaluation is to generate a
report to be used by human operators as well as au-
tomated guard-railing (next step) to understand any
failures, their certainty, and likelihood of exposing
such behavior to the end user. Figure 3 shows an
example of such report.

2.3 Guard-railing

Hot-fixes introduced for mitigating business im-
pact due to high-severity regression incidents are
conditioned on the policy input (X) and the out-
put (Πθ(a|X)). Thus in the event of a subsequent
policy refresh, there is always a chance that the
associated eligibility criteria G(Πθ, X) for the as-
sociated hand-crafted rules gets out-dated and starts
to redirect the problematic traffic segments to the
RL model. To prevent the recurrence of the regres-
sions, we perform pre-deployment guard-railing
right after every policy update using the evaluation
parameters defined in section 2.2

For the sample X, assumed at index i of DRP ,
we perform gating on their intersection probabil-
ity of the experiment eligibility and sample status
certainty P (Ci ∩Qi) i.e. a sample being eligible
for the RL policy with a high certainty of caus-
ing a misroute. For failing cases (Ci = FAIL),
the best (most lenient) and worst (most strict) case
scenario are depicted in figure 4. To prevent any
unnecessarily blocks, we use the best case setup
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Figure 4: left: in the best case scenario there would
be a minimal overlap between sample spaces that are
eligible for the RL policy and will lead to potential
defects. right: in the worst case scenario there would be
a maximum overlap between the aforementioned sample
spaces.

Algorithm 1: Guard-railing on a single fail-
ing regression/progression sample

input : i (RP sample index),
P (C = FAIL) ∼ P (C) (failure certainty),
P (Q) (expected eligibility),
Tf (failure threshold for guard-railing)

1 if P (Ci) + P (Qi) > 1 then
/* get minimum P (Ci ∩Qi) */

2 P (Ci ∩Qi)← P (Ci) +P (Qi)−P (Ci ∪Qi)
/* max P (Ci ∪Qi) can be 1 */
/* P (Ci ∩Qi) ≥ P (Ci) + P (Qi)− 1 */
/* min P (Ci ∪Qi) */

3 P (Ci ∩Qi)← P (Ci) + P (Qi)− 1
4 if P (Ci ∩Qi) > Tf then

/* fail guard-railing */

5 else
/* pass guard-railing */

6 else
/* skip guard-railing */

when comparing the minimum intersection proba-
bility against a set failure threshold Tf . For passing
samples (Ci = PASS) we simply invert the sample
certainty value and keep the remaining logic as is.
Algorithm 1 summarizes the guard-railing logic for
the failing case for a single sample.

When a guard-rail condition assertion fails, the
associated hot-fix is updated by operators to make
the guard-rail criteria is met. It should be noted
here that adding and updating hot-fixes is only a
temporary solution because it takes away traffic
from the RL policy and redirects it towards make-
shift hand-crafted rules which hampers the scala-
bility of the larger system. It is therefore crucial to
start the process of properly assimilating the traffic
handled by these rules back to the RL policy after
the short-term mitigation.

Figure 5: Model architecture used for the RL policy;
augmented R/P sample batches are injected with gaus-
sian noise during the forward pass at their hidden-layer
representations as shown in the blue box.

2.4 Remediation

As a part of a regular training cycle for off-policy
learning, we optimize a loss function L0. For sim-
plicity of explanation, in this paper, we use the
inverse propensity scoring (IPS) objective as an ex-
ample for the case of contextual bandit formulation
(Dudık et al., 2014):

L0 = EX,a,r∼D = −r
Πθ(a|X)

Π0(a|X)
. (3)

We inject R/P samples in the training loop to
the regular training batches and replay them during
each iteration. To improve the generalization and
data efficiency of using the limited R/P data, we
perform representation space data augmentation.
This is done on a mini-batch of R/P samples using
Gaussian noise injection during the forward pass
on each hypothesis at hidden-layer representations
as depicted in figure 5. It is further defined in the
equation below where x̄ is the hidden space feature
vector for hypothesis x, x̄′ is the augmented sample
vector, j is the feature index and λ is the noise
scaling factor.

x̄′
j = x̄′

j + λc, c ∼ N (0, 1) (4)

The auxiliary loss (LRP ) is computed from the
regular loss objective (L0) albeit on augmented
data sampled from R/P dataset, DRP , represented
as D′

RP . When introducing the R/P samples as a
part of the training data, we make adjustments such
that the added samples discourage action replica-
tion for regression cases and encourage replication
logged of actions for progression cases. To im-
plement this, we reshape reward values such that
regression and progression cases get the lowest and
highest possible reward. We represent this reshaped
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Algorithm 2: Augmented Exp. Replay
input :D (dataset of logged interactions from Π0),

DRP (dataset of R/P samples),
η (train replay loss mix ratio),
α (# R/P sample per regular batch),
β (# augmentations per R/P sample),
λ (noise scaling factor)

1 D← preprocess(D)
2 DRP ← preprocess(DRP )
3 D′

RP ← reshapeReward(DRP )
4 for d in nextBatch(D) do

/* sample R/P batch with replacement */
5 drp = sampleBatch(D′

RP , size = α ∗ β)
/* loss on regular data batch */

6 L0 ← loss(Πθ, d)
/* loss on rp data batch */

7 LRP ← loss(Πθ, drp, noise = λ)
/* combine regular and R/P loss */

8 L← (1− η)L0 + (η)L′

/* use any optimizer f for Πθ */
9 θ ← f(θ,∇θL)

reward via r′, and the auxiliary loss in equation 5.

LRP = EX,a,r′∼D′
RP

= −r′
Πθ(a|X)

Π0(a|X)
. (5)

Finally, we perform a weighted average of the
auxiliary loss (LRP ) with the regular loss (L0) us-
ing a weight term η to get the overall loss as de-
picted in equation 6.

L = (1− η)L0 + (η)LRP , 0 < η < 1. (6)

Additionally, we have parameters, α and β, that
control the number of R/P samples per batch and
number of augmentations to perform per R/P sam-
ple in the training loop respectively. Refer algo-
rithm 2 for more step by step details.

3 Experiments

3.1 Setup
To evaluate the proposed remediation approach, we
conducted online and offline experiments in real-
world production settings. In this section, we use
the term baseline policy to refer to the approach
suggested by Kachuee et al. (2022). The proposed
framework extend the baseline approach and hence-
forth referred as R/P policy.

To simplify the comparisons, we follow the same
model architecture and design choices as suggested
by Kachuee et al. (2022). In summary, input to
the model is a set of routing candidates, i.e., a
combination of embedded ASR, NLU, and context
vectors as well as skill embeddings. The output
is the softmax-normalized propensity of selecting

each candidate to handle the user request. The
final model has about 12M trainable parameters
consisting of a language model to encode utter-
ance, embeddings for contextual signals, and fully-
connected layers.

To train and evaluate our models, we use logged
data from a current production policy. The ob-
served reward is based on a curated function of
user satisfaction metrics. Our dataset consists of
about 90M samples roughly divided into 75% train-
ing, 12.5% validation, and 12.5% test hold-out sets
covering tens of domains with imbalanced num-
ber of samples. Our R/P dataset consists of ∼50
samples and split into 67% training and 33% test
hold-out sets containing roughly an equal number
of regression and progression samples (collected
over 10-15 reported defects). We ensure that each
incident finds similar representation in both the
train and test hold-out set. Data used in this work
was de-identified to comply with our customer pri-
vacy guidelines. Also, due to confidentiality con-
cerns, we are not able to share specifics about the
historical regression incidents.

3.2 Metrics1

3.2.1 Remediation Metrics
We use remediation percentage as a key metric to
quantify the percentage of R/P samples with status
FAIL that were directed back to the RL policy with
status PASS in a single model update using the
remediation approach shared in section 2.4. In an
ideal scenario we would expect this metric to be
as high as possible. It is defined more concretely
in equation 7 below where C and C ′ represent the
sample statuses obtained from baseline and R/P
policy respectively.

|DRP|∑
i=0

1(Ci=FAIL) −
|DRP|∑
i=0

1(C′
i=FAIL)

|DRP|∑
i=0

1(Ci=FAIL)

∗ 100 (7)

3.2.2 Deviation Metrics
To validate that the auxiliary R/P loss is not having
an adverse effect on other data segments, we track
the deviation in decision replication rate and the
expected reward for the remainder of traffic. In
an ideal scenario we would expect both deviation
metrics to be as small as possible.

1To comply with our privacy and business guidelines, in
all instances, we only report relative and normalized results
which do not represent the actual scales or metric values.
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3.3 Hyperparameters

For the train replay loss mix ratio η we use values
from {0.02, 0.2} and for noise variance λ we use
values from {0, 0.05, 1.0, 2.0, 3.0} to find the best
parameters based on the remediation percentage.
We particularly note during an ablation that having
no noise leads to poor generalization on the R/P
hold out set. Consequently, we use a grid search
for finding the best setting for the number of R/P
samples per batch α ∈ {2, 5, 10} and number of
augmentation per R/P sample β ∈ {1, 20, 50} to
find the best settings for each benchmark. Based
on this search, we finally used η as 0.2, α as 5, β
as 20 and λ as 2.0.

3.4 Training Details

For the baseline policy we trained each model for
8 epochs and take the best performing model based
on the macro-averaged violation rate of added do-
main based constraints measured on the validation
set. We used a cluster of 32 NVIDIA V100 GPUs
to process a mini-batch size of 32K samples (1000
samples on each GPU). Each individual run took
between 14 to 16 hours. During R/P policy training
we added an augmented batch of 100 R/P samples
(α = 5, β = 20) to each GPU creating a further
addition of 3200 samples to each mini-batch. Each
experiment was run four times using different ran-
dom seeds for weight initialization to report the
mean and ±2 standard deviation of each result.

4 Results

We conducted offline experiments and measured
off-policy estimated impact of the proposed method
on replication and reward metrics. For the estimat-
ing the expected reward, we used an IPS estimator.
On our training set we observed an average remedi-
ation percentage of 70.0% (71.42% for regression
and 66.6% for progression samples) indicating that
the proposed approach leads to a high assimila-
tion of the defective traffic back to RL policy. The
number can also be interpreted as the normalized
percentage of reduction in RP samples that used to
be handled by the hot fixes and instead be handled
correctly by the RL policy. Using this approach we
were successfully able to absorb the entire hold out
set to the RL policy and identify the potential to
retire ∼70% of the representative hot-fixes.

Table 1 shows the deviation percentage in deci-
sion replication rate and the off-policy estimated
reward on the hold out dataset. We see negligi-

ble difference between both the policies indicating
that the remediation has minimal side-effect on the
remaining traffic segments.

Offline Replication (%) Expected Reward (%)
Baseline Policy 98.31±0.0005 89.55±0.0005

RP Policy 98.31±0.0071 89.56±0.0052

Deviation (%) 0.00±0.0072 0.01±0.0054

Table 1: Comparison of the overall replication and ex-
pected reward on our offline test set reported for the
baseline and RP policies.

We then compared our proposed approach to
the baseline on live production traffic in an online
A/B based setup consisting of a large number of
actual customers. The results in Table 2 show that,
similar to our offline analysis, we observed minimal
and non-statistically significant deviation in the
measured reward between control and treatment.
This further validates our claim that the proposed
remediation has negligible impact on the remaining
traffic segments.

Online Measured Reward (%)
Baseline Policy 87.81
R/P Policy 87.80
Deviation (%) -0.01 (p-value 0.4)

Table 2: Overall deviation between the baseline and
the RP policy on the actual reward received during an
online A/B. Here, p-value of 0.4 indicates no significant
side-effect as a result of our proposed remediation.

5 Conclusion

In this paper, we presented a method to leverage
historical regressions reported by customers of a
conversational AI to guard-rail against future recur-
rences of similar issues and to improve the trained
policies to learn from such high-value experiences.
In summary, the introduced method consists of cu-
rating a regression/progression dataset from histor-
ical incidences, logic to evaluate future polices on
such data prior to the potential online deployment,
performing guard-railing against deploying poli-
cies that pose a high risk of incident recurrences,
and finally leveraging such a high-value dataset
as a source of supervision during the training pro-
cess to enable long-term behavior corrections. We
conducted extensive online and offline experiments
and deployed this work in a real-world production
system to ensure serving best experience for our
customers.
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Limitations

We believe a potential limitation of this work is
its reliance of curated samples from historical in-
cidents. Due to the complexity of real-world con-
versational agents, the decision to introduce a new
sample to the R/P set requires human expert in-
volvement which could be costly and pose chal-
lenges in terms of reliability. Another challenge
we faced after the deployment of this framework
was managing the life-cycle of the collected R/P
samples. In a dynamic environment, a regression or
progression pattern may lose relevance over time.
Therefore, we find it challenging to re-actively deal
with retirement of such historical samples.

Ethics Statement

This work is centered on ensuring the best expe-
riences are served by a conversational AI through
learning and validation of customer initialed re-
ports. Therefore, we do not assess any particular
ethical risks associated with this work. However,
one penitential though unlikely risk area would be
human expert decisions for data collection to be
biased on certain use-cases or interactions. We did
not observe manifestation of such risk impacting
our experiments and after the production deploy-
ment. Regarding human data handling practices,
we ensured anonymity of data samples used in this
study and did not reveal any specifics that would
violate our internal policies or our customer privacy
policies.
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