Consistent Text Categorization using Data Augmentation in e-Commerce

Guy Horowitz", Stav Yanovsky Daye?, Noa Avigdor-Elgrabli?, and Ariel Raviv?

Technion — Israel Institute of Technology
2Yahoo Research
guy.h@campus.technion.ac.il
{stav.yanovsky,noaa,arielr}@yahooinc.com

Abstract

The categorization of massive e-Commerce
data is a crucial, well-studied task, which is
prevalent in industrial settings. In this work, we
aim to improve an existing product categoriza-
tion model that is already in use by a major web
company, serving multiple applications. At its
core, the product categorization model is a text
classification model that takes a product title as
an input and outputs the most suitable category
out of thousands of available candidates. Upon
a closer inspection, we found inconsistencies in
the labeling of similar items. For example, mi-
nor modifications of the product title pertaining
to colors or measurements majorly impacted
the model’s output. This phenomenon can neg-
atively affect downstream recommendation or
search applications, leading to a sub-optimal
user experience.

To address this issue, we propose a new frame-
work for consistent text categorization. Our
goal is to improve the model’s consistency
while maintaining its production-level perfor-
mance. We use a semi-supervised approach
for data augmentation and presents two differ-
ent methods for utilizing unlabeled samples.
One method relies directly on existing catalogs,
while the other uses a generative model. We
compare the pros and cons of each approach
and present our experimental results.

1 Introduction

In the last two decades, widespread use of e-
commerce platforms such as Amazon and eBay has
contributed to a substantial growth in online retail.
Such platforms rely on both explicit and implicit
product features in order to deliver a satisfying user
experience. There, the inferred product category is
typically a crucial signal for many application such
as browsing, search and recommendation.

We focus on improving an existing product cate-
gorization model, we refer to as ’the categorizer’,

*The work was carried out during an internship at Yahoo
Research.

that is employed by our company for fast catego-
rization of billions of items on a daily basis. It
classifies e-commerce items, such as products or
deals, based on a predefined hierarchy of categories,
namely GPT (Google Product Taxonomy). Given
a product title, the categorizer assigns the most ap-
propriate label in the taxonomy. The model itself
is highly scalable and effective, so it is well-suited
for settings with large and rapidly growing item
catalogs. In our company, the categorizer is used
as a standalone component in various e-commerce
related services, such as recommendation, search,
and ad ranking.

A recent examination of the categorizer’s output
revealed inconsistencies in the labeling of similar
items. It was evident that in some cases small
variations in product titles, such as those relating
to colors or measurements, significantly affect the
categorizer’s output. This inconsistency negatively
impacts search and recommendation algorithms
that rely on the inferred category, leading to a poor
user experience.

The concept of consistency in NLP tasks has
been studied in various research works, including
robustness to paraphrasing (Elazar et al., 2021) and
robustness to adversarial attacks (Jin et al., 2020;
Wang et al., 2020). Other works relate consistency
issues with the misuse of spurious features during
the learning phase (Arjovsky et al., 2019; Veitch
et al., 2021; Wang et al., 2021).

When examining the performance of the catego-
rizer in terms of accuracy alone, the inconsistency
issue may be overlooked. But, since many rec-
ommendation pipelines depend on the output of
the product categorizer, an inconsistent model can
have severe implications on the user experience. In
most cases, the differences include returning the
parent category or a sibling category, rather than a
completely different category path.

To tackle this inconsistency problem, we use
different data augmentation techniques and enrich

313

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 313-321
July 10-12, 2023 ©2023 Association for Computational Linguistics

the training data with item versioning, leading to a
more consistent model. Data augmentation for im-
proving various NLP tasks has been widely studied
and surveyed (Shorten et al., 2021), and particularly
in the context of consistency (Xie et al., 2020). Gen-
erating such data, both manually (Kaushik et al.,
2019) and automatically (Rizos et al., 2019; Bari
et al., 2020; Kumar et al., 2020), has shown to
contribute to the robustness of learnt models in dif-
ferent settings. We chose to use data augmentation,
without changing the current architecture of the
already-in-use product categorizer for two main
reasons. First, for scalability reasons, any change
in the architecture might degrade the model’s abil-
ity to infer the categories of billions of items per
day. Second, maintaining the current model archi-
tecture expedites the productization process and
requires only minimal engineering effort.

This work defines a new framework, Consistent
Semi-Supervised Learning (Consistent-SSL), for
consistent text categorization in the context of
e-commerce (Section 2). We use an unlabeled clus-
tered dataset as a source of legit item versioning.
The dataset is derived from product catalogs, and
includes clusters of different versions of items. We
present two different methods to utilize this unla-
beled clustered data: a self-training method and
a generative approach (Section 3). We describe the
datasets and the experimental framework we use
for the evaluation of the proposed methods (Section
4). Finally, we detail results, showing an improve-
ment in the consistency rate of 4-10% above the
baseline model, and discuss the advantages and
weaknesses of each method (Section 5).

2 Consistent Semi-Supervised Learning

We now formalize our notion of consistent classi-
fication and introduce the settings for consistent
Semi-Supervised Learning (consistent-SSL).

2.1 Consistent Classification

In order to formalize consistent classification, let
X be our set of items, and) = [c] for c € N, be a
final set of labels. Each item x € X" corresponds to
alabely €).

Additionally, let V X — X, be a non-
deterministic perturbation function which trans-
forms an item from one version z to another
Z. For example, if x = "blue T-shirt small size",
& ~ V(x) could be & = "black T-shirt small size"
or & = "blue T-shirt large size". We assume that

the perturbation function is label-preserving, i.e.
x,Z ~ V(x) share the same label y. Let p(z,y)
be a joint distribution over items and labels and
p(x) the marginal distribution over items. The goal
of consistent classification is to learn a classifier
f X — Y from aclass F' with a dual objective: a
high expected accuracy, i.e. high expected value
of the indicator that an item = € X is labeled by f
to its correct label y:

E - [1{f(z) =y}] (D

(z,y)~p(z,y)

and a high expected consistency, which we define
as:
E [1{f(x) = f(2)}])

zrp(z),

V()
i.e. the expected value of the indicator of two items
x,Z ~ V(x) to be transformed by f to the same
label. Therefore, the dual objective of f can be
formalized as:

min E [1{f(z) #y} + A1 {f(z) # f(2)}]
(%z):g((;),y),

3)
where A € R controlling the balance between the
accuracy loss and the consistency loss.

Note that there could be a trad-off between the
accuracy objective and the consistency one. A
model that is trained to disregard specific features
like color or size would be more consistent but
as those features might be informative in order to
partition between some categories this could harm
the overall accuracy. For example, if the color pur-
ple is more likely to appear in sport shoes than
in evening shoes, a model that is trained to give
less weight to colors may have a harder time distin-
guishing between sports and evening shoes while
being more robust to changes in colors and thus
more consistent.

2.2 Consistent-SSL Settings

In SSL settings, we are given labeled data Dy, =
{(zi,y:)},_,, which is assumed to be sampled i.i.d.
from p, and unlabeled data Dy = {xl}igﬁrl possi-
bly sampled from another distribution q. We tune a
classifier f using both Dy, and Dy.

This work extends the standard SSL settings to
consistent-SSL. The unlabeled data Dy; is clustered
with respect to the perturbation function V, i.e. it
consists of u sets of items X, each set contains

k; versions :Eg»l) ~ V(x;) of the same item x;.

314

More formally, Dy = {Xi}ii;‘“, where, X; =
{x§)} _cand 2 ~ V() forj = 1... k.
J:
The goal in consistent-SSL is to learn a classifier
f that optimizes the objective in Eq. (3) given Dy,

and Dy. Note that V is unknown, and only appears
indirectly in the Dy samples.

3 Methods

We present two methods for consistent-SSL, Con-
sistent Self Training (CST) and Consistent Gener-
ative Augmentation (CGA). Both methods utilize
the unlabeled samples from Dy for data augmenta-
tion. In each method we create an augmented set
D,y using Dy and train a classifier f on Dy UDyyg.
This approach optimizes indirectly the objective of
Eq. (3), as we add additional training samples Dy,
that consists of different versions of the same items.
The goal is to expose f to a more diverse set of item
versions in training time, making it more robust to
minor changes.

Let us review our approach using an illustrative
example. Consider a dataset that contains clothing
items. Assuming that Dy, which was sampled from
the distribution p, exhibits a spurious correlation
between color of an item to its category (e.g. most
of the black items are coats and most of the red
items are dresses), then a classifier that was trained
solely on Dy, will tend to rely on the color of the
item when it predicts its category. When applying
the model, V could change the items’ colors and
therefore the classifier will not be consistent (e.g. if
V transforms a black coat to a red one, the classifier
might predict different categories). But, assuming
the training data includes an item in multiple colors
(e.g. black coat, red coat, blue coat, etc.), with the
same label (e.g. Coats & Jackets), then a model
that is trained on such data will not relate a specific
color to a specific label. Such a model will be
encouraged to ignore the color of an item when
it predicts the label, and therefore will be more
robust to changes in color. Note that colors here
are only an example of one kind of versioning of
items. Spurious features in the data could be related
to colors, measurements, models, materials etc.

3.1 Consistent Self Training (CST)

In our first method, named Consistent Self Training
(CST), we add samples from Dy to the labeled
training data Dy, and a new classifier f is trained
on the unified dataset. Since the data of Dy is
unlabeled, we perform a variant of self training

‘ . fhase Dy
5L

Figure 1: Illustration of CST pipeline. A base model
f%8¢ is trained on the labeled training set Dy, It is then
used to assign pseudo labels for the unlabeled samples
from Dy to create Dyye. A classifier f is trained on
D U Daug-

5|

}7

(Lee et al., 2013; Arazo et al., 2020; Triguero et al.,
2015). To make sure that D, is consistent, it’s
important that each item set X; is assigned with
the same pseudo-label y;. To calculate g;, we first
train a base model ¢ on the labeled data Dy, and
then use it to choose a single pseudo-label for each
example set X;, i.e. §; « h(X;; f2®°), where h
is a function that given a set of examples and a
classifier f°%¢ returns a single label. For example,
h could return the prediction of ¢ that got the
highest confidence score, or the most frequent
prediction across X;. The function / is an hyper-
parameter of the method. Finally, a classifier f is
trained over Dy, U Dyye. Figure 1 shows an illus-
tration of the CST pipeline, and a full description
of the algorithm is presented in Appendix A.

3.2 Consistent Generative Augmentation
(CGA)

We now detail our second method, we refer
to as Consistent Generative Augmentation
(CGA). Here, we train a generative model M
on Dy in order to learn the perturbation func-
tion V, and we use it to generate new samples
based on the instances of Dj. For this end,
an item-pair dataset of different versions of
items, Dpairs 1s constructed from Dyr; Dpairs =
{(#760) i+1<i<i+upg ek}

We train M on Dy, to generate the second item
given the first of each pair, while maintaining its
label. Note that igf) ~ V(ﬁ:gl)). Next, we generate
an augmentation set Dy, using Dy, by applying
M on each (z,y) € Dr, to get a new labeled
sample (&, y). Note that we can use M to generate
multiple new samples from a single sample .
After creating Dy, we filter it using a score
function s : X x X — [0, 1] that aims to measure
the quality of the generated & with respect to its
origin x. Additionally, we remove low quality
samples from D,y according to some predefined
filter threshold 7'. Finally, we train a classifier f
over Dy, U D,y Both s and T' are hyper-parameter

315

of the CGA method. Figure 2 shows an illustration
of the CGA pipeline, and a full description of the
algorithm is presented in Appendix B.

T
Dy Diairs - D
-~ H filtering }_.
- with 5 f
= Daug

Dr

Figure 2: Illustration of CGA pipeline. A generative
model M is trained on pairs of items from the catalog
dataset Dy;. Then it is used to augment the labeled
training set Dy. The generated samples are filtered
using a score function s. A classifier f is trained on
Dp U Daug~

3.3 Methods Comparison

We compare the two proposed methods by three
main aspects: the quality of the augmented prod-
uct titles, the quality of the labels and the overall
distribution.

Considering the quality of the product titles, the
CST method utilizes the unlabeled clustered data
itself and thus provides product titles that are sam-
pled from the real world and captures information
about the true perturbation function V. In con-
trast, the CGA method uses generated product ti-
tles, which may not represent V' accurately. Re-
garding the label quality, the CGA method utilizes
labels that are taken directly from the ground truth
labels of the original items and thus of a better
quality than the ones of the CST method, which
uses calculated "pseudo-labels". With respect to
the distribution of the data, the generated samples
in the CGA method are taken directly from the dis-
tribution p of the labeled training set. In contrast, in
CST the unlabeled data comes from a distribution
q that is different than p, thus biasing the overall
distribution of the training set.

The quality of the product titles in the augmen-
tation set impacts the consistency and corollary the
overall optimization of the model f. On the other
hand, both the quality of the labels and the distribu-
tion of the augmentation set influence the accuracy
which again affects the overall optimization of f.

4 Empirical Evaluation

We now present our experimental results. We note
that in all of our experiments, we use a model that is
based on FastText (Joulin et al., 2016) architecture,
and has an hierarchical structure. This specific
model is found to perform well on our task, as it

takes into account the hierarchical structure nature
of the labels. For more details, see Appendix C.

4.1 Train And Test Data

We conduct experiments using an e-commerce text
classification dataset in order to empirically evalu-
ate our methods. The items in this dataset are titles
of commercial products, represented as free text,
and the labels are the items’ categories. The la-
bels are taken from a hierarchic products taxonomy
with 4 levels of granularity {L;}}_,. For example,
consider a product title such as "Greenies Breath
Buster Bites Fresh Flavor Grain-Free Dental Dog
Treats, 1.2-0z bag", and its corresponding category
Animals & Pet Supplies > Pet Supplies > Dog Sup-
plies > Dog Treats.

Our dataset contains 184k labeled samples with
3k different labels, and additional 1.3M unlabeled
samples. The labeled samples correspond to
real-world commerce related items, and are labeled
by human annotators. The unlabeled samples
are retrieved from a product catalog of multiple
retailers that includes grouping information. Each
group contains multiple versions of the same item,
e.g. "L.A. Girl, Matte Lipstick, Snuggle, 0.10 oz"
and "L.A. Girl, Matte Lipstick, Bite Me, 0.10 oz".
There are 363k different groups in the unlabeled
catalog data, each group contains 2 to 192 items,
and the average group size is 3.6. We note that
the labeled and unlabeled data sets originate from
different sources. This results in different category
representation between the labeled and unlabeled
data, e.g. several categories in the unlabeled data
have low coverage compared to the labeled one.

Our experiments measure both accuracy and con-
sistency of the tested models. To this end, we create
two different test sets:

Accuracy test. The accuracy test is a standard
test set that consists of labeled samples, on which
we compute the weighted average F1 score of a
given model. The accuracy test contains 23k la-
beled examples sampled uniformly at random from
the labeled data. We use the remaining 161k la-
beled samples as the Dry..

Consistency test. The consistency test consist
of pairs of item titles (&', 22), each pair includes
two different versions of the same item. We define
the consistency rate of a given model f to be the
percentage of the (2!, #2) pairs from the consis-
tency test that receive the same label prediction by
f.ie. f(2') = f(2?). We create this test set by

316

0000
250000
25000

200000
20000

count
count

100000

50000

. S,Jug!!l|l.. -

2500 ‘

01234567 BTN 2 BNBBRTBBHN RBH BB
label index

(a) distribution of Dy,

0 —
0236 7 911121314151617 1819 20 21

(b) distribution of complete Dy,

-
0 2 367 911121314 1516171819 2021

label index label index

(c) distribution of sub sampled Dy,

Figure 3: Distributions of the different versions of the data for CST. The labels are presented in L; granularity.

Fixed Sample Size = 200k

Fixed Threshold = 0.7

Consistency Rate
=
Consistency Rate
3
2

o

.
/ %

Consistency Rate

050 055 060 065 0.70 075 0.80 50k 100k
Threshold

(a) different T, fixed N

Sample Size

(b) fixed T', different N

200k 400k 050 055 060 065 070 075 080
Threshold

(c) different T, different N

Figure 4: CGA experiments results.

sampling 9k groups from the unlabeled data, then
by sampling one pair of different titles (!, 22)
from each group. Since the consistency rate of a
model on this test should be an empirical evalu-
ation of its consistency as defined in Eq. (2), the
distribution of the data in this test should be similar
to the distribution of the data in the accuracy test.
To mitigate some of the discrepancy between the
unlabeled and labeled datasets, we sub-sample the
unlabeled dataset according to the L; distribution
of the labeled set. We use the unlabeled samples
that are not selected for the consistency test as Dy
for training.

4.2 Experimental Framework

This subsection describes in detail the configuration
of the proposed methods, and the baselines that
were used for comparison.

4.2.1 Baselines

For the first Baseline model, we use the existing
product categorization model, trained using only
Dr.. The second baseline is a ColorsSizes-Blind
(CS-Blind) model. We train it using Dy, alone,
while omitting colors and measurements from the
data. We use predefined dictionaries of colors (e.g.
"red", "white") and measurements (e.g. "small",
"XL") to identify appearances in item titles and
replace them with constant tokens, one for colors
and another for sizes. This baseline simulates an

attempt to tackle the consistency issue by manually
identifying few spurious features in the data and
hiding them from the model to make it consistent.

4.2.2 CST

We evaluate CST with two configurations, each
utilizes a different version of Dy;: 1) the complete
data (354k groups with 1.3M samples), and 2) sub-
sampled (SS) data, sampled to be as similar as
possible to Dy ’s histogram (yielding 70k groups
with 250k samples). Fig. 3 provides an illustrations
of those histograms. In order to assign each group
of items with one single label, as described earlier,
we choose the category with the highest confidence
score within the group provided by fb2¢ !,

42.3 CGA

In order to empirically evaluate CGA, we construct
Dpairs from Dy as described earlier and use a TS
model (Raffel et al., 2020) (a large Transformer
based seq-2-seq model) as M, which we fine-tune
on Dypyrs for three epochs.

The impact of the filtering score function. We
examine two alternatives of the score function s; 1)
BLEU score (Papineni et al., 2002) and 2) a cosine-
similarity score that was computed on the out-
put vectors of an all-MinmLM-L6-V2 model (All-
MinmLM-L6-V2). This model maps sentences to

"Preliminary experiments showed that this method outper-
formed majority voting.

317

Original Product Title Generated Product Title B:;()F;g
Polo Ralph Lauren Big Boys Fleece Hoodie | Polo Ralph Lauren Little Boys Fleece Hoodie | 0.795
Puff Sleeve T Shirt Ivory Frost T Shirt 0.135
Blackberries Prepacked 6 Oz Cranberry Prepacked 6 Oz 0.724
Sunnies Face Airblush in Peached Sunnies Face Airblush in Peached Wall Poster | 0.482
With Pushpins

Artistry Signature Color Long-wearing Eye | Artistry Signature Color Long-wearing Eye | 0.850
Pencil Brown Pencil Black

Table 1: Examples of pairs of original product titles and their corresponding generated ones, together with the

computed BLEU score of the pairs.

a 384 dimensional dense vector space and can be
used for tasks such as clustering or semantic search.
We compute both scores for each pair of original
product title and a corresponding generated title.
Preliminary experiments show that filtering by the
BLEU score results in a more consistent model. For
the rest of the experiments we use the BLEU score
as s. Table 1 contains some examples of generated
titles and their corresponding BLEU score.

Using the TS5 model, we generate 8 samples
based on each sample from Dy, and compute the s
score of each of those samples. We then perform
three experiments to evaluate the impact of the fil-
tering threshold 7' and the augmentation size V.
Results are presented in Figure 4.

The impact of the filtering threshold. For each
threshold value 7' € {0.5,0.6,0.7,0.8}, we filter
the generated samples. Then, we sub-sample a
fixed amount of N = 200k samples into Dy, and
train a model on Dy, U Dyye. As T gets higher, the
consistency rate of the trained model increases as
well, which indicates the need of a filtering phase.

The impact of the augmentation size. We filter
the generated samples using a fixed 7' = 0.7. Out
of the remaining generated samples, we sub-sample
N € {50k, 100k, 200k, 400k} samples into Dyyg,
and train a model on Dy, U D,ye. As N gets higher,
the consistency rate of the trained model increases
as well, which indicates that adding more generated
samples leads to a more consistent model.

The trade off between filtering threshold and
augmentation size. We filter the generated sam-
ples using different thresholds, and add the filtered
samples to Dyye Without sub-sampling them. We
train a model on Dy, U Dyy,. Evidently, the consis-
tency rate of the trained model increases when 1T’
gets higher but decreases for T' = 0.8. As T' gets
higher, the filtered samples are of better quality but

there are fewer of them, reaching an optimal trade
off at 7' = 0.7. Thus, for the rest of the paper, we
use 7' = 0.7.

5 Results and Discussion

We train each examined model 5 times and present
the mean score of the achieved results. For each
model, we compare the weighted average F1 score
for the accuracy test and the consistency rate of the
consistency test. Table 2 presents our results.

The ColorsSizes-Blind model performs similarly
to the baseline for both measurements; the slight
changes are within the std range, thus making the
differences insignificant compared to the baseline
model. This is an evidence that the item versioning
is more complex than just changing the size or
color and includes title rephrasing concepts that are
hard to tackle in a trivial way.

In addition, the results show that both of the
CST versions, complete and sub-sampled, achieve
significantly higher consistency rates than the base-
line, gaining lifts of 10% and 7% respectively. On
the other hand, both of the methods yield lower
F1 scores, reducing lift by 1.65% and 0.6% respec-
tively. A possible cause of the degradation in the
F1 score is the differences between the data distri-
bution of Dr,, which we sample the accuracy test
from, and the data distribution of Dy; which we use
to augment our training data. The fact that using
the sub-sampled version of Dy mitigates most of
this degradation supports this claim. An additional
cause could be the usage of the noisy pseudo-labels
in the augmented set instead of the unavailable
ground truth labels. Note that the amount of added
data using Dy; to tackle consistency is bigger than
the original Dy, which aims to tackle accuracy.
The focus in terms of the training shifts from an
accuracy problem to a consistency problem, thus

318

Method | FI | F1tife | S5t | Cmst
rate lift
Baseline | 0.665 - 0.738 -
CS-Blind | 0.664 |-0.13% | 0.740 | 0.26%
CST-Full | 0.654 |-1.65% [0.813 |10.12%
CST-SS | 0.661 | -0.6% | 0.790 | 6.99%
CGA 0.667|0.28% | 0.771 | 4.46%

Table 2: Categorization results, indicating the mean.
Lift values are all compared to the Baseline model. The
std ranges between 0.001 to 0.002 for F1 and 0.001 to
0.009 for the consistency rate.

hurting the F1 of the new model. The higher consis-
tency rate of CST-Full compared to the CST-Sub-
Sampled can be explained by a difference of more
than 1M samples in the size of Dyyg.

Similarly, the CGA method also improves the
consistency rate, gaining lift of 4.5%, and doesn’t
significantly affect the accuracy score. As men-
tioned, we use a threshold 7' = 0.7, thus including
440k samples in Dyy,. These additional samples
correspond to a similar distribution as Dr.The im-
provement in both the consistency and the accu-
racy indicates that the generative model is able to
correctly learn the real-world item versioning and
produce a significant amount of data with high ac-
curacy labels and the same distribution as in the
accuracy test.

Summarizing the above, our experiments high-
light three key factors in the consistent-SSL frame-
work: 1) Scale - enriching the learning set with
more examples of item versioning increases the
consistency. 2) Quality - augmenting the data with
real-world samples is better than using generative
ones in term of performance. 3) Distribution - pre-
serving the original distribution in the augmented
set is important for maintaining good accuracy.

6 Conclusions

This work presents a new framework for consistent
text categorization in the context of e-Commerce.
The aim of this work is to improve a product catego-
rization model that serves various services of a ma-
jor web company. We address the labeling inconsis-
tency issues found in the categorization of similar
items, leading to poor user experience in related rec-
ommendation and search applications. Our frame-
work utilizes an unlabeled clustered dataset in two
ways: a self-training approach and a generative-
augmentation method. We performed a thorough

investigation of the two approaches and investi-
gated several factors that majorly influence their
performance. Our experimental results suggest that
both proposed methods improve the consistency
rate by 4% to 10%, while maintaining the accuracy
of the current production model. Finally, our study
illustrates the trade off between the quality and the
scale of the augmented dataset, and its impact on
the performance of both methods.

Limitations

Our work has several limitations. First, our con-
sistency study focuses on our used categoriza-
tion model and was conducted on only one spe-
cific dataset. It might not perfectly generalize to
other problems. Second, the proposed solutions
are based solely on data augmentation without
changing the current production settings and model.
Other approaches such as changing the model’s ob-
jective function to take consistency into account
might also benefit the solution. Lastly, in terms of
user perspective, while our solution show signifi-
cant improvement over the baseline, inconsisten-
cies are still visible.

Ethics Statement

This NLP research study was designed and carried
out with strict adherence to ethical principles and
guidelines. The study was reviewed and approved
by our company’s research lead prior to the sub-
mission. The study followed the ACL conference’s
guidelines on the use of language data. The re-
searchers take full responsibility for ensuring the
ethical conduct of this study and are committed to
upholding the highest standards of ethical research
practices in NLP.

References

All-MinmLM-L6-V2. 2022. All-minmlm-
16-v2. https://huggingface.co/
sentence-transformers/all-MinilLM-L6-v2.
[Online; accessed 10-October-2022].

Eric Arazo, Diego Ortego, Paul Albert, Noel E
O’Connor, and Kevin McGuinness. 2020. Pseudo-
labeling and confirmation bias in deep semi-
supervised learning. In 2020 International Joint
Conference on Neural Networks (IJCNN), pages 1-8.
IEEE.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and
David Lopez-Paz. 2019. Invariant risk minimization.
arXiv preprint arXiv:1907.02893.

319

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

M Saiful Bari, Tasnim Mohiuddin, and Shafiq Joty.
2020. Uxla: A robust unsupervised data augmen-
tation framework for zero-resource cross-lingual nlp.
arXiv preprint arXiv:2004.13240.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi-
lasha Ravichander, Eduard Hovy, Hinrich Schiitze,
and Yoav Goldberg. 2021. Measuring and improving
consistency in pretrained language models. Transac-
tions of the Association for Computational Linguis-
tics, 9:1012-1031.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. Proceedings of the AAAI conference
on artificial intelligence, 34(05):8018-8025.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Divyansh Kaushik, Eduard Hovy, and Zachary C Lipton.
2019. Learning the difference that makes a differ-
ence with counterfactually-augmented data. arXiv
preprint arXiv:1909.12434.

Varun Kumar, Ashutosh Choudhary, and Eunah Cho.
2020. Data augmentation using pre-trained trans-
former models. arXiv preprint arXiv:2003.02245.

Dong-Hyun Lee et al. 2013. Pseudo-label: The simple
and efficient semi-supervised learning method for
deep neural networks. Workshop on challenges in
representation learning, ICML, 3(2):896.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1-67.

Georgios Rizos, Konstantin Hemker, and Bjorn Schuller.
2019. Augment to prevent: short-text data augmen-
tation in deep learning for hate-speech classification.
In Proceedings of the 28th ACM international con-
ference on information and knowledge management,
pages 991-1000.

Connor Shorten, Taghi M Khoshgoftaar, and Borko
Furht. 2021. Text data augmentation for deep learn-
ing. Journal of big Data, 8(1):1-34.

Isaac Triguero, Salvador Garcia, and Francisco Herrera.
2015. Self-labeled techniques for semi-supervised
learning: taxonomy, software and empirical study.
Knowledge and Information systems, 42(2):245-284.

Victor Veitch, Alexander D’ Amour, Steve Yadlowsky,
and Jacob Eisenstein. 2021. Counterfactual invari-
ance to spurious correlations: Why and how to pass
stress tests. arXiv preprint arXiv:2106.00545.

Tianlu Wang, Xuezhi Wang, Yao Qin, Ben Packer, Kang
Li, Jilin Chen, Alex Beutel, and Ed Chi. 2020. Cat-
gen: Improving robustness in nlp models via con-
trolled adversarial text generation. arXiv preprint
arXiv:2010.02338.

Tianlu Wang, Diyi Yang, and Xuezhi Wang. 2021. Iden-
tifying and mitigating spurious correlations for im-
proving robustness in nlp models. arXiv preprint
arXiv:2110.07736.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong,
and Quoc Le. 2020. Unsupervised data augmenta-
tion for consistency training. Advances in Neural
Information Processing Systems, 33:6256-6268.

320

A

CST Algorithm

Algorithm 1 CST

Input: labeled training data Dy, = {(:rl, yz)}l 15

b A

unlabeled data Dy = {X;} 1" e Xi =
{:ﬁ;l) }kl , set function A
7=1
train a base classifier f°¢ on Dy,
Dyyg < 0
fori=1+1,1+2,...,l4+udo
Ji + h(X;; f*)

Daug < Daug U {(.’IA?‘(;) y ﬂz)}

j=1

6: train f on Dy, U Dy
7: return f

B

CGA Algorithm

Algorithm 2 CGA

Input: labeled training data D, = {(;, yz)}Z 15

10:

N ke 2

unlabeled data Dy = {X; }i+7+19 i =

K

{ﬁry)} , hnumber of samples to generate
=1

from each original sample n, score function

s, threshold T'

otherwise it returns the prediction of f; ;. If the
process gets to the end, i.e. f; agrees with f3 on
the label until L3, it returns the prediction of f; as
the final prediction.

Dpairs:{(i‘gla)‘l+1<l<l+u/\33 E[k]}

train a generative model M on Dpyirs
Dayg < 0
fori=1,2,...,ldo

generate n new samples igi), .. (l) with M and z;

forj=1,2,...,ndo
ifs(fn(»l) x;)) >T

then Daug — Daug U {(52)’ yl)}

train f on Dy, U Dyye
return f

C

Hierarchical-FastText

Hierarchical-FastText (HFT) consist of 4 FastText
models {f;}%_;. In training time, each f; is trained
over the same data samples, but with different gran-
ularity of the labels: f; is trained using only the
first level of the labels L1, fs is trained using the
first and second levels of the labels L and Lo and
so on. In inference time, we use an iterative method,
were at each iteration 7 for7 = 1,...,4 we predict
the label using f;. If f; agrees with f;_; on the
label until the level L;_1, the process continues,

321

