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Abstract

Currently, the reduction in the parameter scale
of large-scale pre-trained language models
(PLMs) through knowledge distillation has
greatly facilitated their widespread deployment
on various devices. However, the deployment
of knowledge distillation systems faces great
challenges in real-world industrial-strength ap-
plications, which require the use of complex
distillation methods on even larger-scale PLMs
(over 10B), limited by memory on GPUs and
the switching of methods. To overcome these
challenges, we propose GKD, a general knowl-
edge distillation framework that supports dis-
tillation on larger-scale PLMs using various
distillation methods. With GKD, developers
can build larger distillation models on memory-
limited GPUs and easily switch and combine
different distillation methods within a single
framework. Experimental results show that
GKD can support the distillation of at least
100B-scale PLMs and 25 mainstream methods
on 8 NVIDIA A100 (40GB) GPUs. 1

1 Introduction

Pre-trained language models, such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and
their variants, have achieved excellent success in
natural language processing (NLP) tasks when they
usually have hundreds of millions of parameters.
Considering computationally expensive resource
constraints, a wide range of real-world applica-
tions are often impeded. Knowledge distillation
(Hinton et al., 2015), as a method for compressing
large-scale pre-trained language models, is attract-
ing more and more attention. As large-scale PLMs
continue to grow in scale, and with advancements
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in knowledge distillation methods, it becomes in-
creasingly pressing to apply knowledge distillation
research in controlled laboratory settings to the real
world.

The field of knowledge distillation for language
models has witnessed a phenomenal progress in
recent years, particularly with regards to the reduc-
tion of model size, leading to the development of
a plethora of sophisticated distillation techniques
(Liu et al., 2022; Wu et al., 2022) and a comprehen-
sive toolkit (Yang et al., 2020b). However, despite
these rich research outcomes, there are still major
challenges in deploying knowledge distillation sys-
tems for real-world industrial-strength applications,
including:

• Obstacles to Distilling Ultra-large-scale
PLMs. Contrary to distillation in controlled
laboratory settings aimed at models with bil-
lions of parameters, many industrial-strength
applications (Yu et al., 2022) rely on ultra-
large-scale PLMs (on the order of 10B or
even larger). The training of ultra-large-scale
PLMs is already challenging, and the distilla-
tion process requires simultaneous training of
both large and small models, leading directly
to difficulties in distillation of ultra-large-scale
PLMs. Furthermore, there are also methods
(Wu et al., 2021a; Yuan et al., 2021) for distill-
ing multiple large models into a single small
model, which pose significant challenges in
memory-constrained GPU environments.

• Obstacles to Switching Distillation Meth-
ods. Deploying a knowledge distillation sys-
tem requires the implementation of numerous
distillation methods to meet different require-
ments, but due to the differences in implemen-
tation of these methods, it is difficult to switch
and combine them easily within a framework.
It is important to have an architecture that
accommodates a range of distillation meth-
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ods while ensuring efficient training, such as
avoiding excessive extraction of intermediate
features that lead to memory waste. Thus, a
compatible and efficient architecture is cru-
cial for successful deployment of knowledge
distillation systems.

To overcome these challenges, we present a gen-
eral knowledge distillation framework (GKD) for
deploying knowledge distillation systems that sup-
port various scale PLMs and methods. To over-
come the obstacles to distilling ultra-large-scale
PLMs, GKD leverages the techniques of training
large transformer models to the distillation process
that requires training multiple large (teacher) and
small (student) models simultaneously, incorporat-
ing the latest model and data parallel strategies.
To overcome the obstacles to switching distillation
methods, GKD employs a dynamic hook mech-
anism and auxiliary model to extract and operate
intermediate layer features and inference process of
models in each iteration. While being compatible
with various methods, it avoids the waste of mem-
ory caused by extracting all intermediate layers.
GKD presents the first exploration of knowledge
distillation for language models in industrial sce-
narios. Specifically, our main contribution lies in:

• Larger-scale Model Distillation. We pro-
pose a teacher-student parallel strategy based
on advanced memory optimization methods,
addressing the challenge of distilling ultra-
large-scale PLMs (over 10B) due to memory
constraints. The proposed strategy supports
distillation of at least 100B-scale PLMs on 8
NVIDIA A100 (40GB) GPUs.

• More Compatible Method Architecture.
We propose an efficient adaptive architecture
compatible with various methods, addressing
the challenge of switching and using different
distillation methods within a single framework
with difficulty. The proposed architecture sup-
ports at least 25 model distillation methods.

• Easy-to-use Open Source Toolkit. We have
open-sourced the required toolkit for GKD,
which provides a command-line interface for
25 distillation methods, facilitating developers
to deploy knowledge distillation systems for
ultra-large-scale PLMs.

2 Related work

In recent years, knowledge distillation for com-
pressing PLMs has gained increased attention.
These works studied ways of better utilizing lan-
guage model features for transferring knowledge
from large teacher models to a smaller student
model, involving hidden layers (Jiao et al., 2020),
attention layers (Wang et al., 2021), soft labels
(Jafari et al., 2021), and hard labels (Jafari et al.,
2022). These works validated their methods with
PLMs of hundreds of millions of parameters, such
as BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), XLNet (Yang et al., 2019), etc. However,
deployment of the distillation system on GPUs with
limited memory has been hindered by the reliance
on ultra-large-scale PLMs (10B or even larger). An
offline distillation method (Liu et al., 2021) that
saved teacher features before training the student
individually reduced memory pressure, but was
limited to methods with smaller feature scales and
without teacher-student interaction. In this work,
GKD was compatible with ultra-large-scale PLMs
distillation via the introduction of Megatron-LM
(Shoeybi et al., 2019) based on model parallelism
and Zero Redundancy Optimizer (ZeRO) (Rajbhan-
dari et al., 2020) based on data parallelism.

While some code for knowledge distillation
methods focused on language models was made
public (Sanh et al., 2019; Jiao et al., 2020; Sun
et al., 2020), there was a lack of a general frame-
work for deploying knowledge distillation sys-
tems. TextBrewer (Yang et al., 2020b) packaged
some abstract and simple distillation processes and
loss functions, but lacked implementation of many
methods and was difficult to adapt to increasingly
complex distillation methods. There were signif-
icant differences in the implementation of these
methods, such as DIITO (Wu et al., 2022) requiring
dynamic intervention of the intermediate layer com-
putation in the model; SID (Aguilar et al., 2020)
changing the intermediate layer features during
training; Continuation-KD (Jafari et al., 2022) al-
tering the loss calculation method as the epoch
increased, and so on. These differences in imple-
mentation made it difficult for them to be easily
switched and combined within a single framework,
hindering the application of various advanced meth-
ods in knowledge distillation systems. In this work,
GKD accommodated various advanced knowledge
distillation methods through a dynamic hook mech-
anism and auxiliary models.
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Figure 1: The framework of the GKD. From the user requirements to the model deployment on the device, the GKD
includes the six main processes involved in the deployment of the knowledge distillation system.

3 GKD

In this section, we first introduce the overview
framework of the proposed GKD, then delve into
the details of how GKD implements larger-scale
model distillation and a more compatible method
architecture, from the perspective of model build-
ing and training.

3.1 Overview Framework

Figure 1 shows the overview framework of GKD,
which consists of six main processes:

(1) User Requirements: This process begins with
the user specifying their requirements and forming
a configuration file, which includes the choice of
training task, distillation method, teacher model,
student model, etc.

(2) Model Building: This process addresses the
obstacles to distilling ultra-large-scale PLMs by
implementing a teacher-student parallel strategy
that combines Megatron-LM (Shoeybi et al., 2019)
and ZeRO (Rajbhandari et al., 2020). The process
involves selecting and executing parameter initial-
ization strategies for the student model, such as
initializing the student model with a pre-trained
student, a truncated parameter teacher, random ini-
tialization methods, or other distilled students. It
also includes initializing the training data with a
tokenizer.

(3) Model Training: This process addresses the
obstacles to switching distillation methods by im-
plementing an efficient adaptive architecture that
is compatible with various methods. This process
includes the initialization of methods to extract
and compute different model features based on the
requirements of different methods at different itera-
tion numbers.

(4) Multiple Training: This process is utilized
for methods that require multiple training, such
as task-specific methods (Jiao et al., 2020) that
necessitate distillation in the task-specific stage
after distillation in the pre-training stage.

(5) Analysis: This process confirms the compli-
ance of the distilled student model with deployment
requirements through analysis, such as examining
the performance on the test set and other phenom-
ena that can be utilized to enhance the model.

(6) Deployment: This process deploys the stu-
dent model on the corresponding device, such as
low-computing mobile devices or services with
higher load deployment under equal computing
power.

These six processes are performed in sequence
to form the workflow of the knowledge distilla-
tion system. The greatest contribution of GKD lies
in the design of the model building and training,
as the other processes do not pose a challenge to
the deployment of the knowledge distillation sys-
tem. In the following sections, we will provide a
detailed description of how GKD enables larger-
scale model distillation in the model building and
more compatible method architectures in the model
training.

3.2 Model Building

The challenge in building models lies in allocating
ultra-large-scale PLMs, consisting of a student and
one or more teacher models, on a GPU with only
several tens of GB of memory. To address this
challenge, we propose a teacher-student parallel
strategy that splits the model parameters to differ-
ent GPUs while preserving the feature distance
computation between the teacher and student mod-
els. This strategy is inspired by the optimization of
single ultra-large-scale PLMs, including Megatron-
LM (Shoeybi et al., 2019) which splits each pa-
rameter matrix in the transformer across multiple
GPUs, and ZeRO (Rajbhandari et al., 2020) which
partitions each layer of transformers sequentially
across multiple GPUs.

As shown in Figure 2, we demonstrate the com-
parison between the previous strategy and our pro-
posed teacher-student parallel strategy using an
example. The example includes the allocation of
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Figure 2: This comparison between the previous strat-
egy and the proposed teacher-student parallel strategy
is demonstrated through an example, where it can be
observed that the teacher-student parallel strategy sig-
nificantly reduces the memory utilization of each GPU.

two 6-layer transformer teacher models and one 4-
layer transformer student model on the GPU. The
current methods allocate all the model parameters
on each GPU, severely limiting the training of ultra-
large-scale PLMs and multiple models. To reduce
the memory usage on each GPU without compro-
mising the interaction between the teacher and the
student, our teacher-student parallel strategy evenly
distributes the parameters of the teacher and student
on different GPUs, with each GPU corresponding
to the matching parameters of the teacher and stu-
dent. With the model parallel and data parallel
count being 2, the memory usage can be reduced
by at least half. If utilizing ZeRO-Offload (Ren
et al., 2021), the optimizer states can further be
stored in CPU memory to reduce the utilization of
GPU memory.

3.3 Model Training

The challenge in training models lies in how to
easily switch and use different distillation meth-
ods within a single framework. To address this
challenge, we propose an efficient adaptive archi-
tecture that is compatible with various methods. It
implements the operation of different methods and
the calculation of features through a dynamic hook

Micro-batch Extraction hooks 
Operation hooks

T TS
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Optimize

data and hooks
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Figure 3: A workflow for efficient adaptive architecture
compatible with various methods in a single iteration.

mechanism and an auxiliary model, respectively.
As shown in the workflow in Figure 3, the dynamic
hook mechanism constructs extraction hooks for
extracting model features and operation hooks for
modifying the model inference process during each
iteration. These hooks are described by a config-
uration file similar to JSON, which only requires
recording the operations required by the method
and playing a role during the model inference pro-
cess. The auxiliary model calculates the loss func-
tion based on these hooks and the returned model
features. Table 1 describes the features that this
architecture can adapt to existing methods.

It is worth noting that GKD can achieve method
combination by integrating hooks from different
methods. GKD can also record all model features
through extraction hooks and save the distance of
teacher and student features in the auxiliary model
for later analysis of the correlation between feature
distance and task performance in the distillation
process.

4 Experiments

In this section, we verified that GKD, which is used
for distillation of language models, can support at
least 100B-scale parameters and 25 mainstream
methods on 8 NVIDIA A100 (40GB) GPUs.

4.1 Experimental Setup

Datasets All methods that require distillation
in the pre-training stage use BooksCorpus (Zhu
et al., 2015) and English Wikipedia as training data
(19GB). For the task-specific stage (fine-tuning),
we evaluate different distillation methods using the
more challenging SuperGLUE benchmark (Wang
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Compatible features Representative methods
Modify the inference process of the
model

DIITO (Wu et al., 2022), LRC-BERT (Fu et al., 2021), Theseus (Xu et al., 2020)

Dynamically modify the feature extrac-
tion or inference process

SID (Aguilar et al., 2020), Theseus (Xu et al., 2020)

Additional trainable parameters TinyBERT (Jiao et al., 2020), RAIL-KD (Haidar et al., 2022), Universal-KD (Wu et al.,
2021b), LRC-BERT (Fu et al., 2021)

Dynamically change loss function Annealing-KD (Jafari et al., 2021), Continuation-KD (Jafari et al., 2022), MobileBERT (Sun
et al., 2020)

Complex intermediate layer calculation CKD (Park et al., 2021), MGSKD (Liu et al., 2022), ALP-KD (Passban et al., 2021)
Train student by multiple teachers TMKD (Yang et al., 2020a), MT-BERT (Wu et al., 2021a), RL-KD (Yuan et al., 2021),

Uncertainty (Li et al., 2021)
Multiple training reduces teacher until
student scale

TAKD (Mirzadeh et al., 2020), DGKD (Son et al., 2021)

Other simple methods KD (Hinton et al., 2015), PD (Turc et al., 2019), PKD (Sun et al., 2019), DistilBERT (Sanh
et al., 2019), MiniLM (Wang et al., 2020), MiniLMv2 (Wang et al., 2021)

Table 1: The compatible features and representative methods of our proposed adaptive architecture.

et al., 2019).

Methods We tested 22 distillation methods
specifically designed for language models, as well
as three classic methods (KD, TAKD, and DGKD)
from computer vision, which are listed in Ta-
bles 1 and 2. The implementation of the teacher-
student parallel strategy was carried out using the
Megatron-LM (Shoeybi et al., 2019) and Deep-
Speed (Rasley et al., 2020) framework.

Models The commonly used BERT (Devlin et al.,
2019) lacks open-source ultra-large-scale PLMs,
so we employed a more advanced GLM (Du et al.,
2022), which boasts open-source models of 10B-
scale or even 130B-scale (Zeng et al., 2023), signif-
icantly reducing the deployment cost of the knowl-
edge distillation system. The scale of teachers and
students are presented in Tables 2 and 3.

Refer to Appendix C for more implementation
details.

4.2 Results

More Compatible Method Architecture To ver-
ify the proposed adaptive architecture can effec-
tively be compatible with various methods, we
tested 25 mainstream distillation methods and
present the results in Table 2. The results demon-
strate that these methods can be easily switched and
utilized in GKD. It is worth noting that TinyBERT
(without data augmentation) outperformed all the
latest methods in our setup. This suggests that the
latest methods may not necessarily be the most ef-
fective, and different requirements may necessitate
different methods. Additionally, the reliability of
GKD is further validated from the perspective of
loss function values in Appendix B.1.

Larger-scale Model Distillation To verify the
proposed teacher-student parallel strategy can sup-
port distillation of 100B-scale model on 8 NVIDIA
A100 (40GB) GPUs, we present the memory and
time consumption of different strategies for distill-
ing models of varying scale in Table 3. The results
indicate that previous strategies encountered GPU
memory overflow when distilling 6B-scale models,
whereas our strategy is capable of supporting the
distillation of 100B-scale models. The results in
rows 9, 10, and 11 respectively demonstrate that
GPU memory consumption can be reduced through
splitting the model parameters, optimizer states, or
storing the optimizer states in CPU memory. If not
limited to 8 GPUs, our strategy has the potential
to distill even larger models. Appendix B.2 further
examines the trade-off between memory and time
consumption.

4.3 Further Exploration

In addition to compatibility with various methods,
GKD also allows for effortless combination of dif-
ferent methods. In Appendix A.1, we have dis-
covered a method that achieves SOTA results by
combining the advantages of different distillation
methods. Appendix A.2 presents a tool that ana-
lyzes the correlation between feature distance and
task performance through GKD, enhancing the in-
terpretability of the distillation process.

5 Conclusions

In this paper, we propose a general knowledge dis-
tillation framework, GKD, for deploying knowl-
edge distillation systems targeting large-scale
PLMs. GKD satisfies the demands of real-world
applications by employing a parallel strategy and
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Methods ReCoRD COPA WSC RTE BoolQ WiC CB MultiRC avgF1/Acc. Acc. Acc. Acc. Acc. Acc. F1/Acc. F1a/EM
GLMBase (teacher, 110M) 72.80/72.17 66.00 77.88 72.92 79.39 66.14 88.19/91.07 72.32/26.34 71.72
GLMLarge (teacher, 340M) 80.08/79.54 78.00 81.73 79.78 82.63 70.06 86.33/89.29 76.39/37.67 77.11

Single-teacher: Teacher (GLMBase)⇒ Student (66M)
KD (Hinton et al., 2015) 22.66/21.99 61.67 63.46 54.63 66.07 57.05 61.75/72.02 51.98/2.41 52.41
PD (Turc et al., 2019) 54.36/53.59 65.67 66.67 59.45 69.82 59.20 80.13/81.55 65.97/15.29 62.03
PKD (Sun et al., 2019) 61.77/60.99 60.00 65.38 68.83 77.73 65.78 82.76/85.12 69.99/22.67 66.17
DistilBERT (Sanh et al., 2019) 59.79/59.05 65.00 68.59 60.89 73.39 60.34 77.48/83.33 66.98/17.38 63.78
Theseus (Xu et al., 2020) 57.07/56.33 61.67 66.35 68.11 77.81 64.37 89.14/87.50 69.08/21.79 66.09
TinyBERT (Jiao et al., 2020) 65.60/64.88 70.33 75.00 71.96 77.97 67.87 89.58/89.88 71.37/25.74 70.83
MobileBERT† (Sun et al., 2020) 59.29/58.61 65.33 68.59 58.97 74.61 63.85 86.65/88.69 66.87/19.41 65.14
SID (Aguilar et al., 2020) 27.17/26.19 65.00 65.06 58.12 69.33 57.16 51.02/73.81 59.26/14.55 55.08
MiniLM (Wang et al., 2020) 60.00/59.24 62.00 63.46 67.63 75.88 64.99 67.63/79.17 67.36/19.66 63.81
MiniLMv2 (Wang et al., 2021) 60.88/60.16 62.00 62.82 66.67 76.73 63.69 66.38/76.79 68.68/21.65 63.65
ALP-KD (Passban et al., 2021) 57.72/56.90 60.67 64.74 68.11 77.20 64.79 74.82/79.76 68.21/19.90 64.27
LRC-BERT (Fu et al., 2021) 55.10/54.44 65.67 66.67 56.56 74.86 57.63 80.27/81.55 65.75/16.16 62.25
Annealing-KD (Jafari et al., 2021) 56.08/55.39 69.33 66.67 58.97 70.57 59.82 85.78/85.12 66.26/13.92 63.33
CKD (Park et al., 2021) 56.35/55.65 65.00 66.67 61.25 71.63 58.83 88.61/84.52 66.11/15.22 63.33
Universal-KD (Wu et al., 2021b) 58.67/57.83 58.67 66.67 70.16 77.56 65.52 87.52/85.71 69.96/22.63 66.22
DIITO (Wu et al., 2022) 63.71/63.00 72.00 69.23 65.46 75.46 60.76 86.75/85.12 66.28/17.63 66.77
Continuation-KD (Jafari et al., 2022) 55.61/54.91 68.67 64.74 58.72 71.42 58.25 85.61/83.93 66.64/13.33 62.73
RAIL-KD (Haidar et al., 2022) 59.85/59.19 66.67 70.19 60.53 69.00 60.34 78.98/83.33 66.55/15.60 63.56
MGSKD (Liu et al., 2022) 50.29/49.49 65.00 65.06 65.94 73.31 63.17 83.89/84.52 67.32/15.56 63.50

Multi-teacher: Teachers (GLMBase and GLMLarge)⇒ Student (66M)
TMKD (Yang et al., 2020a) 65.77/65.09 70.33 63.14 66.91 75.37 63.38 70.22/79.17 68.76/22.77 65.63
MT-BERT (Wu et al., 2021a) 46.81/46.08 59.00 63.46 65.46 66.90 62.33 78.76/80.36 57.53/2.06 59.12
RL-KD (Yuan et al., 2021) 59.78/58.99 58.33 66.03 69.07 77.93 65.78 76.87/82.74 69.24/22.21 65.26
Uncertainty (Li et al., 2021) 58.52/57.67 59.33 64.10 70.16 77.55 65.78 80.85/83.33 69.47/22.49 65.39

Teacher assistants: Teacher (GLMLarge)⇒ Assistant (200M)⇒ Assistant (110M)⇒ Student (66M)
TAKD (Mirzadeh et al., 2020) 25.50/24.69 60.33 66.03 55.11 66.39 57.94 76.28/76.79 55.90/1.50 54.52
DGKD (Son et al., 2021) 23.68/22.96 61.00 66.99 55.96 65.71 58.73 75.45/75.60 48.06/1.50 54.00

Table 2: Results of 25 mainstream distillation methods implemented using GKD on the SuperGLUE validation set.
Due to the alteration of the model structure by MobileBERT†, the parameters of the teacher and student models are
293M and 25M, respectively. ⇒ denotes distillation process. The results for all methods were averaged over three
random seeds.

Strategy Teacher⇒Student (scale) MA (GB) CA (GB) Time (ms) Mem (GB) MP DP ZeRO Offload

Previous

110M⇒22M 0.99 1.27 10.40 56.96 1 8
110M⇒66M 1.73 2.02 10.82 57.60 1 8
340M⇒66M 3.11 3.58 16.41 63.46 1 8

5B⇒1B 32.44 36.57 53.34 61.58 1 8
6B⇒1.2B GPU memory overflow 1 8

Ours

6B⇒1.2B 18.91 21.40 85.61 57.28 2 4
7.5B⇒1.5B 24.22 27.36 87.08 60.44 2 4
10B⇒2B 30.91 34.54 105.40 62.33 2 4
10B⇒2B 18.45 22.56 119.72 68.68 2 4 ✓
10B⇒2B 15.83 22.55 387.19 106.35 2 4 ✓ ✓
25B⇒5B 20.41 23.51 379.38 63.07 8 1
50B⇒10B 17.93 20.94 4570.54 230.27 8 1 ✓ ✓
65B⇒13B 22.48 26.10 6412.11 293.11 8 1 ✓ ✓
90B⇒18B 30.56 35.27 7193.26 373.81 8 1 ✓ ✓
100B⇒20B 33.62 36.88 9081.97 410.83 8 1 ✓ ✓
110B⇒22B GPU memory overflow 8 1 ✓ ✓

Table 3: The consumption of memory and time during the pre-training stage of TinyBERT when distilling
teacher models of different scales on 8 NVIDIA A100 (40GB) GPUs is presented. The micro batch and gradient
accumulation steps are set to 1. Where MA denotes the maximum memory allocated on the GPU, CA denotes
the maximum cached memory on the GPU, Time denotes the time required to train each sample, Mem denotes
the size of occupied CPU memory, MP denotes the number of model parallelism, DP denotes the number of data
parallelism, ZeRO denotes whether the optimizer states are partitioned across different GPUs, and Offload denotes
whether the optimizer states are stored in CPU memory.
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adaptive architecture, allowing for the distillation
of ultra-large scale PLMs (over 10B) and the switch
of various advanced distillation methods. In the fu-
ture, we plan to launch our knowledge distillation
system for facilitating the mass production and de-
ployment of student models.
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A Further Exploration

In this section, we further explore the capabilities
of GKD in combining different distillation methods
and enhancing the interpretability of the distillation
process.

A.1 Method Combination
Thanks to the dynamic hook mechanism, GKD
is capable of combining methods by integrating
hooks from different methods. As shown in Table
4, we demonstrate results from several dozen com-
binations of different model features. To conserve
computational power, we set the batch size to 32
during pre-training and set the sizes of the teacher
and student models to 110M and 22M, respectively.
In the task-specific stage, the batch size and learn-
ing rate were fixed at 16 and 1e-5, respectively,
without the use of grid search and seed averaging.
Based on the results in Table 4, the following con-
clusions can be drawn.

(1) We discovered the method BestC which
achieves the SOTA, outperforming TinyBERT by
1.24% on average in SuperGLUE. BestC combines
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Methods Pre-training stage Task-specific stage SGEmb Att Q/K V HS Soft Hard Emb Att Q/K V HS Soft Hard
KD Random initialization parameters CE CE 49.48

Truncate fine-tuned teacher parameters CE CE 51.62
CE CE CE CE 59.68
CE CE CE 60.24
KL CE CE 60.62
KL CE 63.16

MSE CE 63.46
RAIL-KD Truncate fine-tuned teacher parameters MSE−f CE CE 51.63
MiniLM KLf KLf CE 60.65
MiniLMv2 KLf KLf CE 60.47

KLf KLf KL KLf KLf CE 65.41
KLf KLf KL CE 64.64

MGSKD MSE MSE MSE MSE/HL MSE/HL KL 59.65
TinyBERT MSE MSE MSE MSE MSE MSE CE 65.81

MSE MSE MSE KL MSE MSE MSE CE 66.19
MSE MSE MSE KL CE 62.75
MSE MSE MSE CE 63.52
MSE MSE KL MSE MSE CE 66.51

Mix5 MSE MSE+KLf KLf KLf MSE+Cos KL CE MSE MSE+KLf KLf KLf MSE CE CE 65.63
MSE MSE+KLf KLf KLf MSE+Cos KL CE CE 62.18
MSE MSE KLf KLf MSE+Cos KL CE MSE MSE KLf KLf MSE CE CE 66.58
MSE MSE KLf KLf MSE+Cos KL CE CE 63.06
MSE MSE+KLf KLf MSE+Cos KL CE MSE MSE+KLf KLf MSE CE CE 66.25
MSE MSE+KLf KLf MSE+Cos KL CE CE 62.86
MSE MSE+KLf KLf KLf MSE CE MSE MSE+KLf KLf KLf MSE CE CE 66.54
MSE MSE+KLf KLf KLf MSE CE CE 64.64

KLf KLf KLf KL CE KLf KLf KLf CE CE 64.68
KLf KLf KLf KL CE CE 60.49

BestC MSE KLf KLf MSE KL MSE KLf KLf MSE CE 67.05
MSE KLf KLf MSE KL CE 62.71
MSE KLf KLf MSEf KL MSE KLf KLf MSEf CE 65.73
MSE KLf KLf MSEf KL CE 62.53
MSE MSEf KL MSE MSEf CE 66.17
MSE MSEf KL CE 62.58

MSEf KL MSEf CE 65.79
MSEf KL CE 63.69

KLf KLf MSEf KL KLf KLf MSEf CE 66.01
KLf KLf MSEf KL CE 63.87

MSE KLf KLf KL MSE KLf KLf CE 66.53
MSE KLf KLf KL CE 63.26
MSE KLf KLf MSEf2 KL MSE KLf KLf MSEf2 CE 65.55
MSE KLf KLf MSEf2 KL CE 62.56
MSE KLf KLf MSE−f KL MSE KLf KLf MSE−f CE 66.22
MSE KLf KLf MSE−f KL CE 63.26

KLf KLf MSE KL KLf KLf MSE CE 66.78
KLf KLf MSE KL CE 63.12

Table 4: Results of combining various features of models using GKD on the SuperGLUE validation set. Emb, Att,
Q/K, V, HS, Soft, Hard, and SG denote the output of the embedding layer, attention scores, query/key matrix, value
matrix, hidden state, soft labels, hard labels, and the average score on the SuperGLUE benchmark, respectively.
MSE, KL, CE, Cos, and HL respectively denote the distance functions between the teacher and student features as
mean squared error, Kullback-Leibler divergence, cross-entropy, cosine distance, and Huber loss. MSEf , MSE−f ,
and MSEf2 respectively indicate the calculation of MSE for the last layer, before the last layer, and the second-to-last
layer’s hidden state. MSE+KLf represents the sum of MSE and KL calculated for the last layer’s attention scores.
The Mix5 method can be understood as a combination of the KD (Hinton et al., 2015), TinyBERT (Jiao et al., 2020),
MiniLM (Wang et al., 2020), MiniLMv2 (Wang et al., 2021), and DistilBERT (Sanh et al., 2019) methods.

the features of TinyBERT, MiniLMv2, and soft la-
bels. (2) The method that performs distillation in
the pre-training stage (row 5) outperforms those
using randomly initialized parameters (row 3) or
truncated fine-tuned teacher parameters (row 4) in
the pre-training stage. (3) The methods using soft
labels in the pre-training stage (rows 14 and 17)
outperform those not using soft labels (rows 12
and 16). (4) Starting from row 21, we compare

the results of various combinations distilled in the
task-specific stage and not distilled (only trained
on hard labels). We find that distillation in the task-
specific stage greatly improves the performance of
the task.

A.2 Enhanced Interpretability
Thanks to the adaptive architecture, GKD can
record all model features through extraction hooks
and save the distance of teacher and student fea-
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Figure 4: Spearman and Pearson correlation coefficient of pre-training loss with the distance between teacher and
student features of TinyBERT. This records the training process of TinyBERT in Table 2, where the sizes of the
teacher and student models are 110M and 66M respectively. The distance after pair-wise scaled dot-product is
calculated by first computing features H ← HHT

√
dimensionality

. Att1, HS1, Q1, K1, and V1 denote the attention
scores, hidden state, query matrix, key matrix, and value matrix of the first layer transformer, respectively. Soft and
Emb denote the soft labels and output of the embedding-layer respectively. KL1, KL5, KL10, KL15, and KL20
denote the KL divergence with temperatures of 1, 5, 10, 15, and 20, respectively.

tures in the auxiliary model for later analysis of the
correlation between feature distance and task per-
formance in the distillation process. As an example
of TinyBERT’s pre-training stage distillation, we
present the Spearman and Pearson correlation coef-
ficients between the feature distance and training
loss, and between the feature distance and task per-
formance, respectively, in Figures 4 and 5. The
following conclusions can be drawn.

(1) The results shown in Figure 4 indicate that
while TinyBERT trains its embedding layer, atten-
tion scores, and hidden state, many other features
(e.g., the value matrix and features obtained after
pair-wise scaled dot-product) also decrease in dis-
tance between teacher and student as the training
loss decreases. This suggests that we may be able
to find a way to automatically have a large number

of student features approach the teacher without
having to distill all features, thus reducing the cost
of distillation. (2) The results shown in Figure
5 indicate that the distillation in the pre-training
stage of TinyBERT actually leads to a decrease in
pre-training task performance. This suggests that
the performance of pre-training tasks is not neces-
sarily positively correlated with the performance
of downstream tasks. It is noteworthy that there
are a small number of features (e.g., soft labels)
whose distance is related to task performance. Our
hypothesis is that distilling features that are related
to task performance may further improve task per-
formance, and the third conclusion in Appendix
A.1 supports this hypothesis.
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Figure 5: Spearman and Pearson correlation coefficient of task performance (perplexity of the language model on
the validation set) of pre-training stage with the distance between teacher and student features of TinyBERT. This
records the training process of TinyBERT in Table 2, where the sizes of the teacher and student models are 110M
and 66M respectively. The distance after pair-wise scaled dot-product is calculated by first computing features
H ← HHT

√
dimensionality

. Att1, HS1, Q1, K1, and V1 denote the attention scores, hidden state, query matrix, key
matrix, and value matrix of the first layer transformer, respectively. Soft and Emb denote the soft labels and output of
the embedding-layer respectively. KL1, KL5, KL10, KL15, and KL20 denote the KL divergence with temperatures
of 1, 5, 10, 15, and 20, respectively.

B Additional Analysis

In this section, we further verify the reliability of
GKD from the perspective of loss function value,
and analyze the balance of memory and time con-
sumption in the teacher-student parallel strategy.

B.1 Are the Loss Values of GKD Normal?
In order to further verify the reliability of GKD, we
present the loss function values of each method at
various distillation stages in Figure 6. The down-
ward trend of all the loss values is consistent with
our expectations, with two noteworthy observa-
tions: (1) MobileBERT and SID tend to gradually
increase the number of distilled layers during train-
ing, hence the loss values exhibit an up-and-down
trend. (2) The ReCoRD dataset, shown in task-

specific stages, was trained for 5 epochs, therefore
some methods may show loss changes in stair-step
fashion, such as Annealing-KD and Universal-KD.

B.2 Trade-off between Memory and Time
Consumption

In order to speed up the training process while en-
suring that the distillation process is not limited by
GPU memory, we conducted a full combination
of all optimization options to find the best balance
between memory and time. Table 5 showcases the
resource usage of 5B-scale and 10B-scale teacher
models under different MP, DP, ZeRO, and Offload
options during distillation. The results of the test-
ing lead us to the following recommendations: In
cases of insufficient GPU memory, ZeRO should
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Figure 6: Loss function values of 25 methods across different distillation stages. The loss values are normalized due
to the varying range of values across different methods. Some methods are distilled at most 3 times, including a
pre-training stage and two task-specific stages (ReCoRD dataset). TAKD and DGKD based on teacher-assistant
strategy showcase the final distillation process.
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Teacher⇒Student (scale) MA (GB) CA (GB) Time (ms) Mem (GB) MP DP ZeRO Offload

5B⇒1B

17.65 33.11 169.01 95.15 1 8 ✓† ✓†

9.07 14.97 262.49 86.56 2 4 ✓† ✓†

4.87 6.09 430.61 86.20 4 2 ✓† ✓†

2.72 3.71 884.05 82.61 8 1 ✓† ✓†

17.65 30.77 175.08 95.13 1 8 ✓ ✓
9.06 13.74 252.99 86.74 2 4 ✓ ✓
4.87 5.79 437.50 86.01 4 2 ✓ ✓
2.72 3.43 831.22 83.24 8 1 ✓ ✓

18.92 31.04 61.43 70.50 1 8 ✓†

10.44 14.24 78.97 62.18 2 4 ✓†

6.31 7.42 129.91 61.59 4 2 ✓†

4.23 5.10 260.96 58.72 8 1 ✓†

18.92 28.81 60.25 70.52 1 8 ✓
10.43 13.73 80.64 62.38 2 4 ✓
6.31 7.32 129.40 62.27 4 2 ✓
4.23 5.04 243.80 58.76 8 1 ✓

32.44 36.57 53.34 61.58 1 8
16.34 18.50 68.17 62.18 2 4
8.31 9.41 121.26 62.16 4 2
4.27 5.04 231.95 58.83 8 1

10B⇒2B

30.73 36.89 226.51 104.46 1 8 ✓† ✓†

15.84 24.19 378.93 106.31 2 4 ✓† ✓†

8.41 10.08 664.45 95.51 4 2 ✓† ✓†

4.70 6.00 1210.07 98.12 8 1 ✓† ✓†

30.73 36.89 222.50 104.45 1 8 ✓ ✓
15.83 22.55 387.19 106.35 2 4 ✓ ✓
8.41 9.72 693.03 95.50 4 2 ✓ ✓
4.70 5.81 1224.11 98.09 8 1 ✓ ✓

33.23 36.91 85.52 66.17 1 8 ✓†

18.46 23.13 119.30 68.61 2 4 ✓†

11.11 12.91 186.53 57.42 4 2 ✓†

7.53 8.87 310.56 59.88 8 1 ✓†

33.23 36.90 88.21 66.13 1 8 ✓
18.45 22.56 119.72 68.68 2 4 ✓
11.11 12.78 198.84 57.45 4 2 ✓
7.53 9.01 329.12 59.83 8 1 ✓

GPU memory overflow 1 8
30.91 34.54 105.40 62.33 2 4
15.64 17.62 174.30 57.79 4 2
8.00 8.98 311.44 59.73 8 1

Table 5: The consumption of memory and time during the pre-training stage of TinyBERT when distilling
teacher models of different scales on 8 NVIDIA A100 (40GB) GPUs is presented. The micro batch and gradient
accumulation steps are set to 1. Where MA denotes the maximum memory allocated on the GPU, CA denotes
the maximum cached memory on the GPU, Time denotes the time required to train each sample, Mem denotes
the size of occupied CPU memory, MP denotes the number of model parallelism, DP denotes the number of data
parallelism, ZeRO denotes whether the optimizer states are partitioned across different GPUs, and Offload denotes
whether the optimizer states are stored in CPU memory. In addition to the optimizer states, the model gradients can
also be partitioned across different GPUs or stored in CPU memory. The dagger symbol (†) represents optimization
of both the optimizer states and the model gradients simultaneously.
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Hyperparameters ReCoRD COPA WSC RTE BoolQ WiC CB MultiRC
Sequence length 512 256 128 256 256 256 256 512
Epochs 5 50 50 50 20 30 50 15
Dropout 0.1
Attention Dropout 0.1
Warmup Ration 0.1
Weight Decay 0.1
Learning Rate Decay Linear
Adam ϵ 1E-8
Adam β1 0.9
Adam β2 0.999
Gradient Clipping 0.1

Table 6: Other hyperparameters for the task-specific stage on the 8 datasets of the SuperGLUE benchmark.

be considered first for partitioning the optimizer
states and model gradients, followed by increasing
the number of model parallelism, and lastly, us-
ing ZeRO-Offload to store the optimizer states and
model gradients in CPU memory.

C Implementation Details

In this section, we provide further details regard-
ing the hyperparameters and models to facilitate
replication by developers.

C.1 Hyperparameters

The batch size, number of iterations, and peak
learning rate for the pre-training stage were set
to 64, 150000, and 4e-4, respectively. The task-
specific hyperparameters for specific methods were
set to the optimal values from their correspond-
ing papers, while other hyperparameters (see Ta-
ble 6) were kept consistent with the fine-tuning
teacher. For single-teacher methods in the task-
specific stage, grid search was used to optimize
hyperparameters, including learning rate {5e-6,1e-
5,2e-5} and batch size {16,32}. Table 7 presents
the learning rate and batch size for each method on
each dataset in the SuperGLUE benchmark. The
results for all methods were averaged over three
random seeds.

C.2 Models

Table 8 shows the specific parameters of all the
models utilized in this paper. The 110M, 340M,
and 10B scale models are from GLM pre-trained
models 2. The 293M-scale model with the Mobile-
BERT structure (inverted-bottleneck structure) was
obtained by us through a week of pre-training with
16 NVIDIA A100 (40GB) GPUs, and the 25M-
scale model is also with the MobileBERT structure.

2https://github.com/THUDM/GLM

When conducting pre-training tasks, the models
with the MobileBERT structure require the expan-
sion of the token dimension, thus the actual number
of parameters is greater than the scale. The other
sized teacher models were tested with randomly
initialized parameters to assess resource consump-
tion. All the distillation processes were conducted
using half-precision floating-point (fp16) models.
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Methods ReCoRD COPA WSC RTE BoolQ WiC CB MultiRC
bs/lr bs/lr bs/lr bs/lr bs/lr bs/lr bs/lr bs/lr

GLMBase (teacher, 110M)
bs (batch size) = 16, lr (learning rate) = 1E-5

GLMLarge (teacher, 340M)
Single-teacher: Teacher (GLMBase)⇒ Student (66M)

KD (Hinton et al., 2015) 16/5E-06 16/2E-05 16/1E-05 16/2E-05 16/2E-05 16/5E-06 16/2E-05 16/5E-06
PD (Turc et al., 2019) 16/1E-05 32/5E-06 16/2E-05 16/1E-05 32/1E-05 16/5E-06 16/2E-05 16/5E-06
PKD (Sun et al., 2019) 32/2E-05 32/2E-05 16/2E-05 32/5E-06 16/1E-05 16/5E-06 16/2E-05 32/2E-05
DistilBERT (Sanh et al., 2019) 16/1E-05 16/2E-05 16/1E-05 16/5E-06 32/2E-05 32/2E-05 32/2E-05 16/1E-05
Theseus (Xu et al., 2020) 32/2E-05 16/1E-05 16/1E-05 32/1E-05 16/1E-05 32/1E-05 16/2E-05 32/5E-06
TinyBERT (Jiao et al., 2020) 32/1E-05 16/5E-06 32/5E-06 16/2E-05 16/1E-05 16/5E-06 16/1E-05 16/1E-05
MobileBERT (Sun et al., 2020) 16/1E-05 16/1E-05 32/2E-05 32/2E-05 32/2E-05 32/1E-05 32/2E-05 16/5E-06
SID (Aguilar et al., 2020) 16/2E-05 32/5E-06 16/5E-06 16/2E-05 16/2E-05 16/2E-05 16/1E-05 16/2E-05
MiniLM (Wang et al., 2020) 16/2E-05 32/1E-05 32/2E-05 32/1E-05 16/1E-05 16/1E-05 32/1E-05 32/2E-05
MiniLMv2 (Wang et al., 2021) 16/1E-05 16/1E-05 16/5E-06 32/2E-05 16/2E-05 32/2E-05 16/1E-05 16/1E-05
ALP-KD (Passban et al., 2021) 16/2E-05 16/1E-05 16/2E-05 16/2E-05 16/2E-05 32/2E-05 16/2E-05 32/2E-05
LRC-BERT (Fu et al., 2021) 16/2E-05 32/1E-05 16/2E-05 32/1E-05 16/2E-05 16/5E-06 16/2E-05 16/5E-06
Annealing-KD (Jafari et al., 2021) 16/2E-05 16/5E-06 16/2E-05 16/2E-05 16/2E-05 32/5E-06 16/1E-05 32/5E-06
CKD (Park et al., 2021) 32/2E-05 16/2E-05 16/5E-06 16/1E-05 16/2E-05 16/1E-05 16/1E-05 32/2E-05
Universal-KD (Wu et al., 2021b) 32/2E-05 32/5E-06 32/5E-06 32/1E-05 32/5E-06 16/5E-06 16/1E-05 16/1E-05
DIITO (Wu et al., 2022) 16/5E-06 32/1E-05 16/2E-05 16/1E-05 16/2E-05 16/1E-05 16/1E-05 16/5E-06
Continuation-KD (Jafari et al., 2022) 16/2E-05 32/1E-05 16/1E-05 16/1E-05 16/2E-05 32/1E-05 16/1E-05 16/5E-06
RAIL-KD (Haidar et al., 2022) 16/1E-05 16/1E-05 16/2E-05 16/5E-06 32/2E-05 16/1E-05 32/1E-05 32/2E-05
MGSKD (Liu et al., 2022) 16/5E-06 16/2E-05 32/2E-05 16/5E-06 16/5E-06 16/1E-05 32/2E-05 32/5E-06

Multi-teacher: Teachers (GLMBase and GLMLarge)⇒ Student (66M)
TMKD (Yang et al., 2020a)

same as GLMBase
MT-BERT (Wu et al., 2021a)
RL-KD (Yuan et al., 2021)
Uncertainty (Li et al., 2021)

Teacher assistants: Teacher (GLMLarge)⇒ Assistant (200M)⇒ Assistant (110M)⇒ Student (66M)
TAKD (Mirzadeh et al., 2020)

same as KD
DGKD (Son et al., 2021)

Table 7: Hyperparameters for all methods in Table 2 on the 8 datasets of the SuperGLUE benchmark.

Scale #Parameters #Dimensions #Layers #Heads Max-seq Vocabulary
22M 22788864 384 6 12

512 30592

25M 37371392 128 24 4
66M 66811392 768 6 12
110M 109338624 768 12 12
293M 306174464 1024 24 4
340M 334688256 1024 24 16

1B 1022682240 1728 26

64 1024 50304

1.2B 1173458944 1792 28
1.5B 1521700224 1984 30
2B 1920122880 2048 36
5B 5030587776 3264 38
6B 5915828736 3456 40

7.5B 7385878656 3776 42
10B 9880682496 4096 48
13B 13170418176 4736 48
18B 18125342976 5248 54
20B 20175676160 5440 56
22B 22104152064 5504 60
25B 24660072448 5632 64
50B 49577504000 8000 64
65B 64813768448 9152 64
90B 89957891328 10624 66
100B 99465734144 11008 68
110B 109620044032 11392 70

Table 8: The scale details of all the models utilized in this paper.
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