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Abstract

Fake news detection has been a critical task
for maintaining the health of the online news
ecosystem. However, very few existing works
consider the temporal shift issue caused by the
rapidly-evolving nature of news data in prac-
tice, resulting in significant performance degra-
dation when training on past data and testing on
future data. In this paper, we observe that the
appearances of news events on the same topic
may display discernible patterns over time, and
posit that such patterns can assist in selecting
training instances that could make the model
adapt better to future data. Specifically, we de-
sign an effective framework FTT (Forecasting
Temporal Trends), which could forecast the
temporal distribution patterns of news data and
then guide the detector to fast adapt to future
distribution. Experiments on the real-world
temporally split dataset demonstrate the superi-
ority of our proposed framework. The code is
available at https://github.com/ICTMCG/FTT-
ACL23.

1 Introduction

Automatic fake news detection, which aims at dis-
tinguishing inaccurate and intentionally misleading
news items from others automatically, has been a
critical task for maintaining the health of the online
news ecosystem (Shu et al., 2017). As a comple-
ment to manual verification, automatic fake news
detection enables efficient filtering of fake news
items from a vast news pool. Such a technique
has been employed by social media platforms like
Twitter to remove COVID-19-related misleading
information during the pandemic (Roth, 2022).

Over the past decade, most fake news detection
researchers have followed a conventional paradigm
of collecting a fixed dataset and randomly dividing
it into training and testing sets. However, the as-
sumption that news data subsets are independent
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Text: Anyone in Lanzhou know Yang 
Guilan? Her admission ticket was lost on the No.104 
bus, and is currently at the dispatching booth of Xinxi
Station. (please forward if you see it)
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Text: Yang Guilan, whose admission 
letter was forgotten on the No. 818 bus, and now it is 
placed at the dispatching booth of Xinxi Station, 
please forward (from Suiyang County).

2019Q3

2020Q3
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Topic 3:  Falling Accident
Text: Netizens reported that this 

morning a girl fell from the apartment building of ...
2016Q2

Text: A girl fell from the 11th floor of 
a hotel because of a broken relationship.
2017Q4

2020Q1

Topic 1: Child Trafficking
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Text: Over 100 people have arrived 
around Funing County to steal children. More than 20 
children have been lost in Funing County.

Text: Over 10,000 foreigners from 
Sanya and have arrived in Shulan, Jilin, Changchun, 
more than 2,000 children was lost.

2016Q1

Text: Over 100 foreigners have come 
from Sanya and have arrived in Baoding City, Hebei 
Province. They specialize in children trafficking.

2017Q1

2018Q1

Figure 1: Topic-level statistics of news items across five
years in our data. We see that different topics present
diverse temporal patterns such as decrease (Topic 1),
periodicity (Topic 2), and approximate stationery (Topic
3), which we rely on to forecast temporal trends for
better fake news detection in the future. The case texts
are translated from Chinese into English.

and identically distributed often does not hold true
in real-world scenarios. In practice, a fake news
detection model is trained on offline data collected
up until the current time period but is required
to detect fake news in newly arrived online data
at the upcoming time period. Due to the rapidly-
evolving nature of news, news distribution can vary
with time, namely temporal shift (Du et al., 2021;
Gaspers et al., 2022), leading to the distributional
difference between offline and online data. Recent
empirical studies (Zhang et al., 2021; Mu et al.,
2023) evidence that fake news detection models
suffer significant performance degradation when
the dataset is temporally split. Therefore, the tem-
poral shift issue has been a crucial obstacle to real-
world fake news detection systems.

The temporal shift scenario presents a more sig-
nificant challenge than common domain shift sce-
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narios. Most existing works on the domain shift in
fake news detection focus on transfer among pre-
defined news channels (e.g., politics) (Silva et al.,
2021b; Mosallanezhad et al., 2022; Lin et al., 2022;
Nan et al., 2022). However, consecutive data slices
over time have various types of temporal depen-
dencies and non-explicit distributional boundaries,
making the temporal shift challenging. Moreover,
these works assume the availability of target do-
main data, which is impossible for the temporal
shift scenarios. Under such constraints, our aim is
to train a model using presently available data to
generalize to future online data (corresponding to
temporal generalization task; Wang et al., 2022).
Others that improve the generalizability to unseen
domains learn domain-invariant features by adver-
sarial learning (Wang et al., 2018) and domain-
specific causal effect removal (Zhu et al., 2022a),
but do not consider the characteristics of temporal
patterns of news events.

In this paper, we posit that the appearance of
news events on the same topic presents diverse tem-
poral patterns, which can assist in evaluating the
importance of previous news items and boost the
detection of fake news in the upcoming time period.
In Figure 1, we exemplify this assumption using the
statistics of news items on three topics in the Chi-
nese Weibo dataset: Topic 1 presents the temporal
pattern of decrease, where news about child traf-
ficking becomes less frequent. Topic 2 presents the
periodicity of news related to the college entrance
exam which takes place annually in the second
quarter (Q2).1 In Topic 3, news items about falling
accidents appear repeatedly and exhibit an approx-
imate stationary pattern. Such temporal patterns
indicate the different importance of news samples
in the training set for detection in future quarters.
For instance, instances of Topic 2 in the training set
are particularly important for effectively training
the detector to identify fake news in Q3.

To this end, we propose to model the temporal
distribution patterns and forecast the topic-wise
distribution in the upcoming time period for bet-
ter temporal generalization in fake news detection,
where the forecasted result guides the detector to
fast adapt to future distribution. Figure 2 illus-
trates our framework FTT (Forecasting Temporal
Trends). We first map training data to vector space
and perform clustering to discover topics. Then

1We denote the four quarters of a calendar year as Q1-Q4,
respectively. For instance, Q1 stands for January through
March.

we model the temporal distribution and forecast
the frequency of news items for each topic using
a decomposable time series model. Based on the
forecasts, we evaluate the importance of each item
in the training data for the next time period by
manipulating its weight in training loss. Our con-
tributions are summarized as follows:

• Problem: To the best of our knowledge, we
are the first to incorporate the characteristics
of topic-level temporal patterns for fake news
detection.

• Method: We propose a framework for
Forecasting Temporal Trends (FTT) to tackle
temporal generalization issue in fake news de-
tection.

• Industrial Value: We experimentally show
that our FTT overall outperforms five com-
pared methods while maintaining good com-
patibility with any neural network-based fake
news detector.

2 Related Work

Fake News Detection. Fake news detection is
generally formulated as a binary classification task
between real and fake news items. Research on
this task could be roughly grouped into content-
only and social context-based methods. Content-
only methods take the news content as the input
including texts (Sheng et al., 2021), images (Qi
et al., 2019), and videos (Bu et al., 2023), and aim
at finding common patterns in news appearances.
In this paper, we focus on textual contents but
our method could be generalized to other modali-
ties. Previous text-based studies focus on sentiment
and emotion (Ajao et al., 2019; Ghanem et al.,
2021), writing style (Przybyla, 2020), discourse
structure (Karimi and Tang, 2019), etc. Recent
studies address the domain shift issues across news
channels and propose multi-domain (Nan et al.,
2021; Zhu et al., 2022b) and cross-domain (Nan
et al., 2022; Lin et al., 2022) detection methods.
Zhu et al. (2022a) design a causal learning frame-
work to remove the non-generalizable entity sig-
nals. Social context-based methods leverage crowd
feedbacks (Kochkina et al., 2018; Shu et al., 2019;
Zhang et al., 2021), propagation patterns (Zhou
and Zafarani, 2019; Silva et al., 2021a), and social
networks (Nguyen et al., 2020; Min et al., 2022),
which have to wait for the accumulation of such
social contexts.

Considering the in-time detection requirement,
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Figure 2: Architecture of the proposed FTT (Forecasting Temporal Trends) framework.

our proposed framework falls into the category of
content-only methods, where we provide a new per-
spective for addressing the temporal generalization
issue by forecasting temporal trends.

Temporal Generalization. The temporal gener-
alization issue presents a situation in that models
are trained on past data but required to perform
well on unavailable and distribution-shifted future
data. It has been addressed in a variety of appli-
cations such as review classification (Huang and
Paul, 2019), named entity recognition (Rijhwani
and Preotiuc-Pietro, 2020), and air quality predic-
tion (Du et al., 2021). Recently, Gaspers et al.
(2022) explore several time-aware heuristic-based
instance reweighting methods based on recency
and seasonality for an industrial speech language
understanding scenario. Our work follows this line
of instance reweighting, but we attempt to model
the temporal patterns and forecast topic-wise distri-
bution to better adapt to future data.

3 Proposed Framework

Our framework FTT is presented in Figure 2, where
the instances from past consecutive time periods in
the original training set are reweighted according
to the forecasted topic-wise distribution for gener-
alizing better in the upcoming time period. In the
following, we first provide the problem formulation
and subsequently, detail the procedures.

3.1 Problem Formulation

Given a dataset D = {Dq}Qq=1 consisting of Q
subsets that contain news items from Q consecutive
time periods, respectively, our goal is to train a
model on {Dq}Q−1

q=1 that generalizes well on DQ.

In D, an instance is denoted as (xi, yi) where the
ground-truth label yi = 1 if the content xi is fake.

In practice, we retrain and redeploy the fake
news detector at a fixed time interval to reflect the
effects of the latest labeled data. We set the interval
as three months (i.e., a quarter) since a shorter
interval does not allow sufficient accumulation of
newly labeled fake news items. In the following,
we set Dq as the subset corresponding to news in a
quarter of a calendar year.

3.2 Step 1: News Representation

We first transform the news content into a vec-
tor space to obtain its representation, which will
be used for similarity calculation in the sub-
sequent clustering step. We employ Sentence-
BERT (Reimers and Gurevych, 2019), which is
widely used for sentence representation (e.g.,Shaar
et al., 2020). For instance xi, the representation
vector is xi ∈ R768.

3.3 Step 2: Topic Discovery

We perform clustering on news items based on the
representation obtained in Step 1 to group news
items into distinct clusters which correspond to
topics. Due to the lack of prior knowledge about the
topic number, we adopt the single-pass incremental
clustering algorithm which does not require a preset
cluster number. We first empirically set a similarity
threshold θsim to determine when to add a new
cluster. When an item arrives, it is assigned to
the existing cluster whose center is the nearest to
it if the distance measured by cosine similarity is
larger than θsim. Otherwise, it will be considered
as an item on a new topic and thus be in a new
independent cluster.
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3.4 Step 3: Temporal Distribution Modeling
and Forecasting

Based on the clustering results, we model the tem-
poral distribution of different news topics and fore-
cast the topic-wise distribution in the upcoming
time period in this step. Note that we do not con-
sider the clusters with news items less than the
threshold θcount since they are too small to present
significant temporal patterns.

Modeling. Assuming that T topics are preserved,
we first count the number of news items per quarter
within each topic. The counts of the same quarter
are then normalized across topics to obtain the quar-
terly frequency sequence of each topic (denoted as
f ). To model the temporal distribution, we adopt a
decomposable time series model (Harvey and Pe-
ters, 1990) on the quarterly sequences and consider
the following two trends (exemplified using Topic
i):

1) General Trend. A topic may increase, de-
crease, or have a small fluctuation in terms of a
general non-periodic trend (e.g., Topics 1 and 3
in Figure 1). To fit the data points, we use a piece-
wise linear function:

gi(fi,q) = kifi,q +mi, (1)

where ki = k+a(q)Tδ is the growth rate, fi,q is the
frequency of Topic i in Quarter q, and mi = m+
a(q)Tγ is the offset. k and m are initial parameters.
a(q) records the changepoints of growth rates and
offsets while δ is the rate adjustment term and γ is
a smoothing term.

2) Quarterly Trend. For topics having quarterly
periodic trends like Topic 2 in Figure 1, we add four
extra binary regressors corresponding to Q1~Q4
to inform the regression model the quarter that a
data point in input sequence belongs to. For Topic
i and Quarter q, we obtain the quarterly seasonality
function si(fi,q) by summing the four regression
models.

Forecasting. We fit the model using the time se-
ries forecasting tool Prophet (Taylor and Letham,
2018) with the temporal distribution of topics from
Quarter 1 to Quarter Q-1. To forecast the trend of
Topic i in the upcoming Quarter Q, we sum up the
two trend modeling functions:

pi(fi,Q) = gi(fi,Q) + si(fi,Q). (2)

3.5 Step 4: Forecast-Based Adaptation
Based on the topic-wise forecasts of frequency dis-
tribution in Quarter Q, we apply instance reweight-
ing to the training set and expect the model trained
using the reweighted set would better adapt to the
future data in Quarter Q.

We first filter out topics that do not exhibit ob-
vious regularity. Specifically, we remove the top-
ics which have a mean absolute percentage error
(MAPE) larger than a threshold θmape during the
regression fitting process. For a Topic i in the pre-
served set Q′, we calculate and then normalize the
ratio between the forecasted frequency of Topic i
pi(fi,Q) and the sum of all forecasted frequencies
of the preserved topics:

wi,Q = Bound

(
pi(fi,Q)∑

i∈Q′ pi(fi,Q)

)
, (3)

where Bound is a function to constrain the range
of calculated weights. We set the weight smaller
than θlower and larger than θupper as θlower and
θupper, respectively, to avoid the instability during
the training process. For those that are not included
in Q′, we set their weights as 1.

The new weight of the training set instances of
Topic i, wi,Q, corresponds to our forecasts of how
frequent news items of this topic will emerge in the
upcoming period Q. If the forecasted frequency of
Topic i indicates a decreasing trend, the value will
be smaller than 1 and thus instances of this topic
will be down-weighted; conversely, if the fore-
casted distribution indicates an increasing trend,
the value will be greater than 1 and the instances
will be up-weighted. In the next step, we will show
the reweighting process during training.

3.6 Step 5: Fake News Detector Training
Our framework FTT could be compatible with any
neural network-based fake news detector. Here, we
exemplify how FTT helps detectors’ training us-
ing a pretrained BERT model (Devlin et al., 2019).
Specifically, given an instance xi, we concatenate
the special token [CLS] and xi, and feed them into
BERT. The average output representation of non-
padded tokens, denoted as oi, is then fed into a
multi-layer perception (MLP) with a sigmoid acti-
vation function for final prediction:

ŷi = sigmoid(MLP(oi)). (4)

Our difference lies in using the new weights based
on the forecasted temporal distribution to increase
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or decrease the impact of instances during back-
propagation. Unlike most cases that use an aver-
age cross-entropy loss, we minimize the weighted
cross-entropy loss function during training:

L = − 1

N

N∑

i=1

wi,QCrossEntropy(yi, ŷi), (5)

where wi,Q is the new weight for instance xi and
yi is its ground-truth label. N is the size of a mini-
batch of the training set.

4 Evaluation

We conduct experiments to answer the following
evaluation questions:

• EQ1: Can FTT bring improvement to the fake
news detection model in temporal generaliza-
tion scenarios?

• EQ2: How does FTT help with fake news
detection models?

4.1 Dataset
Our data comes from a large-scale Chinese fake
news detection system, covering the time period
from January 2016 to December 2020. To meet
the practical requirements, the data was divided by
quarters based on the timestamp. Unlike the exist-
ing academic datasets (Shu et al., 2020; Sheng et al.,
2022), the dataset is severely imbalanced. To avoid
instability during training, we randomly undersam-
pled the subset of each quarter to achieve a ratio
of 1:1 between fake and real news. Identical to the
real-world setting, we adopt a rolling training ex-
perimental setup. If we train a model to generalize
well in the time period Q, the training, validation,
and testing sets would be {Di}Q−2

i=1 , DQ−1, and
DQ, respectively. If the target is Q + 1, then the
three subsets would be {Di}Q−1

i=1 , DQ, and DQ+1.
Here we use the four quarterly datasets from 2020
as the testing sets and conduct experiments on the
four sets separately.

4.2 Experimental Settings
Compared Methods. We compared our pro-
posed FTT with five existing methods (including
the vanilla baseline model), in which the second
one is to remove non-generalizable bias and the last
three are to introduce heuristic rules for adapting
to future data.

• Baseline follows a normal training strat-
egy where all training instances are equally
weighted.

• EANNT (Wang et al., 2018) is a model that en-
hances model generalization across events by
introducing an auxiliary adversarial training
task to prevent the model from learning event-
related features. For fair comparison, we
replaced the original TextCNN (Kim, 2014)
with a trainable BERT as the textual feature ex-
tractor, and utilized publication year labels as
the labels for the auxiliary task following Zhu
et al., 2022a. We removed the image branch
in EANN as here we focus on text-based fake
news detection.

• Same Period Reweighting increases the
weights of all training instances from the same
quarter as the target data. It models the sea-
sonality in the time series data.

• Previous Period Reweighting increases the
weights of all training instances from the last
quarter. It could capture the recency in the
data distribution.

• Combined Reweighting combines the two
reweighting methods mentioned above. The
last three methods are derived from (Gaspers
et al., 2022).

Implementation Details. We used a BERT
model, hfl/chinese-bert-wwm-ext (Cui et al.,
2021) implemented in HuggingFace’s Transformer
Package (Wolf et al., 2020) as the baseline fake
news detection classifier. In the training process,
we used the Adam optimizer (P. Kingma and Ba,
2015) with a learning rate of 2e-5 and adopted the
early stop training strategy, and reported the testing
performance of the best-performing model on the
validation set. We employed grid search to find
the optimal hyperparameters in each quarter for
all methods. In Q1 and Q2, the optimal hyperpa-
rameters of FTT are θsim = 0.65, θcount = 30,
θmape = 0.8, θlower = 0.3, and θupper = 2.0; and
in Q3 and Q4, they are θsim = 0.5, θcount = 30,
θmape = 2.0, θlower = 0.3, and θupper = 2.0.

We report the accuracy, macro F1 (macF1), and
the F1 score for real and fake classes (F1real and
F1fake).

4.3 Performance Comparison (EQ1)

Table 1 shows the overall and quarterly perfor-
mance of the proposed framework and other meth-
ods. We observe that:
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2020 Metric Baseline EANNT
Same Period
Reweighting

Prev. Period
Reweighting

Combined
Reweighting FTT (Ours)

Q1

macF1 0.8344 0.8334 0.8297 0.8355 0.8312 0.8402
Accuracy 0.8348 0.8348 0.8301 0.8359 0.8315 0.8409

F1fake 0.8262 0.8181 0.8218 0.8274 0.8237 0.8295
F1real 0.8425 0.8487 0.8377 0.8435 0.8387 0.8509

Q2

macF1 0.8940 0.8932 0.8900 0.9004 0.8964 0.9013
Accuracy 0.8942 0.8934 0.8902 0.9006 0.8966 0.9014

F1fake 0.8894 0.8887 0.8852 0.8953 0.8915 0.8981
F1real 0.8986 0.8978 0.8949 0.9055 0.9013 0.9046

Q3

macF1 0.8771 0.8699 0.8753 0.8734 0.8697 0.8821
Accuracy 0.8776 0.8707 0.8759 0.8741 0.8707 0.8827

F1fake 0.8696 0.8593 0.8670 0.8640 0.8582 0.8743
F1real 0.8846 0.8805 0.8836 0.8829 0.8812 0.8900

Q4

macF1 0.8464 0.8646 0.8464 0.8429 0.8412 0.8780
Accuracy 0.8476 0.8647 0.8476 0.8442 0.8425 0.8784

F1fake 0.8330 0.8602 0.8330 0.8286 0.8271 0.8707
F1real 0.8598 0.8690 0.8598 0.8571 0.8553 0.8853

Average

macF1 0.8630 0.8653 0.8604 0.8631 0.8596 0.8754
Accuracy 0.8636 0.8659 0.8610 0.8637 0.8603 0.8759

F1fake 0.8546 0.8566 0.8518 0.8538 0.8501 0.8682
F1real 0.8714 0.8740 0.8690 0.8723 0.8691 0.8827

Table 1: Performance of the baseline method, four existing methods, and our method in fake news detection. The
best result in each line is bolded.

1) FTT outperforms the baseline and four other
methods across all quarters in terms of most of the
metrics (the only exception is F1real in Q2). These
results demonstrate its effectiveness.

2) The average improvement of F1fake is larger
than that of F1real, suggesting that our method
helps more in capturing the uniqueness of fake
news. We attribute this to the differences in tempo-
ral distribution fluctuation: fake news often focuses
on specific topics, while real news generally covers
more diverse ones. This makes the topic distribu-
tion of fake news more stable, which allows for
better modeling of topic-wise distributions.

3) The three compared reweighting methods
show inconsistent performances. In some situa-
tions, the performance is even lower than the base-
line (e.g., Same Period Reweighting in Q1). We
speculate that the failure is caused by the com-
plexity of the news data. Considering the rapidly-
evolving nature of news, single heuristic methods
like recency and seasonality could not fast adapt to
future news distribution. In contrast, our FTT per-
forms topic-wise temporal distribution modeling
and next-period forecasting and thus has a better
adaption ability.

Subset of the test set Metric Baseline FTT (Ours)

Existing Topics

macF1 0.8425 0.8658
Accuracy 0.8589 0.8805

F1fake 0.7997 0.8293
F1real 0.8854 0.9023

New Topics

macF1 0.8728 0.8846
Accuracy 0.8729 0.8846

F1fake 0.8730 0.8849
F1real 0.8727 0.8843

Table 2: Breakdown of the performance on the testing
set according to the existence of their topics.

4.4 Result Analysis (EQ2)

Statistical Analysis. To analyze how FTT im-
proves fake news detection performance, we ana-
lyze the testing instances by recognizing their top-
ics. Specifically, we run the single-pass incremen-
tal clustering algorithm used in Step 2 again on
the testing instances based on the clusters on the
training set. If a news item in the testing set could
be clustered into an existing cluster, it will be rec-
ognized as an item of the existing topics; otherwise,
it will be in a new topic. Based on the results, we
show the breakdown of the performance on the test-
ing set in Table 2. Compared with the baseline, our
framework achieves performance improvements on
both the Existing Topics and the New Topics sub-
sets. This could be attributed to our reweighting
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Ours Fake (0.58)

Ground 
Truth Fake

Text: Google Maps is suspected of blocking

SIM cards of domestic operators. Recently,
some netizens broke the news that Google
Maps began to detect the SIM card of
domestic operators to stop the service.
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Ours Real (0.37)

Ground 
Truth Real

Text: Barcelona officially confirmed that

Umtiti's COVID-19 test result was positive.
As an asymptomatic patient he has begun
home isolation. Umtiti did not follow the
team to the UCL due to injury.

Topic 2: Infectious Diseases
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Text: The Second Xiangya Hospital and

Huaxi Hospital all issued documents
refusing the admission of traditional
Chinese medicine because of the frequent
occurrence of quality problems.

Topic 3: Medication Safety
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Figure 3: Three cases from the testing set. The forecasts
by FTT about the frequency of the topics in the upcom-
ing quarter are highlighted with red dashed bars. The
case texts are translated from Chinese into English.

strategy where we not only increase the weights
of news items belonging to a topic of an increas-
ing trend but also decrease the weights of those
belonging to the fading topics. With such a design,
the model will be more familiar with news items
in existing topics and more generalizable to news
items in new topics.

Case Study. Figure 3 shows three cases from the
testing set. According to the forecasted results of
the frequencies of these topics in the testing time
period, our framework assigns positive weights
(greater than 1) to items in these topics. After
training on the reweighted set, the detector flips its
previously incorrect predictions. In Topic 1, the
frequency of Big Tech-related news items demon-
strated an increasing trend over time. FTT captures
this pattern and provides a forecast close to the true

value for the target quarter. In Topic 2, there is
an explosive growth of Infectious Diseases-related
news items in early 2020, followed by sustained
high frequency in the subsequent quarters. FTT
successfully captures this change. In contrast to
the other two topics, the frequency of Medication
Safety-related news items in Topic 3 exhibits both
an overall increasing trend and a certain periodic
pattern since 2019, which roughly follows a “smil-
ing curve” from Q1 to Q4 in a single year. FTT
effectively models both of these patterns and helps
identify the importance of news items in this topic
for the testing time period.

5 Conclusion and Future Work

We studied temporal generalization in fake news
detection where a model is trained with previous
news data but required to generalize well on the
upcoming news data. Based on the assumption that
the appearance of news events on the same topic
presents diverse temporal patterns, we designed a
framework named FTT to capture such patterns
and forecast the temporal trends at the topic level.
The forecasts guided instance reweighting to im-
prove the model’s generalizability. Experiments
demonstrate the superiority of our framework. In
the future, we plan to mine more diverse temporal
patterns to further improve fake news detection in
real-world temporal scenarios.

Limitations

We identify the following limitations in our work:
First, our FTT framework captures and models

topic-level temporal patterns for forecasting tempo-
ral trends. Though the forecasts bring better tem-
poral generalizability, FTT could hardly forecast
the emergence of events in new topics.

Second, FTT considers temporal patterns based
on the topic-wise frequency sequences to identify
patterns such as decrease, periodicity, and approx-
imate stationery. There might be diverse patterns
that could not be reflected by frequency sequences.

Third, limited by the scarcity of the dataset that
satisfies our evaluation requirements (consecutive
time periods with a consistent data collection cri-
terion), we only performed the experiments on a
Chinese text-only dataset. Our method should be
further examined on datasets of other languages
and multi-modal ones.
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