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Abstract

To provide a convenient shopping experi-
ence and to answer user queries at scale,
conversational platforms are essential for
e-commerce. The user queries can be pre-
purchase questions, such as product speci-
fications and delivery time related, or post-
purchase queries, such as exchange and
return. A chatbot should be able to under-
stand and answer a variety of such queries
to help users with relevant information.
One of the important modules in the chat-
bot is automated intent identification, i.e.,
understanding the user’s intention from
the query text. Due to non-English speak-
ing users interacting with the chatbot, we
often get a significant percentage of code
mix queries and queries with grammati-
cal errors, which makes the problem more
challenging. This paper proposes a sim-
ple yet competent Semi-Supervised Learn-
ing (SSL) approach for label-efficient intent
classification. We use a small labeled cor-
pus and relatively larger unlabeled query
data to train a transformer model. For
training the model with labeled data, we
explore supervised MixUp data augmenta-
tion. To train with unlabeled data, we ex-
plore label consistency with dropout noise.
We experiment with different pre-trained
transformer architectures, such as BERT
and sentence-BERT. Experimental results
demonstrate that the proposed approach
significantly improves over the supervised
baseline, even with a limited labeled set. A
variant of the model is currently deployed
in production.

1 Introduction

An automated conversational chatbot is essen-
tial to provide a seamless shopping experi-
ence and answer product-related questions
at scale. An effective chatbot can assist and
answer pre-purchase queries such as product
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specifications, offers, discounts, delivery time,
and stock availability, as well as post-purchase
queries such as exchange and return. Due
to users from diverse backgrounds interact-
ing with the chatbot and minimizing a human
agent transfer, a chatbot should be able to un-
derstand and handle a variety of user queries.

One of the important ML components in
the chatbot is automated intent identification,
i.e.,, understanding the user’s intention from
the query text. Post the correct intent iden-
tification, an appropriate dialog-flow can be
initiated. An incorrect intent prediction neg-
atively affects the dialog-flow and, hence the
overall user experience. Further, due to non-
English speakers interacting with the chatbot,
we observe a significant percentage of code-
mix Hinglish queries ( 30%) and queries with
grammatical errors, making intent detection
even more challenging. Training a supervised
intent classification model under such a sce-
nario would require a large amount of manu-
ally tagged data. However, due to internet-
scale operations, we have unlabeled query
data available in a relatively large volume.

This paper proposes a simple yet competent
Semi-Supervised Learning (SSL) approach for
label-efficient intent classification. SSL has
been proven effective in leveraging unlabeled
data when only a small labeled set is avail-
able. Specifically, we train a transformer BERT
model on a small labeled corpus along with a
larger unlabeled query data. Starting with lim-
ited labeled queries, we explore supervised as
well as unsupervised data augmentation tech-
niques. For the supervised data augmentation,
we explore MixUp (Zhang and Vaidya, 2021)
and simple label preserving NLP augmenta-
tions (Ma, 2019). For training with unlabeled
data, typically, SSL algorithms rely on an ex-
tra smoothness constraint which enforces the

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 96-102
July 10-12, 2023 ©2023 Association for Computational Linguistics



model to make consistent predictions on an
unlabeled sample and its slightly perturbed
version. Moreover, it is observed that the type
of noise/perturbation plays an important role
and a trivial noise may not provide desired im-
provements (Xie et al., 2020). Recently, a sim-
ple noise such as dropout has shown promis-
ing results for contrastive learning (Gao et al.,
2021). We explore label consistency loss with
dropout noise to train the BERT model with
unlabeled data. The model is trained with the
linear combination of supervised and unsuper-
vised loss components. One of the challenges
with a limited labeled set is how to halt the
training when the validation set is not avail-
able; otherwise, it may result in over-fitting.
In our experiments, we perform the model
updates till the training loss is converged. In-
terestingly, training with dropout label con-
sistency loss is less prone to over-fitting even
with no validation set. We also noticed that the
choice of label consistency loss has a promi-
nent effect on the accuracy. For warm starting
the training, we experiment with pre-trained
BERT and sentence-BERT architectures. Ex-
perimental results demonstrate that, over the
supervised baseline, the intent classification
accuracy can be boosted significantly with the
proposed semi-supervised approach.

2 Related works

SSL approaches have been extensively stud-
ied in the literature. Instead of providing an
extensive list of references, we only cite a few
relevant prior works in this section. An ex-
tensive survey can be found in (Yang et al,,
2021).

Unsupervised Data Augmentation (UDA)
(Xie et al., 2020) has shown promising results
for learning with unlabeled data along with a
small labeled corpus. The idea is to enforce la-
bel consistency between two augmentations of
the unlabeled sample. The authors also point
out that the type of augmentation used signifi-
cantly affects the accuracy of the model, and a
trivial augmentation (such as adding Gaussian
noise) may not lead to desired improvements.
Recently, a contrastive learning approach that
uses dropout noise has been shown to work
well for self-supervised learning with textual
data (Gao et al., 2021). Since dropout is inher-

ently present in pre-trained transformer mod-
els, this provides a simple yet efficient method
for data augmentation. Interpolation Consis-
tency Training (ICT) (Verma et al., 2022) is a
computationally efficient approach to train the
model with SSL. ICT encourages the predic-
tion at an interpolation of unlabeled points
to be consistent with the interpolation of the
predictions at those points. For classification
problems, ICT moves the decision boundary
to low density regions of the data distribution.

For the supervised classification, MixUp has
been found to be an effective data augmen-
tation technique (Jindal et al., 2020). MixUp
is performed in the representation space for
the text classification with transformers and is
known to provide better regularization, and
model calibration (Sun et al., 2020).

3 Proposed approach

In this section, we describe details of the
dataset, loss functions experimented with, and
model training.

3.1 Dataset

Our intent classification dataset consists of
queries from the pre-defined set of 28 intents.
The queries consist of pre-purchase as well
as post-purchase user questions. For each in-
tent, we have 250 manually labeled samples;
hence, the train set comprises 7k labeled exam-
ples. As the test set, we use a manually tagged
dataset of 7569 samples. Table 1 shows exam-
ples of the queries from the test set and corre-
sponding ground truth intents. Note that the
test set consists of code-mix Hinglish queries
and queries with grammatical errors. For the
unlabeled data, we use a query corpus of size
~925k obtained from the internal database. For
all the queries (labeled and unlabeled), we con-
vert them to lowercase and remove punctua-
tion (if any). We do not apply any further
pre-processing.

3.2 Loss functions experimented

We experiment with the following loss func-
tions and their linear combination to train the
model.

3.2.1 Supervised cross-entropy loss (1)

For a small set of labeled data, we use the
standard supervised cross entropy loss for the



Samples

intent class

when will it be delivered if i order today
this product satrday give me

sir mujhe ye phone kab tak mile ga

delivery_time

when will we get discount
it was 11000 near about 12000 at a time when it was offer

phone ka price kab kem hoga

offers_and_discounts

is there debit card emi available
emi process not full details show it option

sorry sir card payment kaise karna hai

payment_options

is this boot washable

sir this phone is good or but sir this phone prosser

display kaise h ise mobile ki

product_spec

how much amount i will get into exchange of my mobile
high what if the mobile i am replesing can be switched on

mobile ka screen touch kharab hai exchange ho jaega

product_exchange

how to return my order
my parking sensor not yet delvered

humko black colour mila hai grey ke jagah

post_purchase

Table 1: Example queries and intent labels from the test dataset. Note that the test data contains
code-mix Hinglish queries and queries with grammatical errors.

training. We use label smoothing while train-
ing where the smoothing parameter is set to
0.1. This loss function is included in all the
experiments.

3.2.2 Supervised Grammar loss (Is,)

For the batch of labeled data, we add gram-
mar augmentations to the input queries, such
as spell errors and word swaps, to create ad-
ditional train data (Ma, 2019). We use cross
entropy loss and label smoothing for this.

3.2.3 Supervised MixUp loss (/)

The idea behind supervised MixUp is to create
an additional labeled train set through linear
interpolating of the features and correspond-
ing one-hot labels. For the transformer models,
MixUp is performed on the feature represen-
tations of the queries in the following manner.

T=Axi+(1-A)x

_ )
F=Ayi+(1-A)y;
Here, A ~ U(0,1). x; and x; indicates the
features from last hidden layer. We use cross
entropy loss for this.

3.2.4 Unsupervised Dropout loss (I,,7)

We use dropout noise for enforcing predic-
tion label consistency to train the transformer
model on unlabeled data. We sample a batch
of queries from the unlabeled query corpus
and make two independent forward passes
through the transformer to obtain two label
predictions. The label consistency loss is then
calculated to minimize the distance measure
D between these predictions.

lug = ]Eu~u(x) D<p9(y1‘u)/ PG(]/Z’“)) 2)

Here, y; and y; indicate predicted labels for
an unlabeled batch u. For D, we experimented
with Cross Entropy (CE) and Mean-Square-
Error (MSE) loss. For text classification, UDA
uses round-trip back-translation as the data
augmentation (Xie et al., 2020). They keep one
copy of the network weights fixed while up-
dating another copy. For the dropout, label
predictions are calculated with the current net-
work parameters, and the same is updated
during training.

3.3 Training details

For the pre-trained BERT model, we use bert-
base-uncased while for the pre-trained sentence-
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Figure 1: Fl-score comparison of BERT and Sentence-BERT results under different train settings.

BERT model, we use paraphrase-mpnet-v2. Both
bert-base-uncased and paraphrase-mpnet-v2 are
12 layers models with ~109M trainable param-
eters. For the BERT model, we use a feature
corresponding to the [CLS] token from the last
hidden layer (without tanh activation) as the
query representation. For the sentence-BERT
model, we use a mean-pooled representation
of the token embeddings from the last hid-
den layer. The mean pooling uses an attention
mask to avoid averaging representations from
the padding tokens.

For the supervised losses (Is, Isg, Ism), we
use a batch size of 32, while for unsupervised
loss (I,7), we use a batch size of 96. We use
AdamW optimizer with a constant learning
rate of 1e-5. One major challenge with limited
labeled sets is to halt the training without the
validation set. In our experiments, we stop the
training when the absolute difference in the
train loss from the consecutive epochs remains
below the threshold (¢) for a certain number
of epochs (patience). In all our experiments,
we use € of 0.1 and patience of 5.

The models are trained under three different
settings.

* Only with labeled loss, Ls = s

e With labeled loss (Ls) and supervised
data augmentation loss, Lsp = Isg + Ism

e With labeled loss (Ls), supervised data
augmentation loss (Lsp) and unsuper-
vised dropout label consistency loss
Lup = l,4. We use log probabilities along
with MSE loss for L;p and a weight factor
« of 10 (to match the scales).

Figure 1 shows the comparison results for
BERT and sentence-BERT models for varying
number of labeled samples. We make a few ob-
servations from these results. Sentence-BERT
works better than BERT, especially with a low
number of labeled samples. Our findings align
with the recent work demonstrating the effec-
tiveness of Sentence-BERT for few shot learn-
ing (Tunstall et al., 2022). Supervised data
augmentations (grammer + mixup) provide
only a slight advantage over purely super-
vised baseline (Figure 1 (b)). We suspect it
is happening due to over-fitting because of a
small labeled corpus and lack of validation set
to stop the training. We validate this hypothe-
sis with an additional experiment, using some
validation data to halt the training. Results
are provided in the ablation study section 5.1.
Unsupervised label consistency with dropout
noise and MSE loss provides a significant ad-
vantage over the supervised baseline. Interest-
ingly, even though the models are updated till
the train loss is converged, training with this
loss provides better regularization and is less
prone to over-fitting. We also observe that the
choice of unsupervised loss has a prominent
effect on the accuracy. Section 5.3 in the abla-
tion study shows the comparison results with
different loss functions for [,,;.

Since Hinglish constitutes a significant per-
centage (30%) of queries, we specifically com-
pared the performance of BERT and sentence-
BERT models for Hinglish query classification.
First, we detect Hinglish queries from the test
set using an approach proposed in (Kulkarni
et al., 2022) and calculate Fl1-score on these
queries with the semi-supervised approach.
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Figure 2: Fl-score comparison of BERT and

Sentence-BERT for Hinglish query classification.

Figure 2 demonstrates the result. We observe
that sentence-BERT inherently provides better
accuracies for Hinglish queries.

We also compare the Expected Calibration
Error (ECE) on the test set for the BERT and
sentence-BERT models. For this, we use the
prediction result for the model trained on all
the labeled samples. Table 2 shows the result.
sentence-BERT achieves better calibration as
compared to the BERT model.

setting ECE
bert-base-uncased | 0.0411
paraphrase-mpnet-v2 | 0.0134

Table 2: Comparison of Expected
Calibration Error (ECE)

4 Comparison with Unsupervised
MixUp approach

We compare the dropout label consistency ap-
proach with another SSL method: Unsuper-
vised MixUp. Verma et al. (Verma et al.,
2022) proposed a MixUp approach for train-
ing with unlabeled data. Feature MixUp is
performed on the transformer representations
for the two batches of unlabeled samples. For
labels, MixUp on model predictions for the
same unlabeled batches is used. We randomly
sample two batches (11, uz) from unlabeled
queries and calculate their feature representa-
tion (x1, x2). The Unsupervised MixUp loss
(Lum) is then calculated as follows.

lum = By uyti(x) D(fo(Mixy(x1,x2)),

Mixy(for(x1), for(x2)))  (3)

As suggested in (Xie et al., 2020), for cal-
culating the second term in the equation, we
use a fixed copy (¢') of the network, and the
update is applied to the current copy of the
weights (6). At the end of each epoch, a fixed
copy is replaced with the current weights. The
model is trained with supervised losses and
the Unsupervised MixUp loss. We use MSE
loss and « of 10. Figure 3 indicates the com-
parison result. Despite being simple, dropout
label consistency performs better than Unsu-
pervised MixUp. This could be because, at the
start of the training, the predictions from the
models may not be accurate. Hence, the up-
dates to the model with Unsupervised MixUp
loss are computed against noisy labels. On
the contrary, the dropout consistency loss only
enforces the smoothing constraint on the label
predictions.
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Figure 3: Comparison with Unsupervised MixUp.

5 Ablation study

In this section, we report ablation study results
with different experimental settings.

5.1 Comparison of with and without
validation loss monitoring

Since supervised MixUp provided only a
slight improvement over the purely super-
vised baseline with sentence-BERT, we suspect
that it is happening because of over-fitting
since we do not have validation loss based
stopping criteria during training. To confirm
this, we conducted an additional experiment
using a validation set (of size 8318) and halted
the training when validation loss did not im-
prove for five consecutive epochs. Figure 4
shows the F1-score comparison with and with-
out validation monitoring. The plot indicates
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that the supervised MixUp, when trained with
a low number of labeled samples and without
validation monitoring, is prone to over-fitting.
Hence, it alone might not lead to good im-
provements for the limited labeled scenario.

paraphrase-mpnet-base-v2: supervised MixUp

fl-score

—e— with validation
—e— w/o validation

100 120

40 60 80
Number of labeled examples per intent

Figure 4: Fl-score comparison for with and with-
out validation loss monitoring. The result confirms
that supervised MixUp is prone to over-fitting un-
der low labeled data regime.

5.2 Choice of label consistency loss

We observed that the choice of loss used for
dropout label consistency has a prominent ef-
fect on the model accuracy. Figure 5 shows the
comparison of CE and MSE loss. For CE loss,
we use « of 1, while for the MSE loss, « is set
to 10 (to match the scales). It can be seen that
the MSE loss consistently outperforms the CE
loss.

comparision of unsupervised loss
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Figure 5: Effect of the choice of label consistency
loss.

5.3 Effect of varying dropout probability

To understand whether model dropout prob-
ability affects the accuracy, we performed
an experiment where we trained a sentence-
BERT model with varied dropout probability.

Sentence-BERT has a default dropout proba-
bility of 0.1. In this experiment, we set the
dropout value to a lower (0.05) and a higher
(0.2) value and trained the model with super-
vised and dropout label consistency losses.
Figure 6 shows the resulting plot. We observe
that increasing or decreasing the dropout prob-
ability does not significantly affect the model
accuracy.

effect of model dropout
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Figure 6: Effect of varying dropout probability.

6 Conclusion

This paper proposes a simple yet compe-
tent semi-supervised learning approach for
label-efficient conversational intent classifica-
tion. We trained different transformer models
with labeled as well as unlabeled data. We
explored supervised MixUp data augmenta-
tion for training with labeled samples, while
for training with unlabeled samples, we ex-
perimented with label consistency loss with
dropout. The results demonstrated that clas-
sification accuracy could be improved signif-
icantly over the supervised baseline with the
proposed semi-supervised approach. Specifi-
cally, sentence-BERT was observed to perform
better with a small number of labeled sam-
ples and even with code-mix Hinglish queries.
Even without validation loss monitoring, it
was noticed that training with dropout la-
bel consistency is less prone to over-fitting.
Through the ablation study, we studied the
effect of the choice of label consistency loss
and dropout probability on the accuracy. Ex-
perimental results demonstrated the efficacy
of the proposed approach. A variant of the
model is currently deployed in production.
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