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Abstract

Noticing the urgent need to provide tools for
fast and user-friendly qualitative analysis of
large-scale textual corpora of the modern NLP,
we propose to turn to the mature and well-tested
methods from the domain of Information Re-
trieval (IR)—a research field with a long history
of tackling TB-scale document collections. We
discuss how Pyserini—a widely used toolkit for
reproducible IR research can be integrated with
the Hugging Face ecosystem of open-source Al
libraries and artifacts. We leverage the existing
functionalities of both platforms while propos-
ing novel features further facilitating their in-
tegration. Our goal is to give NLP researchers
tools that will allow them to develop retrieval-
based instrumentation for their data analytics
needs with ease and agility. We include a
Jupyter Notebook-based walk through the core
interoperability features, available on GitHub.
We then demonstrate how the ideas we present
can be operationalized to create a powerful tool
for qualitative data analysis in NLP. We present
GAIA Search—a search engine built following
previously laid out principles, giving access to
four popular large-scale text collections. GAIA
serves a dual purpose of illustrating the poten-
tial of methodologies we discuss but also as a
standalone qualitative analysis tool that can be
leveraged by NLP researchers aiming to under-
stand datasets prior to using them in training.
GAIA is hosted live on Hugging Face Spaces.

1 Introduction

Training large language models, or LLMs (Brown
et al., 2020; Lieber et al., 2021; Rae et al., 2021;
Smith et al., 2022; Le Scao et al., 2022; Chowdhery
et al., 2022; Touvron et al., 2023), established itself
as the central task of the modern Natural Language
Processing (NLP) research. The attempts to under-
stand the scaling laws of LLLMs led researchers to
believe that simply increasing the number of pa-
rameters may not bring the desired improvements
without a simultaneous increase in the size of the

LLM training data (Kaplan et al., 2020; Hoffmann
et al., 2022). These observations only increased an
already pressing need for massive textual datasets,
fueling the proliferation of Web-based corpora of
TB-scale created with varying levels of curation
and quality control.

Rather than investing in scraping the Web on
their own, dataset creators typically turn to Com-
mon Crawl! as the main source of text to include
in their corpora. A repository of Web snapshots
dating back to 2011, Common Crawl contains var-
ious types of low-quality text (Luccioni and Vi-
viano, 2021). Pre-processing steps commonly intro-
duced by dataset creators aiming to filter out unde-
sired content include removing any documents with
words matching a pre-defined, static blacklist, like
in the case of C4 (Raffel et al., 2020), perplexity-
based filtering like in CCNet and ROOTS (Wenzek
et al., 2019; Laurencon et al., 2022), removing mal-
formed text via simple text statistics like in the case
of OSCAR (Abadji et al., 2022) or through dedu-
plication, studied extensively by Lee et al. (2022).
However, the generated artifacts still tend to con-
tain a multitude of worrying phenomena, such as
synthetic data (Dodge et al., 2021), private and
copyrighted data (Huang et al., 2022) or incorrect
language codes and translations (Kreutzer et al.,
2022). A lack of representation of diversity and
socio-cultural and socio-economic biases consti-
tute another big challenge of Common Crawl and
datasets derived from it (Bender et al.; Blodgett
et al., 2020; Field et al., 2021; Stanczak and Au-
genstein, 2021; Beaulieu and Leonelli, 2021).

Aware of the mounting problems with training
data for modern LLMs, and appreciating the value
of data exploration for better modeling in general,
we focus our current work on building tools that can
facilitate the qualitative analysis of NLP datasets.
We propose to leverage the extensive experience
of the Information Retrieval community in build-

! https://commoncrawl.org/
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don't go chasing waterfalls

Corpus

c4

Max Results

About 10 results
Document ID: C4-14595611#0 | Score: 14.61

Don't Go Chasing Bootie Calls, Parody Song Lyrics of T.L.C., "Don't Go Chasing Waterfalls" Song Parodies -> "Don't Go Chasing Bootie
Calls" "Don't Go Chasing Bootie Calls" The name of TOS is "Waterfalls"; I'll have you know that. By the way, the parody was good; I'm
voting 5,5,5 on it. | like this, well done! | gave you 5's! "Little precious has a natural obsession"? Careful, all the Tolkeinians may give you
5s based on that line alone! This started good but just like Leavemealone points out you've copied the entire second verse and some of
the rap from the

Document ID: C4-180210388#26 | Score: 13.8

a favorite saying: Don't go chasing waterfalls, but we can't help but want to chase this waterfall stone island in an amazing, unknown
material. Next time you are dicing tomatoes on your gorgeous granite island, don't forget to take time to appreciate its beauty.

Document ID: C4-320856076#0 | Score: 13.7

THIS is Success!: Stop Looking for a Unicorn - Don't Go Chasing Waterfalls - Part 2 - Podcast 10 - THIS is Success! Stop Looking for a
Unicorn - Don't Go Chasing Waterfalls - Part 2 - Podcast 10 - THIS is Success! Stop Trying to be the Next Facebook or AIRBNB! Your
Company Can Be HUGELY Successful and So Can You! And you don't have to be a 'unicorn'! One of the big questions you should be
asking yourself (and answering!) is "what does success mean to me?" With the rise of huge social media platforms and other Internet
Document ID: C4-226723363#7 | Score: 13.25

all come to? And I have referred to Titanic in the same post--am I still stuck in the 90s? Was Titanic in the 90s anyway?) but I recommend
chasing waterfalls. I know they were talking about doing drugs and serious STDs, but if we are talking about other things like dreams and
goals, please don't stick to the rivers and the lakes that you're used to. Chase those waterfalls! Go higher! You can always get deeper, you
can always improve and reach higher. We love our Bee Lake where home is, but chasing higher waterfalls was a joy.

Document ID: C4-284752808#0 | Score: 13.23

TLC were wrong when they sang, "don't go chasing waterfalls" - if anything, we WANT to chase pretty waterfalls! Since I'm sure there
are other waterfall enthusiasts on the Gold Coast, I've decided to list 5 of the best waterfalls you need to visit this summer. Plus, make sure

you take your phone & camera, because your Instagram is about to get really good! Springbrook National Park is a must-do for so many
reasons, one of them being the amazing waterfall that is Purling Brook Falls! It's the ultimate opportunity for a bird-eye-view shot. You can

even walk behind the

Document ID: C4-278978955#6 | Score: 13.19

and Outer Great Barrier Reef package. TLC famously said "don't go chasing waterfalls", but in Far North Queensland, they are far too

Figure 1: The user interface of GAIA Search.

ing relevance-based search indices for large-scale
document collections and put it into practice in
the context of NLP data exploration work. We
follow with a demonstration of ways in which
the interoperability between Pyserini (Lin et al.,
2021), a leading toolkit for reproducible IR re-
search on one side, and Hugging Face?, a platform
for open Al research on the other, can be lever-
aged to build tools for easy and effective analysis
of textual data. To facilitate the adoption of the pro-
posed methods we provide a collection of Jupyter
Notebooks with step-by-step explanations of ex-
plored functionalities available at github.com/
huggingface/gaia/tree/main/notebooks.
Finally, we release GAIA—a simple, yet pow-
erful search engine giving relevance-based inter-
face to four popular, large-scale, textual datasets,
namely C4 (Raffel et al., 2020), the Pile (Gao
et al., 2021; Biderman et al., 2022), ROOTS (Lau-
rencon et al., 2022) and captions from LAION-
2B-en (Schuhmann et al., 2022). All considered
datasets rely to a big extent on data mined from
Common Crawl. GAIA benefits from the interop-
erability between Pyserini and Hugging Face that

2https://huggingface.co/

we discuss in the first part of the paper, while also
constituting a standalone contribution which can
benefit the NLP research community by making it
easy to study leading corpora qualitatively. GAIA
is available online at hf'.co/spaces/spacerini/
gaia.

2 Background

The ability to analyze large collections of textual
data is core in multiple research and engineering
disciplines. While the industrial standard is to rely
on robust, scalable database and data analytics in-
frastructure, in the research environment, we typi-
cally resort to more local, granular and flexible, if
ad-hoc, solutions which leverage toolkits such as
NumPy (Harris et al., 2020), Pandas (pandas de-
velopment team, 2020; Wes McKinney, 2010),
SciPy (Virtanen et al., 2020) and others. A common
research approach to data analytics involves using
one of the aforementioned packages in combination
with Jupyter Notebooks?. Notebooks make it easy
to deploy and share analyses, however, typically
they remain essentially non-interactive, requiring

3https://jupyter.org/
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Dataset  Reference Hugging Face Hub link #docs #snippets Data Size Index Size
C4 Raffel et al. (2020) c4 365M 1,587M 829GB 1.3TB
The Pile  Gao et al. (2021) the_pile_deduplicated 134M 673M 825GB 1.2TB
ROOTS  Laurencon et al. (2022) bigscience-data 598M 2,171IM 1.6TB 2.6TB
LAION  Schuhmann et al. (2022) laion2B-en 2,322M 1,351M 503GB 446GB

Total 3,419M 5,782M 3.76 TB 5.55TB

Table 1: Datasets included in the GAIA Search tool. All numbers refer to the size of the train split of the data.

at least a basic understanding of programming to
be able to work with them efficiently. With the
commodification of Al, and NLP in particular, and
the expansion of NLP technologies into research
areas beyond Al (Yang et al., 2022; Smith et al.,
2015; Bhardwaj et al., 2017; Niezni et al., 2022),
the need for easy to use, no-code tools for under-
standing Al artifacts arises. This need is partly
addressed by Python packages such as Streamlit*
and Gradio®, designed to facilitate the creation of
interactive Machine Learning (ML) demos. As
the authors of the Gradio white paper (Abid et al.,
2019) point out, the accessibility and ease of use
of the analysis tools is critical if we want to build
an understanding of Al and trust in it. The Hug-
ging Face Spaces platform, providing free hosting
of both Streamlit, Gradio, and Docker-based ap-
plications, serves this exact purpose. However, it
puts emphasis on demonstrating the capabilities of
models while paying less attention to the datasets
used to train them.

Even more so than in NLP, the evaluation of
IR systems is heavily dependent on the implemen-
tation details of the retrieval systems serving the
search indices being evaluated. The lack of stan-
dardisation of IR evaluation was the main motiva-
tor behind creating Anserini (Yang et al., 2017), a
Lucene®-based toolkit for reproducible IR research,
and the follow-up Pyserini (Lin et al., 2021)—a
convenient Python API to the underlying Java-
based implementation of Anserini. While it is rela-
tively easy to build and serve search indices backed
by Pyserini and Lucene, the task of building and de-
ploying interactive user interfaces generally comes
with a higher engineering barrier of entry.

Relevance-based search interfaces have been pre-
viously explored in the context of NLP—e.g. in
the C4 (Raffel et al., 2020) analysis (Dodge et al.,
2021), in COVID-related datasets (Zhang et al.,
2020) or in news quotes (Vukovié et al., 2022).

*https://streamlit.io/
5https://f:,fradio.app/
6https ://1lucene.apache.org/

Rather than focusing only on providing finished
artifacts, however, we intend our current work to
serve as a reference and inspiration for NLP re-
searchers looking to develop and deploy similar
applications by themselves.

We attempt to bring together the power of
Pyserini-backed retrieval and the agility of ML
demo development within the Hugging Face
ecosystem to serve the goal of building intuitive
data exploration tools. We believe that resulting
applications will make a great difference for NLP
researchers trying to study their data qualitatively,
as well as to non-technical researchers looking for
tools allowing them to perform dataset analysis in
a no-code fashion. We propose our search engine
GAIA as a compelling case in point.

3 Pyserini and Hugging Face: From Data
to Search

In the current section we discuss core components
which need to be considered when building a search
application for textual datasets. We focus on how
each step can be facilitated by the use of Pyserini,
Hugging Face, or a combination of the two. We
also provide hands-on tutorials covering basic con-
cepts and search engine building blocks such as
data loading and indexing, tokenization, search,
and index analysis. We further release the pre-
processing, backend and frontend code that allowed
us to index 3.5 billion documents—chunked into
5.8 billion snippets—and serve 5.55TB worth of
BM25 indexes.

3.1 Data Access

The Hugging Face hub is the repository of over
20,000 datasets from across Al domains. This in-
cludes the most popular large-scale text corpora
in NLP—for example all the datasets we con-
sider in GAIA (see Table 1 for details), but also
other popular large scale text datasets such as OS-
CAR (Abadji et al., 2022) and The Stack (Kocetkov
et al., 2022) among many others. Each dataset
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hosted on the Hub can be accessed locally using
the datasets (Lhoest et al., 2021) library which
provides convenient and parallelizable APIs for
downloading and processing the data. Memory-
mapping is supported by default and uses the effi-
cient an Apache Arrow format,” making it possible
to seamlessly handle datasets surpassing the RAM
constraints of a given machine. Datasets also pro-
vide a streaming functionality which dispenses of
downloading data to disk, making it possible to
work with larger-than-disk datasets.

3.2 Tokenization

Tokenization is a crucial pre-processing step in
NLP in general, and Information Retrieval in par-
ticular. In the context of IR, this process typically
includes removing stop words, stemming, lemma-
tization, and removing non-alphanumeric charac-
ters. By default, Pyserini uses Lucene analyzers—
heuristics-based algorithms designed for various
languages and use cases, to tokenize text. The
drawback of this approch is that only some lan-
guages have dedicated analyzers, while others have
to resort to simply breaking on whitespace, which
inadvertently leads to suboptimal performance.

An alternative to whitespace tokenization that
has shown promise in Information Retrieval and is
a mainstay in NLP is subword tokenization (Mielke
et al., 2021), a process which splits words into
smaller units based on their frequency in the cor-
pus. Hugging Face provides a range of tokenizers
that are specifically designed to work with its pre-
trained transformer language models, as well as the
means to train such tokenizers (MOI et al., 2022).

As of recently, Pyserini can leverage Hugging
Face pre-trained subword tokenizers to improve in-
dexing and searching for multiple languages. Pre-
trained tokenizers from Hugging Face can serve
as drop-in replacements for Lucene Analyzers, im-
proving retrieval effectiveness, particularly in low-
resource languages (Ogundepo et al., 2022). This
interoperability between Hugging Face and Py-
serini makes it easy for researchers to incorporate
deep learning-based language models into their in-
formation retrieval workflows and opens up new
avenues for research in the field.

3.3 Building the Index

Indexing constitutes the core functionality of Py-
serini. The library enables experiments with bag-of-

7https ://arrow.apache.org/

words sparse retrieval using Lucene, and dense vec-
tor retrieval using Faiss (Johnson et al., 2019), as
well as hybrid retrieval combining the two. Though
this project focuses solely on sparse retrieval us-
ing BM25 indexes, Pyserini’s dense encoding and
retrieval API would make it very easy to adapt all
examples and demos to this paradigm.

Offline Indexing. Arrow-backed Hugging Face
datasets readily lend themselves to being indexed
by Pyserini’s standard Lucene indexer. In prin-
ciple, one can build an index of a Hugging Face
dataset simply by downloading it locally and then
passing the file path to the Pyserini indexer via a
command line argument. The scenario where a
pre-processing step is required in between the data
download and the indexing step—as with docu-
ment segmentation which we discuss later in Sec-
tion 4—can be realised straightforwardly for smaller
datasets, which fit both on disk and into RAM. The
larger-than-RAM datasets which fit on disk, can
be easily sharded into any of the disk text formats
supported by Pyserini (those include CSV, TSV,
JSON, and JSONL) and processed concurrently
within RAM limits to be then passed to the indexer.

Datasets Streaming. As of recently, it is also
possible to index datasets which don’t fit on disk.®
This new addition to Pyserini—one that resulted
out of our current collaboration—allows users to
stream text into the index directly—in other words,
build an index on the fly from a text stream rather
than from a static file saved on disk. As a result,
larger-than-disk collections can be streamed from
the Hugging Face Hub directly into the local in-
dexing process. Data streaming can also improve
experimental agility for smaller datasets, by remov-
ing the data downloads step from the Hugging Face
dataset—Pyserini index pipeline.

3.4 Backend: Custom Pyserini Server

Once the data index is ready we need a way to host
it and serve the search functionality to the clients.
We propose a simple Python-based, Pyserini server
implementation for GAIA, which can be easily
generalized to other use-cases. The server code can
be accessed on GitHub.

8Note however, that the resulting index does have to fit
on disk. As a result, we envision this functionality to be
particularly convenient for scenarios where either the dataset
or the index may be able to fit on disk, but both do not—a
common scenario when dealing with TB-scale artefacts.
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3.5 Frontend: Interactive Demos

Providing interactive demos which enable the ex-
ploration of Al artifacts is crucial in order to be
able to collaborate across research disciplines and
share results with colleagues without imposing the
burden of setting up their own engineering stack
on them. By offering the hosting of Gradio and
Streamlit applications Hugging Face Spaces meet
this need perfectly. We encourage readers to follow
the implementations of GAIA for an example of
how to build a simple UI for a search tool.

4 Case Study: GAIA Search

Relevance-based search tools have the potential
of the largest impact on massive-scale datasets,
common in modern NLP. Unlike with smaller data
collections, where simpler investigation strategies,
e.g. via a combination of Pandas and Jupyter
Notebooks, may be feasible, huge datasets are
generally too cumbersome to process this way.
A big benefit of search engines in the form that
we propose is also the fact that after being set
up, they require no engineering skills or exten-
sive computing resources to operate, expanding
the community of potential users. We demon-
strate this with GAIA search, available online at
hf.co/spaces/spacerini/gaia.

4.1 Included Datasets

GAIA proposes a simple interface to four large-
scale textual datasets—C4, The Pile, ROOTS, and
captions from LAION-2B-en. The reader may con-
sult Table 1 for details on respective datasets. All
of the datasets included in GAIA are sourced at
least partly from Common Crawl. The users of the
tool are therefore bound by the Common Crawl
terms of use’ in respect of the content contained in
the datasets. Additionally, in order to respect the
data subjects’ rights (Jernite et al., 2022) we refrain
from presenting full documents in the tool, and in-
stead include snippets of at most 256 words. We
redact the personally identifiable information (PII)
on all search results on the backend side, using the
PII redaction script open-sourced alongside the Big-
Science'? language model BLOOM (Le Scao et al.,
2022). Below we discuss details of the respective
datasets’ pre-processing.

9https ://commoncrawl.org/terms-of-use/
10bigscience. huggingface.co

C4. This is a dataset fully sourced from Common
Crawl. We index the variant of the English split of
the dataset available on the Hugging Face hub. C4
has been used to train TS (Raffel et al., 2020), a ma-
jor seq-2-seq model with a plethora of downstream
applications, parts of it have also contributed to the
training of other LLMs, e.g. LaMDA (Thoppilan
et al., 2022) and Chinchilla (Hoffmann et al., 2022),
which makes it a compelling dataset to study.

The Pile. This corpus has been a standard dataset
for many English LLM releases from various or-
ganizations (Biderman et al., 2023; Black et al.,
2021; Wang and Komatsuzaki, 2021; Black et al.,
2022; Smith et al., 2022; Tang, 2021; Zhang et al.,
2022; Lieber et al., 2021), so we believe that it
is important to expose its contents to public view.
The Pile is an English-only corpus containing mul-
tiple sub-corpora from various sources (Biderman
et al., 2022). We use a variant of The Pile which
has been deduplicated with MinhashLL.SH and a
threshold of 0.87, following the advice of Lee et al.
(2022). Notably, this variant of the Pile has also
been used to train an LLMs (Biderman et al., 2023).
We hope that providing the search interface will
allow further investigation of the subjective dif-
ferences between deduplicated and unprocessed
corpora. Both the canonical variant of The Pile and
it’s deduplicated counterpart are available on the
Hugging Face Hub.

ROOTS. Developed for the purpose of training
BLOOM (Le Scao et al., 2022), this is the only mul-
tilingual dataset available in GAIA. We therefore,
create independent indices for each language or
language group provided in the corpus, resulting in
13 separate indices—Arabic, Catalan, Code (com-
prising all programming languages included in the
corpus), English, Spanish, Basque, French, Indone-
sian, Indic and Niger-Congo (language groups),
Portuguese, Vietnamese and Chinese. We return
results for each index when issuing queries in the
tool.

LAION-2B-en LAION is a dataset of [image
caption, image URL] pairs scraped from the Web.
It has been used to train Stable Diffusion (Rombach
et al., 2021), a textual-prompt-based image gener-
ation model, constituting an open-source counter-
part to OpenAI’'s DALL-E 2 (Ramesh et al., 2022).
We use LAION-2B-en, the subset of the original
dataset with captions in English, as the starting
point for further pre-processing. We start by dedu-
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plicating captions, which yields clusters of image
URLs with identical captions (deduplication code
is available on GitHub). We then index unique cap-
tions. For textual queries to our tool, we return
results consisting of the relevant captions. Along-
side each result, we include the list of associated
image URLs.

4.2 Implementation and Functionality

The implementation of GAIA makes use of a va-
riety of interoperability features we’ve discussed
in Section 3. As detailed in Table 1, all of the
considered datasets are available on the Hugging
Face Hub. We download and segment them locally.
Such segmented datasets are then provided as in-
put to a Pyserini indexer. We leverage Streamlit
to build the user interface for our tool and host it
on Hugging Face Spaces. On the backend side,
the indices are served from Hugging Face provi-
sioned machines. We open-source helper functions
for segmenting long documents and the backend
server code at github.com/huggingface/gaia.

5 Limitations and Future Plans

A major area for consideration when developing
data access tools is that of data governance, privacy
and data ownership (Jernite et al., 2022; Carlini
et al., 2020). In our current work we focus on
the technical aspects of giving access to large data
collections, however, we urge users to consider data
governance principles when designing their own
tools. In terms of the infrastructure, the cost and
complexity of hosting the retrieval index falls on
the creator of the tool, which can be easy to manage
for small datasets but becomes more problematic
when entering the realm of TB-scale corpora. We
are currently investigating a parallel workstream
that could address this limitation at least partly.

6 Conclusions

We showcase interoperability between Hugging
Face and Pyserini and provide value to the NLP
community by demonstrating easy ways to perform
high-quality, large-scale retrieval with open-source
tools. We also introduce GAIA - a search engine
for retrieval-based exploration of four major tex-
tual datasets. We wish to encourage NLP and IR
practitioners to follow our examples and build their
own tools to explore both large and smaller-scale
textual datasets.
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8 Impact Statement

As mentioned in Section 5, accessing large-scale,
web-scraped textual corpora comes with a variety
of ethical considerations, pertaining to the protec-
tion of rights of the data owners and people whose
privacy or copyright might be infringed upon. We
introduce guardrails, namely the PII redaction and
the segmentation of documents into short snippets,
preventing the ability to reconstruct full documents
or full corpora, into the GAIA Search design. We
strongly encourage researchers aiming to build sim-
ilar tools to do the same. Overall, a lot of these
problems seem to occur because we’re proposing
the tool only after the datasets have been created
and models trained on them. The workflow we
envision for future research projects would involve
building data exploration tools prior to the release
of the datasets, so that core problems can be ob-
served, studied and addressed before datasets reach
an external audience.
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