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Abstract

Many NLP tasks benefit from using large lan-
guage models (LLMs) that often have more
than 100 billion parameters. With the release of
BLOOM-176B and OPT-175B, everyone can
download pretrained models of this scale. Still,
using these models requires high-end hardware
unavailable to many researchers. In some cases,
LLMs can be used more affordably via RAM
offloading or hosted APIs. However, these tech-
niques have innate limitations: offloading is too
slow for interactive inference, while APIs are
not flexible enough for research that requires
access to weights, attention or logits. In this
work, we propose PETALS — a system for in-
ference and fine-tuning of large models col-
laboratively by joining the resources of multi-
ple parties. We demonstrate that this strategy
outperforms offloading for very large models,
running inference of BLOOM-176B on con-
sumer GPUs with ≈ 1 step per second, which is
enough for many interactive LLM applications.
Unlike most inference APIs, PETALS also na-
tively exposes hidden states of served models,
allowing to train and share custom model ex-
tensions based on efficient fine-tuning methods.
The system, its source code, and documentation
are available at https://petals.ml.

1 Introduction

In recent years, the NLP community has found that
pretrained language models can solve many practi-
cal tasks, through either fine-tuning (Radford et al.,
2018) or simple prompting (Brown et al., 2020).
Furthermore, performance tends to improve as
scale increases (Radford et al., 2019; Kaplan et al.,
2020). Following this trend, modern LLMs often
have hundreds of billions of parameters (Brown
et al., 2020; Rae et al., 2021; Zeng et al., 2021;
Kim et al., 2021). Some of these LLMs were re-
leased publicly (Zhang et al., 2022; Khrushchev
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et al., 2022; Zeng et al., 2022). Most recently, the
BigScience project has released BLOOM, a 176
billion parameter model supporting 46 natural and
13 programming languages (Scao et al., 2022).

While the public availability of 100B+ parameter
models makes them easier to access, they remain
difficult to use for the majority of researchers and
practitioners due to memory and computational
costs. For instance, OPT-175B and BLOOM-176B
need over 350 GB accelerator memory for infer-
ence and significantly more for fine-tuning. As a
result, these LLMs usually require multiple high-
end GPUs or multi-node clusters to be run. Both
of these options are extremely expensive, which
limits research and potential applications of LLMs.

Several recent works aim to democratize LLMs
by “offloading” model parameters to slower but
cheaper memory (RAM or SSD), then running
them on the accelerator layer by layer (Pudipeddi
et al., 2020; Ren et al., 2021). This method al-
lows running LLMs with a single low-end acceler-
ator by loading parameters from RAM justin-time
for each forward pass. Offloading can be efficient
for processing many tokens in parallel, but it has
inherently high latency: for example, generating
one token at a time with BLOOM-176B takes at
least 5.5 seconds for the fastest RAM offloading
setup and 22 seconds for the fastest SSD offloading.
In addition, many computers do not have enough
RAM to offload 175B parameters.

Another way to make LLMs more accessible is
through public inference APIs, where one party
hosts the model and lets others query it over the
Internet (OpenAI; AI21; Forefront). Since most
of the engineering work is done by the API owner,
this is a relatively user-friendly option. However,
APIs are often not flexible enough for research use:
there is no way to change the model control flow
or access internal states. On top of that, current
API pricing can make some research projects pro-
hibitively expensive (Liu et al., 2022a).
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Figure 1: An overview of PETALS. Some participants (clients) want to use a pretrained language model to solve
various tasks involving processing texts in natural (e.g., French, Hindi) or programming (e.g., C++) languages. They
do it with help of other participants (servers), who hold various subsets of model layers on their GPUs. Each client
chooses a sequence of servers so that it performs an inference or fine-tuning step in the least amount of time.

In this work, we explore an alternative strategy
inspired by crowdsourced distributed training of
neural networks from scratch (Ryabinin and Gu-
sev, 2020). We introduce PETALS, a platform
that allows multiple users to collaborate and per-
form inference and fine-tuning of large language
models over the Internet. Each participant runs a
server, a client or both. A server hosts a subset of
model layers (typically, Transformer blocks) and
handles requests from clients. A client can form
a chain of pipeline-parallel consecutive servers to
run the inference of the entire model (Section 2.1).
Aside from inference, participants can fine-tune the
model through parameter-efficient training meth-
ods like adapters (Houlsby et al., 2019) or prompt
tuning (Lester et al., 2021) or by training entire
layers (Section 2.2). Once trained, submodules
can be shared on a model hub (Section 2.3), where
others can use them for inference or further train-
ing. We demonstrate that existing 100B+ models
can run efficiently in this setting with the help of
several optimizations: dynamic quantization, prior-
itizing low-latency connections, and load balancing
between servers (Section 3). Finally, we discuss
limitations and possible future work (Appendix A).

2 Design and use cases

Practical usage of large language models can be
broadly divided into two main scenarios: inference
and parameter-efficient adaptation to downstream
tasks. In this section, we outline the design of
PETALS, showing how it handles both scenarios
and also allows easily sharing trained adapters be-
tween the users of the system.

2.1 Inference of billion-scale models

When generating tokens, a client stores the model’s
token embeddings (which typically comprise a

small fraction of the total parameter count and can
fit in RAM in most modern laptops, servers, and
workstations) locally and relies on servers to run
Transformer blocks. Each server holds several con-
secutive blocks, the number of which depends on
the server’s available GPU memory. Before each
inference session, the client finds a chain of servers
that collectively hold all model layers.

Once the chain is formed, the client uses the local
embedding layer to look up embedding vectors for
prefix tokens, then sends those vectors to servers
and receives new representations. Once the client
obtains the outputs of the final block, it computes
next token probabilities and repeats this process.

While the session is active, servers store atten-
tion keys and values from past client inputs and use
them for subsequent inference steps. Clients also
store past inputs to each server so that if any server
fails or goes offline, another one can quickly take
its place. The procedure for finding servers and
recovering from failures is detailed in Section 3.2.

Client-side API. To generate tokens with
PETALS, one first creates an inference session. An
inference session iteratively takes inputs as Py-
Torch tensors, runs them through all Transformer
blocks and returns final representations as PyTorch
tensors. Under the hood, sessions form server
chains, hold cache, and recover from server failures
in a way that is transparent to the user. An example
of using an inference session is shown in Figure 2.

System requirements. For BLOOM-176B infer-
ence, clients need at least 12 GB RAM, most of
which is used to store 3.6B embedding parame-
ters. We recommend at least 25 Mbit/s bidirectional
bandwidth to avoid bottlenecks in network trans-
fers. Simple greedy inference can use any CPU
that runs PyTorch, but more advanced algorithms
(e.g., beam search) may require a GPU.
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# Initialize distributed BLOOM model
model = DistributedBloomForCausalLM \

.from_pretrained("bigscience/bloom-petals")
input_ids = tokenizer(prefix_text)

with model.inference_session() as session:
# Session maintains a set of servers that
# store attention KV from previous steps
for _ in range(sequence_length):

# Compute the word embeddings locally
hid = model.word_embeddings(input_ids)
# Run distributed Transformer blocks,
# store attention KV for future steps
hid = session.step(hid)
# Sample the next token locally
probs = model.lm_head(hid)
input_ids = sample_next_token(probs)

Figure 2: A basic PyTorch code snippet for generation
with a distributed BLOOM-176B model.

In turn, servers need at least 16 GB of CPU
RAM, 100 Mbit/s bandwidth and a GPU with at
least 8 GB of memory.

Chat application. We also provide an exam-
ple application that lets users chat with LLMs
in a messenger-like user interface (see Figure 3).
The application supports BLOOM-176B and
BLOOMZ-176B, a version of BLOOM fine-tuned
to better perform in the zero-shot regime (Muen-
nighoff et al., 2022). The application is comprised
of the frontend and the backend. The frontend is
a web page that allows users to communicate with
the model by prompting it with text and receiving
the generated output. The backend is a Flask web
server that uses the PETALS client to run inference
over the swarm. It accepts requests via HTTP or
Websocket protocols, so anyone can develop their
own applications using our backend for inference.

2.2 Training for downstream tasks

While LLMs achieve high quality on many prob-
lems with simple prompt engineering (Brown et al.,
2020), they often need training to achieve the best
results. Traditionally, this is done by fine-tuning all
model parameters on the downstream task. How-
ever, for very large models, this strategy becomes
impractical due to hardware requirements. For
example, fine-tuning BLOOM-176B with Adam
would require almost 3 TB of GPU memory to
store model, gradients, and optimizer states.

To combat this issue, the NLP community has
developed parameter-efficient fine-tuning methods
that keep most of the pretrained model intact. Some
of them (Sung et al., 2021; Guo et al., 2021) choose
a subset of existing parameters, others (Hu et al.,
2021; Houlsby et al., 2019; Liu et al., 2021b; Lester
et al., 2021; Liu et al., 2021a, 2022a) augment the

Figure 3: A chat application that runs BLOOM-176B
or BLOOMZ-176B over the PETALS swarm, available
at https://chat.petals.ml

model with extra trainable weights.
Despite their lower memory requirements,

parameter-efficient approaches are often compet-
itive with full model fine-tuning (Hu et al., 2021;
Liu et al., 2021a; Yong and Nikoulina, 2022) and
even outperform it in low-data regimes (Liu et al.,
2022b). Another appealing property of these ap-
proaches for our use-case is that they allow rapidly
switching a pretrained LLM between different uses.

Distributed fine-tuning. The core principle of
fine-tuning in a distributed network is that clients
“own” trained parameters while servers host origi-
nal pretrained layers. Servers can run backpropaga-
tion through their layers and return gradients with
respect to activations, but they do not update the
server-side parameters. Thus, clients can simulta-
neously run different training tasks on the same set
of servers without interfering with one another.

To illustrate this principle, we first review an ex-
ample of soft prompt-tuning for text classification
and then generalize it to other methods and tasks.
Similarly to Section 2.1, clients store the embed-
ding layers locally and rely on servers to compute
the activations of Transformer blocks. In this fine-
tuning scenario, a client needs to store trainable
soft prompts (task-specific input embeddings) and
a linear classification head.

For each training batch, the client routes its data
through a chain of remote servers to compute sen-
tence representations, then obtains predictions with
the classifier head and computes the cross-entropy
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# Use distributed BLOOM with soft prompts
model = AutoModelForSequenceClassification \

.from_pretrained(
"bigscience/bloom-petals",
tuning_mode="ptune", pre_seq_len=5)

# Define optimizer for prompts and linear head
opt = torch.optim.AdamW(model.parameters())

for input_ids, labels in data_loader:
# Forward pass with local & remote layers
out = model.forward(input_ids)
loss = cross_entropy(out.logits, labels)

# Distributed backward w.r.t. local params
loss.backward() # Compute prompts.grad
opt.step() # Update local params only
opt.zero_grad()

Figure 4: A basic PyTorch code of soft prompt tuning
for sequence classification with PETALS.

loss. During backpropagation, the client runs its
data through the same chain of servers in reverse
order to compute gradients for the learned prompt
vectors. Having obtained those gradients, the client
can use a regular PyTorch optimizer to update the
parameters of both the head and the prompts, then
proceed to the next minibatch.

User interface. To allow users greater flexibility
in their training workloads, we made distributed
backpropagation module compatible with the Py-
Torch Autograd engine. Like in the inference stage,
this module handles fault tolerance and load balanc-
ing transparently to the user while allowing them
to access intermediate activations and insert cus-
tom PyTorch modules. Figure 4 shows an example
training code snippet.

This interface can also support other popular
parameter-efficient fine-tuning algorithms, such as
LoRA (Hu et al., 2021) or prefix tuning (Li and
Liang, 2021). Finally, users can insert custom local
modules after some of the existing blocks, which
could allow use-cases like retrieval-augmented gen-
eration (Borgeaud et al., 2021; Lewis et al., 2020).

2.3 Sharing and reusing trained modules

Although most fine-tuned extensions for pretrained
models can be easily shared as-is, simplifying the
workflow for sharing these extensions enables users
to more easily adapt the model to their target sce-
nario. Indeed, existing model hubs (Wolf et al.,
2020; TensorFlow Hub; PyTorch Hub) have gained
immense popularity due to many supported models
and ease of use, especially when vetting different
pretrained models for a given problem. One particu-
larly relevant project is AdapterHub (Pfeiffer et al.,
2020), a repository of trained adapters accompa-
nied by a library with implementations of different

adaptation methods. While PETALS does not de-
pend on AdapterHub, it is possible to leverage this
library for training adapters in the distributed set-
ting. Instead, we support sharing modules trained
by users via the Hugging Face Hub (also used as
a backend by AdapterHub). Its infrastructure and
the corresponding open source library simplify the
learning process for users already familiar with
the ecosystem. Because the primary navigation
mechanism on the Hugging Face Hub are tags that
have been applied to uploaded modules, a user only
needs to the task it was trained on and the model
upon which the adapter was built. Uploading the
weights and the code of the fine-tuned module is
done by committing them to a Git repository. When
navigating the Hub, users can choose the most suit-
able adapters by filtering the list of all available
modules by the required tags.

3 Internal structure and optimizations

One of the primary considerations for distributed
inference is its performance. It can be broken down
into three main aspects: computation speed (5-year-
old gaming GPU vs. new data center GPU), com-
munication delay due to distance between nodes
(intercontinental vs. local), and communication
delay due to bandwidth (10 Mbit/s vs. 10 Gbit/s).

In terms of raw FLOPs, even consumer-grade
GPUs like GeForce RTX 3070 could run a com-
plete inference step of BLOOM-176B in less than a
second (NVIDIA, 2020). However, the GPU mem-
ory can only hold a small fraction of model lay-
ers: running naïvely would require 44 RTX 3070
GPUs and 44 communication rounds. To make
this more efficient, we use quantization to store
more parameters per GPU, reducing the number
of consecutive devices and communication rounds
(Section 3.1). On top of that, each client priori-
tizes nearby servers to make communication rounds
faster (Section 3.2).

3.1 Large model inference on consumer GPUs

We assume that each server has at least 16 GB of
CPU RAM, 8 GB of GPU memory. From this
assumption, one of the primary considerations is to
reduce the model memory footprint, so that each
device can hold more Transformer blocks.

For example, BLOOM has 176B parameters,
which takes 352 GB of GPU memory in 16-bit
precision. Thus, in the worst case, the model is
distributed among 352 GB / 8 GB (per server)

561



Table 1: Zero-shot accuracy for OPT-175B and
BLOOM-176B with 8-bit and 16-bit weights.

Model Bits HellaSwag LAMBADA WinoGrande Avg

OPT-175B
16 78.5 74.7 72.6 75.3
8 78.5 74.6 71.7 74.9

BLOOM
16 73.0 67.2 70.1 70.1
8 72.8 68.1 70.1 70.3

Table 2: Generation throughput (tokens/s) for BLOOM-
176B with 8-bit and 16-bit weights on 8× A100 GPUs.

Weights Batch size

1 8 32
16-bit 4.18 31.3 100.6
8-bit 3.95 29.4 95.8

= 44 nodes. We can reduce both frequency and
amount of data transfer in two ways. First, we can
achieve this by compressing the hidden states ex-
changed between nodes. Second, we can compress
the weights to 8-bit precision, reducing the number
of nodes required to hold all layers. For BLOOM,
this changes the number of required nodes from 44
to 22, which reduces latency in half and decreases
the probability of a failure.

Compressing communication buffers. To send
less data between subsequent pipeline stages, we
use dynamic blockwise quantization (Dettmers
et al., 2022b). We apply it to the hidden states
before pipeline-parallel communication, as done in
Ryabinin et al. (2023). Dynamic blockwise quanti-
zation halves the bandwidth requirements without
any noticeable effect on generation quality.

Compressing model weights. We use 8-bit
mixed matrix decomposition for matrix multiplica-
tion to quantize the weights to 8-bit precision and
reduce the memory footprint compared to 16-bit
weights, as suggested in (Dettmers et al., 2022a).
This decomposition separates hidden states and
weights into two portions: about 0.1% of 16-bit
outlier and 99.9% of 8-bit regular values, which
roughly halves the memory footprint.

As shown in Table 1, this method has little effect
on LLM quality for major benchmarks. In terms of
inference time, Table 2 demonstrates that quantiza-
tion has about 5% of overhead with batch size 1 (20
tokens), but becomes negligible for larger batches.

3.2 Collaborating over the Internet

Another challenge is to provide reliable inference
and training despite nodes joining, leaving or fail-
ing at any time. To address this, PETALS uses the

hivemind library (Learning@home, 2020) for
decentralized training with custom fault-tolerant
algorithms for servers and clients detailed below.

Fault-tolerant generation. During inference,
clients rely on servers to store attention keys and
values for previous tokens. This introduces a poten-
tial problem if one or more servers disconnect (or
fail) while generating a long sequence. To combat
this, PETALS needs a way to recover from server
failures transparently to the user.

A naive solution would be to restart the gener-
ation procedure, treating previously generated to-
kens as part of the prompt. This approach has two
scaling issues. When generating longer sequences,
the inference would have to restart more often, in-
creasing the inference time superlinearly. Also, the
more participants take part in the generation proce-
dure, the higher the chance that one of them fails
and the entire procedure needs to restart.

To reduce the time spent re-running computa-
tions Petals uses a special generation algorithm that
supports partial restarts. To enable this, we make
both clients and servers store previous activations.
While each server stores past keys and values for
its local blocks, each client remembers intermedi-
ate activations at every “junction” between servers
(i.e., the activations it receives from the previous
server and sends to the next one).

If one of the servers fail, the client only needs
to replace the activations from that server. To do
so, the client finds other servers holding the same
blocks, then resends the cached activations that
were sent to the previous (failed) server. Once this
recovery is complete, the replacement server is in
the same “inference state” as the rest of the chain,
and the client can continue generating tokens.

Communication pattern. The algorithm above
implies that clients send requests and receive re-
sponses from servers one by one, while servers do
not directly pass activations to each other. This is
suboptimal for sequential inference, where perfor-
mance is bounded by the network latency.

To address this, we can make intermediate
servers send the output activations both (a) directly
to the next server and (b) back to the client. This
way, the next server will start computations as soon
as possible (after only one network hop instead
of two hops), while the client will still be able to
reuse the activations in case of server failures. Note
that, in this case, sending two times more data does
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not worsen performance since, typically, sequential
inference is not bounded by network bandwidth.

Server load balancing. First, we ensure that
servers are distributed evenly among Transformer
blocks. Formally, servers maximize the total model
throughput by choosing the blocks with the lowest
throughput, thus eliminating potential bottlenecks.

Here, the block throughput is the sum of through-
puts of all servers hosting this block, while the
server throughput is the minimum of its network
and compute throughputs (in requests/sec), mea-
sured empirically before a server joins the system.

Each active server periodically announces its
active blocks to a distributed hash table (May-
mounkov and Mazieres, 2002). When a new server
joins, it uses this information to choose an inter-
val of blocks that contains blocks with the lowest
throughput. The server only considers contiguous
intervals, since hosting disjointed blocks would
harm the inference latency. Once the server selects
the best blocks to host, it reports them to the dis-
tributed hash table along with its own throughput.

Since peers may leave or fail at any time, all
nodes periodically check if launching a rebalancing
procedure would significantly improve the overall
throughput. If it is the case, they switch layers until
the throughput becomes near-optimal. In particular,
if all peers serving certain blocks suddenly leave
the system, this procedure quickly redistributes the
remaining resources to close the emerged gaps.

Client-side routing. Next, we want clients to be
able to find a sequence of servers that run the model
in the least amount of time. During generation,
clients process one or few tokens at a time; in prac-
tice, the inference time is mostly sensitive to the
network latency. Thus, clients have to ping nearby
servers to measure latency and then find the path
with minimal time via beam search. Conversely,
during fine-tuning one needs to process a batch of
examples in parallel. Here, clients can split their
batches between multiple servers using the algo-
rithm from Ryabinin et al. (2023). If a server fails,
a client removes it from consideration and reruns
routing to find a replacement, possibly recovering
inference caches as described above.

3.3 Benchmarks

We evaluate the performance of PETALS by run-
ning BLOOM-176B in emulated and real-world
setups. Our first setup consists of 3 local servers,

Table 3: Performance of sequential inference steps and
parallel forward passes. RTT is the round-trip latency.

Network
Single-batch Parallel

inference (steps/s) forward (tokens/s)

Sequence length Batch size

Bandwidth, RTT 128 2048 1 64

PETALS on 3 physical servers, with one A100 each

1 Gbit/s, < 5 ms 1.71 1.54 70.0 253.6
100 Mbit/s, < 5 ms 1.66 1.49 56.4 182.0
100 Mbit/s, 100 ms 1.23 1.11 19.7 112.2

PETALS on 12 virtual servers

1 Gbit/s, < 5 ms 1.24 1.06 37.9 180.0
100 Mbit/s, < 5 ms 1.24 1.05 25.6 66.6
100 Mbit/s, 100 ms 0.57 0.53 5.8 44.3

PETALS on 14 real servers in Europe and North America

Real world 0.83 0.79 32.6 179.4

Offloading, max. speed on 1x A100

256 Gbit/s 0.18 0.18 2.7 170.3
128 Gbit/s 0.09 0.09 2.4 152.8

Offloading, max. speed on 3x A100

256 Gbit/s 0.09 0.09 5.1 325.1
128 Gbit/s 0.05 0.05 3.5 226.3

each running on an A100 80GB GPU. This is an
optimistic scenario that requires the least amount of
communication. In the second setup, we simulate
12 weaker devices by partitioning each A100-80GB
into several virtual servers (3 large and 1 small).
We evaluate the above setups with three network
configurations: 1 Gbit/s with < 5 ms latency, 100
Mbit/s with < 5 ms latency and 100 Mbit/s with
100 ms latency1. The client nodes have 8 CPU
cores and no GPU.

Next, we benchmark BLOOM in a real-world
distributed setting with 14 smaller servers holding
2× RTX 3060, 4×2080Ti, 2×3090, 2×A4000, and
4×A5000 GPUs. These are personal servers and
servers from university labs, spread across Europe
and North America and connected to the Internet
at speeds of 100–1000 Mbit/s. Four of the servers
operate from under firewalls2.

In Table 3, we report the performance of single-
batch inference and parallel forward passes for
batches of 128-token sequences. For inference, per-
formance does not depend much on bandwidth or
sequence length but degrades with higher latency.
Parallel forward passes with large batches (used for
fine-tuning and parallel inference) are affected by
both bandwidth and latency.

1We simulate network conditions using tc qdisc.
2We use the Circuit Relay protocol (libp2p, 2022) to

traverse NATs and firewalls.
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We also test the effect of having multiple clients.
For 12 servers with 100 Mbit/s bandwidth and 100
ms latency, if 8 clients run inference concurrently,
each of them gets ≈ 20% slowdown compared to
the case when it runs inference alone.

Additionally, we compare PETALS with parame-
ter offloading to run large models with limited re-
sources (Ren et al., 2021; Rajbhandari et al., 2021).
For the offloading benchmark we calculate the max-
imum inference and forward training throughput
to receive an upper bound on offloading perfor-
mance. We base our offloading numbers on the
best possible hardware setup for offloading: CPU
RAM offloading via PCIe 4.0 with 16 PCIe lanes
per GPU and PCIe switches for pairs of GPUs.

We calculate the maximum throughput for of-
floading as follows. In 8-bit, the model uses 1 GB
of memory per billion parameters while PCIe 4.0
with 16 lanes has a throughput of 256 Gbit/s (or 128
Gbit/s if two GPUs are behind a PCIe switch). As
such, offloading 176B parameters takes 5.5 seconds
for a regular setup and 11 seconds for a multi-GPU
setup. We assume an offloading latency of zero for
the upper bound estimation.

These results are also shown in Table 3. We
can see that offloading is about an order of magni-
tude slower for single-batch inference compared to
PETALS. For the fine-tuning forward pass, offload-
ing is competitive if multiple GPUs are used and
the networking for PETALS is limited to 100 Mbit/s
or has high latency. In other cases, PETALS offers
higher throughput than offloading for training.

4 Conclusion

This paper introduces PETALS, a system for ef-
ficient collaborative inference and fine-tuning of
large language models. We offer a user-friendly
generation interface and a flexible API to access
models served over the Internet. We use 8-bit com-
pression that reduces the resource requirements to
run very large models. In addition, we develop
algorithms for reliable routing and load balancing.

With the release of this system, we hope to
broaden access to LLMs and pave the road to ap-
plications, studies or research questions that were
previously not possible or simply too expensive.

Running LLMs over the Internet raises a broad
range of related questions. One of them is pri-
vacy: how to avoid revealing private data to outside
peers. Another challenge is to ensure that partici-
pants can benefit from this system equitably, i.e. in

proportion to their contribution. We discuss future
problems such as privacy, security, and incentive
structures in Appendix A.

Limitations

An important limitation of our work is data pri-
vacy: the intermediate activations of the model for
given inputs are sent to the servers without any en-
cryption. As such, it might be possible for people
hosting the servers to recover the user’s input data.
Another limitation is security: while there are ways
to detect and penalize peers sending faulty outputs,
still there is a chance that peers may do that due to
faulty hardware or a malicious intent.

Thus, we recommend users working with sensi-
tive data to only use servers hosted by institutions
trusted to process this data or set up an isolated
PETALS swarm.

We discuss these limitations in more detail in Ap-
pendix A and acknowledge that the development of
methods for privacy-preserving and secure decen-
tralized inference without performance penalties
remains an open research problem.

Ethics Statement

This work introduces a general-purpose algorithm
for decentralized inference of large models, aim-
ing to simplify access to the latest research in deep
learning. Thus, we do not envision any direct nega-
tive impacts from our research aside from granting
the broader public an ability to interact with LLMs
trained on uncurated web-crawled data. However,
all models we serve are already in open access and
thus can be exposed via APIs or other means.
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. BLOOM: a 176B-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Yi-Lin Sung, Varun Nair, and Colin Raffel. 2021. Train-
ing neural networks with fixed sparse masks. Ad-
vances in Neural Information Processing Systems.

TensorFlow Hub. TensorFlow Hub. https://www.
tensorflow.org/hub. Accessed: 2021-10-04.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,

Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zheng-Xin Yong and Vassilina Nikoulina. 2022. Adapt-
ing bigscience multilingual model to unseen lan-
guages.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Ming Ding,
Qinkai Zheng, Hanyu Lai, Zihan Wang, Zhuoyi Yang,
Jifan Yu, Xiaohan Zhang, Wendi Zheng, Xiao Xia,
Yifan Xu, Weng Lam Tam, Yuxiao Dong, Zixuan Ma,
Jiaao He, Zhenbo Sun, Jidong Zhai, Wenguang Chen,
Guoyang Zeng, Xu Han, Weilin Zhao, Zhiyuan Liu,
Yufei Xue, Shan Wang, Jiecai Shan, Haohan Jiang,
Zhengang Guo, Peng Zhang, and Jie Tang. 2022.
GLM-130B: An open bilingual pre-trained model.

Wei Zeng, Xiaozhe Ren, Teng Su, Hui Wang, Yi Liao,
Zhiwei Wang, Xin Jiang, ZhenZhang Yang, Kaisheng
Wang, Xiaoda Zhang, Chen Li, Ziyan Gong, Yi-
fan Yao, Xinjing Huang, Jun Wang, Jianfeng Yu,
Qi Guo, Yue Yu, Yan Zhang, Jin Wang, Hengtao
Tao, Dasen Yan, Zexuan Yi, Fang Peng, Fangqing
Jiang, Han Zhang, Lingfeng Deng, Yehong Zhang,
Zhe Lin, Chao Zhang, Shaojie Zhang, Mingyue Guo,
Shanzhi Gu, Gaojun Fan, Yaowei Wang, Xuefeng
Jin, Qun Liu, and Yonghong Tian. 2021. Pangu-
α: Large-scale autoregressive pretrained chinese lan-
guage models with auto-parallel computation. CoRR,
abs/2104.12369.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. OPT: open pre-
trained transformer language models.

567

https://colinraffel.com/blog/a-call-to-build-models-like-we-build-open-source-software.html
https://colinraffel.com/blog/a-call-to-build-models-like-we-build-open-source-software.html
http://arxiv.org/abs/2101.06840
http://arxiv.org/abs/2101.06840
https://proceedings.neurips.cc/paper/2020/file/25ddc0f8c9d3e22e03d3076f98d83cb2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/25ddc0f8c9d3e22e03d3076f98d83cb2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/25ddc0f8c9d3e22e03d3076f98d83cb2-Paper.pdf
https://www.tensorflow.org/hub
https://www.tensorflow.org/hub
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.48550/ARXIV.2204.04873
https://doi.org/10.48550/ARXIV.2204.04873
https://doi.org/10.48550/ARXIV.2204.04873
http://keg.cs.tsinghua.edu.cn/glm-130b/posts/glm-130b/
http://arxiv.org/abs/2104.12369
http://arxiv.org/abs/2104.12369
http://arxiv.org/abs/2104.12369
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068


Appendix

A Discussion and future work

Incentives for peers to contribute. In PETALS,
peers using the client are not required to run a
server. This may lead to an imbalance between sup-
ply (peers who dedicate GPUs to serve model lay-
ers) and demand (peers using the servers to perform
inference or fine-tuning for their own needs) in the
network. One way to encourage users to serve
model layers is to introduce a system of incentives:
peers running servers would earn special points,
which can be spent on high-priority inference and
fine-tuning or exchanged for other rewards.

Privacy. A key limitation of our approach is that
peers serving the first layers of the model can
use their inputs to recover input tokens. Thus,
clients working with sensitive data should only
use the servers hosted by institutions trusted to
process this data. This can be achieved with the
allowed_servers parameter that limits the set
of servers a client can use. Alternatively, users can
set up their own isolated Petals swarm.

This limitation may be addressed in future work,
leveraging the fields of secure multi-party com-
puting (Evans et al., 2018) or privacy-preserving
hardware (NVIDIA, 2022).

Security. We assume that servers in our system
are run by many independent parties. In practice,
some of them may turn out to be faulty and return
incorrect outputs instead of the actual results of for-
ward and backward passes. This may happen due
to a malicious intent to influence other people’s out-
puts or, when rewards are introduced (as described
above), to earn a reward for serving layers without
actually performing the calculations.

A possible way to address these issues would
be to use an economically motivated approach.
Some servers may vouch for the correctness of their
outputs (e.g., in exchange for increased inference
price) by depositing a certain number of points as
a pledge. Then, for each request, they announce a
cryptographic hash of the input and output tensors,
so anyone having the inputs can check whether the
outputs are correct.

If someone finds a mismatch confirmed by a
trusted third party, they can claim the server’s
pledge as a reward. In practice, it may be a client
who suspects that they received wrong outputs or
a “bounty hunter” sending requests to different

servers in the hope of catching errors. While this
approach still leaves a chance of receiving wrong
outputs, it makes cheating costly and creates an
incentive to quickly expose the malicious servers.

Making changes to the main model. As dis-
cussed in Section 2.2, distributed parameter-
efficient fine-tuning makes it easy for users to apply
the base model to new tasks. In Section 2.3, we also
described how these updates can be easily shared
and reused by others. This capability provides a
meaningful step towards collaborative improve-
ment of machine learning models (Raffel, 2021):
as more and more users train the base model, it will
effectively become more capable over time.

Furthermore, we might expect the model param-
eters that perform best on a specific task to change
over time. Similarly to version control systems
for code, it would be useful to track versions of
fine-tuned model parameters as they change. A
system for rapidly testing the performance of a set
of parameters on “living benchmarks” (Kiela et al.,
2021; Gehrmann et al., 2022; Gao et al., 2021)
would be valuable to ensure that subsequent ver-
sions improve the desired capabilities.

Apart from adaptation to new tasks, it would also
be useful to eventually update the main model. Ide-
ally, such updates could be tracked in a principled
way. Users of PETALS could specify the versions
of the model they want to use, and servers could
indicate which versions they support. Introducing a
newer version of the model then reduces to adding
a new group of layers, which then naturally super-
sedes older parameters based on the approach from
Section 3.2. Similarly, fine-tuned adapters could
be annotated with tags denoting the model version
they are applicable for. Such fine-grained model
versioning is currently uncommon but would be
straightforward to add to PETALS.
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