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Abstract
Our research focuses on the most prevalent type
of queries—simple questions—exemplified by
questions like “What is the capital of France?”.
These questions reference an entity such as
“France”, which is directly connected (one hop)
to the answer entity “Paris” in the underlying
knowledge graph (KG). We propose a multi-
lingual Knowledge Graph Question Answer-
ing (KGQA) technique that orders potential
responses based on the distance between the
question’s text embeddings and the answer’s
graph embeddings. A system incorporating this
novel method is also described in our work.

Through comprehensive experimentation using
various English and multilingual datasets and
two KGs — Freebase and Wikidata — we illus-
trate the comparative advantage of the proposed
method across diverse KG embeddings and lan-
guages. This edge is apparent even against
robust baseline systems, including seq2seq QA
models, search-based solutions and intricate
rule-based pipelines. Interestingly, our research
underscores that even advanced AI systems like
ChatGPT encounter difficulties when tasked
with answering simple questions. This finding
emphasizes the relevance and effectiveness of
our approach, which consistently outperforms
such systems. We are making the source code
and trained models from our study publicly ac-
cessible to promote further advancements in
multilingual KGQA.

1 Introduction

A knowledge graph (KG) is a collection of subject–
predicate–object triples, for example ⟨Paris, capi-
tal_of, France⟩. Large KGs are valuable resources
for many tasks, including question answering
(QA) (Ji et al., 2022). Knowledge graph question
answering (KGQA) is an active research area, as
well as a popular application.

Even though all major web search engines imple-
ment KGQA capabilities – KG results can be easily

*The first two authors contributed equally.

recognized in their ‘smart answers’ – there are few
operational KGQA research prototypes available
online. A rare example is QAnswer (Diefenbach
et al., 2020a), a rule-based KGQA system over
Wikidata. There are also only a few free KGQA
codebases available (Huang et al., 2019; Burtsev
et al., 2018; Chen et al., 2021).

In this work, we focus on simple questions such
as “What is the capital of France?”. There exists
an opinion that the task of answering such ques-
tions is nearly solved (Petrochuk and Zettlemoyer,
2018), but openly available systems are scarce and
do not support multiple languages. Besides, their
performance, as will be observed from our work,
is still far from perfect even for models based on
deep neural networks specifically pre-trained on
QA data. In our work, our aim is to address these
limitations of the prior art.

We developed a KGQA method M3M (multilin-
gual triple match) based on text-to-graph embed-
ding search. The key idea illustrated in Figure 1
is to combine a pre-trained multilingual language
model for question representation and pre-trained
graph embeddings that represent KG nodes and
edges as dense vectors. In the training phase, we
learn separate projections of the question text em-
beddings to the subject, predicate, and object of
the KG triple corresponding to the question-answer
pair. In the test phase, we first fetch a set of can-
didate KG triples based on the question’s word
n-grams and extract named entities to make the
process more computationally efficient. Then, we
rank candidate triples according to the sum of three
cosine similarities – between the embeddings of
the triple’s components and respective projections
of the question’s embeddings. Finally, the object
of the top-ranked triple is returned as an answer.

Our approach build upon Huang et al. (2019)
expanding the method beyond a single KG and
a single monolingual dataset. We experimented
with the de facto standard English KGQA dataset
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Figure 1: Workflow of M3M Knowledge Graph Question Answering system for simple questions.

Figure 2: Graphical user interface of the KGQA system for answering one-hop questions.

SimpleQuestions, which is based on the now depre-
cated Freebase, to allow comparison with previous
art. Moreover, we conducted experiments with sev-
eral Wikidata-based datasets: SimpleQuestionsWd
(a Wikidata mapping from the original benchmark),
Russian/English RuBQ 2.0 dataset, as well as a re-
cent Mintaka dataset covering nine languages. Our
experiments demonstrate the applicability of the
proposed method in different KGs and languages.

Our online demo (see Figure 2) implements two
KGQA methods: (1) a T5 model fine-tuned on QA
data and (2) our approach dubbed M3M based on
embedding search. We believe that a combination
of an online demo, publicly available code, as well
as evaluation results on several datasets will con-
tribute to future developments in the field of mul-

tilingual KGQA. To summarize, our contributions
are the following:

• A novel multilingual approach to one-hop
KGQA, which compares favorably to strong
baselines, such as T5 QA system, and previ-
ous embedding-based methods on a battery of
benchmarks.

• Open implementation of an online system for
one-hop QA over Wikidata knowledge graph.
We also release pre-trained models and pro-
vide an API making seamless integration into
NLP applications possible.1

1Source code, link to the demo and video demonstration:
https://github.com/s-nlp/m3m
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embedding search similar to our approach, and gen-
erative neural models, e.g. sequence-to-sequence.

QAnswer is a rule-based multilingual QA sys-
tem proposed by Diefenbach et al. (2020b). It re-
turns a ranked list of Wikidata identifiers as an-
swers and a corresponding SPARQL query. We use
QAnswer API in our experiments.8

KEQA: Knowledge Embedding based Question
Answering. There are no published results on
SimpleQuestions aligned with Wikidata KG which
is why we adopt the official implementation of
KEQA (Huang et al., 2019) – an open-source
embedding-based KGQA solution to SimpleQues-
tionsWd benchmark. It was initially trained and
evaluated on Freebase embeddings. To the best of
our knowledge, there are no open-sourced KGQA
models with better performance than KEQA. We
use this model as the main baseline on Simple-
QuestionsWd and original SimpleQuestions bench-
marks. To make a comparison with KEQA on
the SimpleQuestionsWd test set more fair, we re-
train it on PTBG-Wikidata embeddings. We use
the official implementation with provided hyperpa-
rameters and an internal validation mechanism.9

As SimpleQuestionsWd is a subset of the original
SimpleQuestions, we evaluate Freebase-pretrained
KEQA on this dataset as well (taking into account
the corresponding entity mapping).

T5-based QA system. Question answering can
also be addressed as a seq2seq task. To pro-
vide a comparison with this type of approaches,
we conducted experiments with T5, an encoder-
decoder transformer-based model pre-trained on
a multi-task mixture of unsupervised and super-
vised tasks (Raffel et al., 2020). T5 works well
on a variety of tasks out-of-the-box by prepend-
ing a prefix to the input corresponding to each of
the tasks. To answer English questions, we used
T5 model fine-tuned on a large NaturalQuestions
dataset (Roberts et al., 2020). For other languages,
we fine-tuned mT5-xl model (Xue et al., 2021) on
Mintaka Simple.

In addition, we carried out experiments employ-
ing the Flan-T5-xl (Chung et al., 2022) model,
a recent development trained on a diverse mix-
ture of tasks. We evaluated this model in

8https://qanswer-frontend.
univ-st-etienne.fr

9https://github.com/xhuang31/KEQA_
WSDM19

two distinct setups using the Mintaka dataset:
firstly in a zero-shot setting, utilizing the prompt
“Question: question Answer:”, and secondly, by
separately fine-tuning the model on the training
data for each individual language.

GPT-3 has gained recognition for its impressive
performance in both few-shot and zero-shot con-
texts (Brown et al., 2020), excelling in a vast array
of benchmarks. A recent study (Chung et al., 2022)
evaluate different GPT versions on complex KG
questions. However, the experiments don’t include
datasets in our study. To address this oversight and
offer a comparative baseline for our system, we
subjected the GPT-3 model (davinci-003) to the
SimpleQuestionsWd and RuBQ 2.0 benchmarks.
Detailed information on the generation parameters
and prompts can be found in the Appendix.

ChatGPT stands as one of the leading systems
in the field of Natural Language Processing (NLP),
demonstrating capabilities for intricate reasoning
and extensive factual knowledge (OpenAI, 2023).
We evaluated this system (GPT-3.5-turbo-0301) us-
ing the RuBQ 2.0 and SimpleQuestionsWd bench-
marks. Specifics about the prompts and generation
parameters are available in the Appendix.

4.3 Experimental Setup

To compare our algorithm with baselines, we use
the Accuracy@1 metric i.e. correctness of the first
retrieved result. The answer of a QA system to
an answerable question is considered correct if its
object matches the answer in terms of Wikidata id
or just by a label string.

It is essential to acknowledge that sequence-to-
sequence (seq2seq) models yield a string instead
of a knowledge graph ID, which may pose a chal-
lenge during evaluation. To mitigate this, we apply
specific transformations to the responses produced
by seq2seq systems. These include converting the
text to lowercase and eliminating any leading and
trailing spaces. This transformation process is also
applied to label-aliases representing the actual an-
swers present in the RuBQ and Mintaka datasets.

Regarding the SimpleQuestionsWd dataset, we
procure aliases for the correct answers via the Wiki-
data API.10 We then determine the accuracy of the
seq2seq model’s prediction by checking for an ex-
act match between the predicted string and one of
the aliases.

10https://pypi.org/project/Wikidata
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Model SQ SQ-WD RuBQ-ru RuBQ-en

QAnswer (Diefenbach et al., 2020a) – 33.31 30.80 32.30
T5-11b-ssm-nq, fine-tuned (Roberts et al., 2020) – 20.40 – 42.75
ChatGPT – GPT-3.5-turbo – 17.75 26.99 30.12
GPT-3 – davinci-003 – 28.51 18.10 34.20
KEQA (Huang et al., 2019) – TransE FB2M 75.40 40.48 – –
KEQA (Huang et al., 2019) – TransE PTBG – 48.89 – 33.80

M3M (Ours) – TransE FB2M 76.90 � 0.30 – – –
M3M (Ours) – TransE PTBG – 53.50 � 0.30 48.40 � 0.30 49.50 � 0.30

Table 2: Comparison of M3M system with KGQA baselines in terms of Accuracy@1 for monolingual one-hop QA
datasets. The best scores are highlighted. M3M scores are averages over models trained with five random seeds.

Model en es de ar fr pt it hi avg

mT5-xl, fine-tuned (Xue et al., 2021) 20.8 19.5 19.3 12.6 19.7 18.3 20.9 9.7 17.6
FlanT5-xl, fine-tuned (Chung et al., 2022) 35.3 22.0 23.3 0.2 25.0 24.0 25.5 0 19.41
FlanT5-xl, zero-shot (Chung et al., 2022) 14.7 6.5 7.6 0 0.7 0.9 0.9 0 3.19

M3M (Ours) – TransE PTBG 26.0 26.1 25.0 24.1 25.0 24.7 25.3 24.1 25.0

Table 3: Results on Mintaka-Simple dataset (one-hop questions) for models trained simultaneously on all languages.

It is noteworthy to mention that in the Mintaka-
Simple test set, about a half of the answers don’t
have labels in Hindi.

4.4 Results

Table 2 contains the results of our M3M model and
several baselines on two versions of the Simple-
Questions dataset and two versions of the RuBQ
dataset. Specifically, for the RuBQ dataset, we de-
tail the outcomes derived from testing both Russian
and English language queries.

Interestingly, ChatGPT, despite being recog-
nized as a more sophisticated system, exhibits
a weaker performance on factoid questions com-
pared to GPT-3. Upon conducting a concise man-
ual error analysis, we observed that ChatGPT fre-
quently dismissed queries with responses such as
“Answer is unknown”, or sought supplemental in-
formation. We suggest that this behavior may be
a consequence of the system’s alignment with hu-
man feedback, implemented to limit the model’s
tendency for generating ungrounded or ‘halluci-
nated’ responses. However, it is plausible that a
more refined prompt design could address this is-
sue and enhance the system’s performance on such
questions. Nonetheless, this exploration extends
beyond the scope of our current research and is
suggested as an avenue for further investigation.

Table 3 features the results obtained on the
Mintaka-Simple dataset, providing an opportunity
to evaluate the mT5, Flan-T5 and M3M mod-
els. This table highlights the multilingual capabili-

ties exhibited by both the generative and the KG-
retrieval approaches. An analysis of these results
reveals that our model’s performance is markedly
stable across languages, indicating a lesser depen-
dence on the language relative to the seq2seq ap-
proach. Our model manifests exceptional perfor-
mance on one-hop simple questions and achieves
a new state-of-the-art on the RuBQ 2.0 (Russian)
benchmark as well as on the English SimpleQues-
tionsWd dataset. These findings illustrate the su-
periority of KG-based models, outperforming both
GPT-3 and ChatGPT by a considerable margin.

5 Conclusion

In this study, we introduced M3M, a multilingual
model, along with an open implementation, de-
vised for one-hop knowledge base question answer-
ing. Our approach leverages the use of a multilin-
gual text encoder and pre-trained KG embeddings,
which are aligned using a triple projection method
of a question to subject/relation/object of KG triple
to facilitate efficient answer search in the embed-
ding space.

For simple questions, our system not only out-
performs previous strong alternatives, including
rule-based approaches, embeddings-based similar-
ity search, and pre-trained sequence-to-sequence
neural models, but also excels when compared to
advanced AI models like ChatGPT. These com-
parative results were drawn from a comprehensive
battery of one-hop QA datasets, including both
monolingual and multilingual data.
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6 Limitations

While a large fraction of users’ information needs
may be fulfilled by answering simple questions,
the main limitation of the proposed system is that
in the current implementation, it can be applied
only to one-hop KG questions. As it may be not
obvious to figure out beforehand which question
is one-hop and which is multi-hop in a KG spe-
cial classifiers or uncertainty estimation techniques
should be ideally combined with the proposed sys-
tem to not let the system answer questions it is
not designed to answer in the first place. At the
same time, our preliminary experiments with train-
ing classifiers of question type based on Mintaka
data show promising results, suggesting that such
classifier effectively could be created and used in
real deployments in conjunction with the proposed
system.

In terms of computational efficiency, communi-
cation with a knowledge graph can be a bottleneck
if based on a public SPARQL endpoint with query
limits but could be substantially sped up using an in-
house SPARQL engine or using indexing of triples
with appropriate data structures. However, in the
latter case, a mechanism for updating such struc-
tures is requires to keep system answers up to date.

7 Ethical Statement

QA systems built on top of large pretrained neu-
ral models, such as those described in this paper,
may transitively reflect biases available in the train-
ing data potentially generating stereotyped answers
to questions. It is therefore recommended in pro-
duction (as compared to research settings) to use
a special version of debiased pre-trained neural
models and/or deploy a special layer of debiasing
systems around the proposed methodology.
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A Parameter Settings and Prompts for OpenAI Models

The parameters for GPT-3 (davinci-003) and ChatGPT (GPT-3.5-turbo-0301) were configured to a
temperature setting of 0.1, while the top_p for GPT-3 was set to 0.85. The prompts for both models, which
are illustrated in Figure 3, were used respectively: for GPT-3 directly, and for ChatGPT, conveyed via the
“user” field in the chat API interface.

Figure 3: Prompts employed for ChatGPT and GPT-3 in the English and Russian language benchmarks, respectively.

B Additional Illustrations of the Knowledge Graph Question Answering System

This section contains three illustrations of the graphical user interface with three additional questions as
well as a demonstration of the API for integration into external applications.

Figure 4: Graphical user interface of KGQA system for the one-hop question “What is capital of Germany?”.
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Figure 5: Graphical user interface of KGQA system for the one-hop question “Who was director of Star Wars?”.

Figure 6: Graphical user interface of KGQA system for the one-hop question “Who is the king of United Kingdom?”.
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Figure 7: Swagger API for the developed system allowing for integration of the KGQA functionality into applications
(e.g. “seq2seq” or “m3m” endpoints) as well as subcomponents, such as NER for questions or type selection.

Figure 8: Swagger API of an individual endpoint: parameters for KGQA method are documented and can be called
using a RESTful endpoint.
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