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Abstract

In recent years, In-context Learning (ICL) has
gained increasing attention and emerged as the
new paradigm for large language model (LLM)
evaluation. Unlike traditional fine-tuning meth-
ods, ICL instead adapts the pre-trained mod-
els to unseen tasks without any parameter up-
dates. However, the implementation of ICL is
sophisticated due to the diverse retrieval and
inference methods involved, as well as the vary-
ing pre-processing requirements for different
models, datasets, and tasks. A unified and
flexible framework for ICL is urgently needed
to ease the implementation of the aforemen-
tioned components. To facilitate ICL research,
we introduce OpenICL, an open-source toolkit
for ICL and LLM evaluation. OpenlCL is
research-friendly with a highly flexible archi-
tecture that users can easily combine different
components to suit their needs. It also provides
various state-of-the-art retrieval and inference
methods to streamline the process of adapting
ICL to cutting-edge research. The effective-
ness of OpenlICL has been validated on a wide
range of NLP tasks, including classification,
QA, machine translation, and semantic pars-
ing. As a side-product, we found OpenICL
to be an efficient yet robust tool for LLMs
evaluation. OpenlCL is released at https:
//github.com/Shark-NLP/OpenICL.

1 Introduction

The rise of large language models (LLMs) (Brown
et al., 2020; Zhang et al., 2022a; Scao et al., 2022)
has shown impressive emergent In-Context Learn-
ing (ICL) ability (Wei et al., 2022a). Different
from finetuning which requires parameter updates,
ICL can perform inference with model parameters
frozen. ICL sidesteps the resource-intensive nature
of fine-tuning, yet still yields comparable results
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to fine-tuned models in specific tasks (Zhao et al.,
2021; Lu et al., 2022; Gao et al., 2021a). How-
ever, we observed a lack of a unified framework
for ICL. Implementations from existing projects
are often high-customized to their own needs, thus
making further development and comparisons with
previous approaches a challenge.

The basic ICL pipeline contains two steps: re-
trieval and inference. Given a testing input X',
in the retrieval stage, several examples from the
training set are retrieved as in-context demonstra-
tions. In the inference stage, these demonstra-
tions are prepended before X’ and fed into the
LLM to generate the prediction. Researchers have
explored various methods for both retrieval(e.g.,
BM25 (Robertson and Zaragoza, 2009), TopK (Liu
etal., 2022; Gao et al., 2021a) and VoteK (Su et al.,
2022)) and inference(e.g., perplexity-based (Brown
et al., 2020), channel-based (Min et al., 2022), and
Chain-of-thoughts (Wei et al., 2022b)). However,
these methods are often implemented under differ-
ent frameworks, and/or evaluated using different
LLMs and tasks. These inconsistencies make sys-
tematic evaluations and comparisons of various
methods challenging, thus hindering the develop-
ment of better ICL methods.

To address this issue, we present OpenlCL,
an open-source and easy-to-use toolkit for ICL.
OpenlICL has many state-of-the-art retrieval and
inference methods built in to facilitate system-
atic comparison and fast research prototyping.
OpenlCL also provides a unified and flexible inter-
face for the development and evaluation of new ICL
methods. Users can easily incorporate different re-
trieval and inference methods, as well as different
prompt instructions, into their pipelines. To vali-
date OpenlICL’s implementation and design, we use
OpenICL to evaluate LLMs on several NLP tasks,
including classification, question answering, trans-
lation, and semantic parsing. Our contributions are
summarized as follows:
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* We propose OpenlCL, an easy-to-use and ex-
tensible ICL framework for zero-/few-shot
evaluation of language models

* OpenlCL provides a wide range of ICL meth-
ods, LLMs, and tasks, requiring as little as a
few lines of code to use and paving the way
for more extensions in the future.

* We provide complete tutorials to walk users
through the framework, thus facilitating re-
search and development of ICL.

2 Related Work

In-context Learning Besides the classic “pre-
train and fine-tune” paradigm, Brown et al
(2020) proposed In-context learning (ICL), a new
paradigm that leverages pre-trained language mod-
els to perform new tasks without any gradient-
based training. It appends a small number of train-
ing examples as prompts before the test input, and
have shown to be able to improve LLMs’ perfor-
mance in few-shot scenarios and generalize to a
wide range of downstream tasks, such as informa-
tion retrieval (Tay et al., 2022), fact checking (Rae
et al., 2021), commonsense reasoning (Geva et al.,
2021), arithmetic reasoning (Cobbe et al., 2021),
machine trainslation (Agrawal et al., 2022; Lin
et al., 2021a), and data generation (Ye et al., 2022),
etc.

Aside from those early successes, researchers
have developed more sophisticated ICL methods
that require some intermediate reasoning steps.
Among them, chain-of-thoughts (CoT) is the
first attempt that significantly surpasses the pre-
vious state-of-the-art methods on many reason-
ing tasks (Wei et al., 2022b). After that, dif-
ferent variants of CoT have been proposed to
strengthen its performance, such as Self-Ask (Press
et al., 2022), iCAP (Wang et al., 2022), Least-to-
Most prompting (Zhou et al., 2022), and Selection-
Inference (Zhang et al., 2022b; Fu et al., 2022).

Despite the surprising performance, ICL has
been criticized for being very sensitive to the choice
and ordering of in-context examples (Zhao et al.,
2021; Lu et al., 2022). To address this problem,
different criterion and context construction meth-
ods have been proposed. Gao et al. (2021a) and
Liu et al. (2022) select examples that are closer
to the test input in the embedding space; a line of
work (Su et al., 2022; Levy et al., 2022; Ye et al.,
2023) select the most representative examples in

the training set to encourage diversity of in-context
examples; Wu et al. (2022) observe that Minimum
Description Length (MDL) principle can be an ef-
fective criterion for in-context example selection.

Prompt Learning Prompt learning (Liu et al.,
2021) is a special case of ICL without any in-
context examples. Prompt learning comprises var-
ious topics including manual template engineer-
ing (Petroni et al., 2019; Brown et al., 2020), au-
tomated template learning (Wallace et al., 2019;
Shin et al., 2020; Li and Liang, 2021), and answer
engineering (Gao et al., 2021b; Schick and Schiitze,
2021). We refer the readers to the usage of Open-
Prompt (Ding et al., 2021) which is a toolkit spe-
cially designed for prompt learning. In comparison,
OpenlCL focuses more on integrating various ex-
emplar retrieving approaches and inference strate-
gies for in-context learning. Note that OpenICL
can also seamlessly support prompt learning by
setting the number of in-context examples to zero
and specifying the manual or pre-searched prompt
templates by OpenPrompt for different tasks.

3 OpenlCL

In this section, we first explain OpenlCL’s de-
sign principles. Then, we will briefly describe
OpenICL’s two major components, namely, the
Retriever and Inferencer.

3.1 Design Principles

The design principle of OpenlCL is to facilitate in-
context learning research and enable efficient and
robust large language model evaluation. In detail,
we consider the following principles:

[P1: Modularity] Since ICL is a fast-evolving
research field, the design of OpenICL should be de-
coupled such that different components can be eas-
ily modified to support latest methods and/or com-
bined to suit various tasks and application needs.

[P2: Efficiency] Nowadays, large language mod-
els can have hundreds of billions of parameters. To
support inference at such a massive scale, OpenlCL
should be optimized to enable efficient parallel in-
ference.

[P3: Generality] ICL has been widely used in all
fields in NLP, so OpenICL needs a flexible interface
that enables it to work with various LLMs, tasks,
retrieval methods, and inference approaches.
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Figure 1: Overview of the architecture in OpenICL. Ope

in-context examples

nlCL first obtains proper in-context examples from an index

set for each test input or for the whole test set via retrieval methods (e.g., TopK or VoteK) specified by the users.
Then the in-context examples and test input are concatenated into a single sequence based on the provided prompt
template. Finally, all the prompts are fed into the language model to infer the output through defined inference

strategies (e.g., Chain-of-thought).

3.2 Architecture Overview

Figure 1 overviews OpenlCL’s architecture. For
each input & from the test set X, the Retriever
retrieves several (z,y) pairs (represented as one
row in the dashed box) from an index set (X,Y)
as Z’s in-context examples. These examples, as
well as Z, are then formatted according to the user-
defined prompt template and concatenated to form
a text sequence. After that, the Inferencer di-
gests these sequences and fed them into the LLMs
to obtain the model prediction Y.

3.3 Modularity

To satisfy Principle P1, OpenlCL adopts a loosely-
coupled design between components. These com-
ponents separate the data pre-processing, retrieval,
and inference processes with very flexible inter-
faces that allow easy customization to fit specific
needs. Two major components are detailed below:

Retriever Retriever is responsible for re-
trieving in-context examples from the pre-existing
training data. This module supports both corpus-
level (i.e., only retrieving one group of examples
for the whole test set) and instance-level (i.e., re-
trieving examples for each testing input individu-
ally) retrieval methods. OpenlCL primarily sup-
ports learning-free retrieval methods as follows:

* Random: Early practice (Brown et al., 2020)
of ICL often randomly select examples to con-
struct the context. Although Random brings
high variance for ICL performance, it is still
the popular choice when there are only a few
demonstrations available (Wei et al., 2022b;
Zhao et al., 2021).

* Heuristic method: To overcome the disad-
vantage of Random, various semantic sim-
ilarity based retrieval methods have been
proposed and shown great promise, such
as BM25 (Robertson and Zaragoza, 2009),
TopK (Liu et al., 2022; Gao et al., 2021a), and
VoteK (Su et al., 2022).

Model-based method: More recently, re-
searchers have explored using models’ con-
fidence in the output to select and order ex-
amples, such as entropy (Lu et al., 2022) and
MDL (Wu et al., 2022).

OpenICL has implemented the existing methods
above to facilitate future research and systematic
comparison. Furthermore, the flexibility of the
Retriever module allows practitioners to select the
retrieval method and make further modification
that best suits their task and data. The interface
of Retriever also allows users to pack those
in-context examples and use them somewhere else.

Inferencer Inferencer invokes the pre-
trained language model to generate predictions
based on the concatenation of in-context examples
and testing input. The Inferencer supports var-

ious inference methods:

e Direct: Brown et al. (2020) use tokens in the
vocabulary to represent candidate answers and
select the final prediction using the one with
the highest probability.

* Perplexity: (Brown et al., 2020) compute the
sentence perplexity of the sequence concate-
nation of input and candidate answers and
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select the final prediction using the one with
the lowest perplexity.

* Channel: Min et al. (2022) proposed to utilize
channel models (Yu et al., 2016; Yee et al.,
2019) to compute the conditional probability
in a reversed direction, i.e., estimating the
likelihood of input query given the label.

The flexibility of Inferencer also allows users
to recursively invoke it to support multi-stage ICL
methods, such as chain-of-thought (Wei et al.,
2022b) and selection-inference (Creswell et al.,
2022). Additionally, Inferencer can be aug-
mented with a scorer to evaluate its prediction.

3.4 Efficiency

To satisfy Principle P2, we equip OpenlCL with
various parallelism techniques to enable efficient
inference for large-scale models.

Data Parallel Data parallel (Li et al., 2020) is
a common technique used in parallel computing
to improve the efficiency of large-scale computa-
tion tasks. OpenICL implements data parallelism
to improve the performance of both the retrieval
and inference steps. During retrieval and inference,
data is divided into smaller batches for processing.
Additionally, for models that can fit into GPU’s
VRAM, OpenICL implements data parallelism by
sharding the data across multiple GPUs and per-
forming parallel inference on each GPU with a
complete copy of the model. This significantly
increases the inference speed when working with
large datasets.

Model Parallel In the era of LLMs, models often
have billions or hundreds of billions of parameters
that exceed modern GPUs’ capacity. To handle
this problem, we resort to model parallel (Shoeybi
et al., 2019): a parallel computing technique that
divides a large deep learning model into smaller
sub-models, each of which can be run on a separate
GPU. OpenlICL supports model parallelism that
users can easily parallelize their models with mini-
mal modification to the code. Currently, we support
Megatron (Shoeybi et al., 2019) and Zero (Rajb-
handari et al., 2019).

3.5 Generality

To satisfy Principle P3, OpenICL is designed to
maximize users’ productivity by supporting a wide
range of models, tasks, and methods:

[Model] OpenICL supports both decoder-only
LMs (e.g., GPT family (Radford and Narasimhan,
2018; Radford et al., 2019; Black et al., 2021; Wang
and Komatsuzaki, 2021; Black et al., 2022), and
encoder-decoder-based LMs (e.g., T5 (Raffel et al.,
2020)). We also provide two alternatives for ac-
cessing the model: users can directly load model
checkpoints for evaluation or access a model via
API (e.g., OpenAI’s GPT-3 series models; Brown
et al. 2020; Chen et al. 2021; Ouyang et al.).!

[Tasks] With the help of OpenICL, users can eas-
ily conduct experiments on both classification and
generation tasks. OpenlCL integrates Hugging-
Face’s dataset s such that users can access and
download thousands of NLP tasks with ease.

[Methods] As aforementioned, OpenlCL pro-
vides broad support for ICL methods that cover
both retrieval and inference. Furthermore,
OpenlCL offers the flexibility to return the results
of the Retriever and Inferencer in a step-
by-step manner, making it easy to integrate these
intermediate results into other projects.

4 Toolkit Walkthrough

In this section, we demonstrate OpenICL by walk-
ing readers through several typical ICL use cases.

Example 1. We first demonstrate how to use
OpenlICL to develop a typical ICL pipeline for
language classification using a few lines of code
and conduct evaluation on the popular sentiment
classification dataset SST-2 (Socher et al., 2013).
As shown in Figure 2, the pipeline begins with a
DatasetReader which loads the dataset given
its name on HuggingFace Dataset Hub® or lo-
cal file path. Users need to specify the names
of columns where the input (“fext””) and output
(“label”) are stored. Secondly, a customized
Prompt Template is instantiated with a dictio-
nary that defines the prompts for each class label.
The placeholder </E> and </Q> will be replaced
by in-context examples and testing input, sepa-
rately. After that, we initiate the retriever based
on TopK (Liu et al., 2022) and set the number of
in-context examples to 8 (“ice_num = 87). We
select perplexity-based method to initiate the in-
ferencer and use GPT2-XL as the LLM. Having

'https://openai.com/api/
https://github.com/huggingface/datasets
3https://huggingface.co/datasets
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from openicl import DatasetReader, PromptTemplate
from openicl import TopkRetriever, PPLInferencer, AccEvaluator

# Load dataset
data = DatasetReader ('gpt3mix/sst2’, input_columns=['text’], output_column=’label’)

# Define the prompt template for the task

tp_dict = { 0: '</E> Positive Movie Review: </Q>',
l: ’"</E> Negative Movie Review: </Q>’ }
template = PromptTemplate (tp_dict, {’text’:’</0>"}, ice_token=’</E>")

2 # Initiate the retriever and inferencer

retriever = TopkRetriever (data, ice_num=8)
inferencer = PPLInferencer (model_name=’'gpt2-x1")

# Run inference and calculate score
predictions = inferencer.inference (retriever, ice_template=template)
score = AccEvaluator () .score(predictions=predictions, references=data.references)

Figure 2: Illustration of Example 1 which evaluates the ICL performance of GPT2-XL (1.5B) on SST-2 dataset with
PPL inference strategy.

from datasets import load_dataset
from openicl import DatasetReader, PromptTemplate
from openicl import RandomRetriever, GenInferencer, BleuEvaluator

dataset = load_dataset ("wmtl6", ’"de-en’) .map(lambda example: example[’translation’])

data = DatasetReader (dataset, input_columns=[’de’], output_column="en’)
template = PromptTemplate (' </E> German:</German> \n English: </English>’,
/G ", "en’:'</English>’'}, ice_token=’'</E>"’)

"de’ :’ </German>', en

2> retriever = RandomRetriever (data, ice_num=8)

# Inference by direct generation
inferencer = GenInferencer (model_name=’ facebook/xglm-7.5B")
predictions = inferencer.inference(retriever, ice_template=template)

# calculate Bleu
score = BleuEvaluator () .score (predictions=predictions, references=data.references)

Figure 3: Illustration of Example 2 that evaluates the ICL performance of XGLM (7.5B) on WMT16 (de-en) dataset
with direct inference strategy.

from openicl import DatasetReader, PromptTemplate, BM25Retriever, CoTInferencer

data = DatasetReader (' gsm8k’, name="main’,
input_columns=[’'question’], output_column='"answer’)
template = PromptTemplate (' </E> Question: </0> 4
{"question’ :"</Q>", '

/T

ice_token=’'</E>")

retriever = BM25Retriever (data, ice_num=4)

2 # Inference by Chain-of-Thought

cot_list=["Let’s think step by
"\nTherefore, the

(arabic numerals) is"]

inferencer = CoTInferencer (cot_list=cot_list, api_name='gpt3’)
predictions = inferencer.inference (retriever, ice_template=template)

Figure 4: Illustration of Example 3, which evaluates the ICL performance of text-davinci-003 version of GPT-3
(175B) on GSMSK dataset with Chain-of-thought inference strategy.
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Figure 5: Evaluation results. We conduct experiments on five representative tasks with OpenICL and use different
retrievers, inferencers, language models, and other components. In terms of model usage, we adopt GPT-Neo (2.7B)
for SST2, PiQA, and Gigaword, XGLM (7.5B) for WMT16 (de-en), and text-davinci-003 version of GPT-3 (175B)

for GSM8K.

all these been set, we can run the inference by in-
voking the inferencer (line 17) and calculating the
accuracy of the model’s prediction(line 18).

Example 2. Figure 3 shows how to use OpenICL
to work with generation problems. We consider the
popular machine translation dataset WMT16 (Bo-
jar et al., 2016). As in Example 1, we can easily
load the dataset, define the prompt template, and
initiate the retriever, by feeding new parameters
to the function, respectively. The major API dif-
ference from Example 1 is that (i) we add some
pre-processing for the translation task (line 5); (ii)
PPLInferencer is replaced by inferencer tailored for
generation (line 16); (iii) we use BLEU to evaluate
model performance.

Example 3. OpenlCL also supports more ad-
vanced ICL methods, as shown in Figure 4. Users
can seamlessly switch to CoT by only modifying
two lines of code: line 14 defines the template for
CoT and line 15 initiates the inferencer with GPT3
using OpenAI’s API. Similar multi-step ICL meth-
ods such as Self-Consistency (Wang et al., 2022)
and Selection-Inference (Creswell et al., 2022) can
also be easily implemented by inheriting the super-
class Inferencer designed in OpenICL.

5 Evaluation

To demonstrate OpenICL’s flexibility we conducted
experiments on a diverse set of datasets, LLMs, and
ICL methods. We consider PiQA (Bisk et al., 2019)
for commonsense reasoning, SST-2 (Socher et al.,
2013) for sentiment analysis, GSM8K (Cobbe et al.,

2021) for arithmetic reasoning, WMT16 de-en (Bo-
jar et al., 2016) for machine translation and Gi-
gaword (Napoles et al., 2012) for summarization.
We’ve also tested various LLMs, including GPT-
Neo (2.7B) (Black et al., 2021; Gao et al., 2020),
text-davinci-003 version of GPT-3 (175B), and
XGLM (7.5B) (Lin et al., 2021b). We use Ope-
nAD’s official API* to access GPT-3. The detailed
setups and results are shown in Figure 5. As we can
see, components of OpenlCL can be easily chained
to support different evaluation needs and replicate
results of state-of-the-art methods.

6 Conclusion

We present OpenICL, an open-source toolkit for
In-context learning. OpenlICL provides a conve-
nient and flexible interface for in-context learning
practice and research. Our modular design allows
it to support a wide range of LLMs, tasks, and ICL
methods with ease. We implement both model par-
allelism and data parallelism to make inference of
large models more efficient. OpenlICL is highly ex-
tensible, and we will continue to update it to keep
pace with the latest research. Despite the promis-
ing results, ICL is still in its early stages, and many
challenges remain. We believe OpenICL will be a
valuable resource for researchers and practitioners
to facilitate their research and development.

*https://openai.com/api/
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