OpenlICL: An Open-Source Framework for In-context Learning

Zhenyu Wu*™, Yaoxiang Wang®'*, Jiacheng Ye*'
Jiangtao Feng®, Jingjing Xu®, Yu Qiao®, Zhiyong Wu®*

©Shanghai Al Laboratory
*Xiamen University
carsonye@cs.hku.hk,

¢ East China Normal University
#The University of Hong Kong
{wuzhenyu, wangyaoxiang}@pjlab.org.cn

{fengjiangtao,xujingjing, giaoyu,wuzhiyong}@pjlab.org.cn

Abstract

In recent years, In-context Learning (ICL) has
gained increasing attention and emerged as the
new paradigm for large language model (LLM)
evaluation. Unlike traditional fine-tuning meth-
ods, ICL instead adapts the pre-trained mod-
els to unseen tasks without any parameter up-
dates. However, the implementation of ICL is
sophisticated due to the diverse retrieval and
inference methods involved, as well as the vary-
ing pre-processing requirements for different
models, datasets, and tasks. A unified and
flexible framework for ICL is urgently needed
to ease the implementation of the aforemen-
tioned components. To facilitate ICL research,
we introduce OpenICL, an open-source toolkit
for ICL and LLM evaluation. OpenlCL is
research-friendly with a highly flexible archi-
tecture that users can easily combine different
components to suit their needs. It also provides
various state-of-the-art retrieval and inference
methods to streamline the process of adapting
ICL to cutting-edge research. The effective-
ness of OpenlICL has been validated on a wide
range of NLP tasks, including classification,
QA, machine translation, and semantic pars-
ing. As a side-product, we found OpenICL
to be an efficient yet robust tool for LLMs
evaluation. OpenlCL is released at https:
//github.com/Shark-NLP/OpenICL.

1 Introduction

The rise of large language models (LLMs) (Brown
et al., 2020; Zhang et al., 2022a; Scao et al., 2022)
has shown impressive emergent In-Context Learn-
ing (ICL) ability (Wei et al., 2022a). Different
from finetuning which requires parameter updates,
ICL can perform inference with model parameters
frozen. ICL sidesteps the resource-intensive nature
of fine-tuning, yet still yields comparable results

*Work done while interning at Shanghai AI Lab.
TEqual Contribution.
fCorresponding Author.

to fine-tuned models in specific tasks (Zhao et al.,
2021; Lu et al., 2022; Gao et al., 2021a). How-
ever, we observed a lack of a unified framework
for ICL. Implementations from existing projects
are often high-customized to their own needs, thus
making further development and comparisons with
previous approaches a challenge.

The basic ICL pipeline contains two steps: re-
trieval and inference. Given a testing input X',
in the retrieval stage, several examples from the
training set are retrieved as in-context demonstra-
tions. In the inference stage, these demonstra-
tions are prepended before X’ and fed into the
LLM to generate the prediction. Researchers have
explored various methods for both retrieval(e.g.,
BM25 (Robertson and Zaragoza, 2009), TopK (Liu
etal., 2022; Gao et al., 2021a) and VoteK (Su et al.,
2022)) and inference(e.g., perplexity-based (Brown
et al., 2020), channel-based (Min et al., 2022), and
Chain-of-thoughts (Wei et al., 2022b)). However,
these methods are often implemented under differ-
ent frameworks, and/or evaluated using different
LLMs and tasks. These inconsistencies make sys-
tematic evaluations and comparisons of various
methods challenging, thus hindering the develop-
ment of better ICL methods.

To address this issue, we present OpenlCL,
an open-source and easy-to-use toolkit for ICL.
OpenlICL has many state-of-the-art retrieval and
inference methods built in to facilitate system-
atic comparison and fast research prototyping.
OpenlCL also provides a unified and flexible inter-
face for the development and evaluation of new ICL
methods. Users can easily incorporate different re-
trieval and inference methods, as well as different
prompt instructions, into their pipelines. To vali-
date OpenlICL’s implementation and design, we use
OpenICL to evaluate LLMs on several NLP tasks,
including classification, question answering, trans-
lation, and semantic parsing. Our contributions are
summarized as follows:

489

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 3: System Demonstrations, pages 489-498
July 10-12, 2023 ©2023 Association for Computational Linguistics

https://github.com/Shark-NLP/OpenICL
https://github.com/Shark-NLP/OpenICL

* We propose OpenlCL, an easy-to-use and ex-
tensible ICL framework for zero-/few-shot
evaluation of language models

* OpenlCL provides a wide range of ICL meth-
ods, LLMs, and tasks, requiring as little as a
few lines of code to use and paving the way
for more extensions in the future.

* We provide complete tutorials to walk users
through the framework, thus facilitating re-
search and development of ICL.

2 Related Work

In-context Learning Besides the classic “pre-
train and fine-tune” paradigm, Brown et al
(2020) proposed In-context learning (ICL), a new
paradigm that leverages pre-trained language mod-
els to perform new tasks without any gradient-
based training. It appends a small number of train-
ing examples as prompts before the test input, and
have shown to be able to improve LLMs’ perfor-
mance in few-shot scenarios and generalize to a
wide range of downstream tasks, such as informa-
tion retrieval (Tay et al., 2022), fact checking (Rae
et al., 2021), commonsense reasoning (Geva et al.,
2021), arithmetic reasoning (Cobbe et al., 2021),
machine trainslation (Agrawal et al., 2022; Lin
et al., 2021a), and data generation (Ye et al., 2022),
etc.

Aside from those early successes, researchers
have developed more sophisticated ICL methods
that require some intermediate reasoning steps.
Among them, chain-of-thoughts (CoT) is the
first attempt that significantly surpasses the pre-
vious state-of-the-art methods on many reason-
ing tasks (Wei et al., 2022b). After that, dif-
ferent variants of CoT have been proposed to
strengthen its performance, such as Self-Ask (Press
et al., 2022), iCAP (Wang et al., 2022), Least-to-
Most prompting (Zhou et al., 2022), and Selection-
Inference (Zhang et al., 2022b; Fu et al., 2022).

Despite the surprising performance, ICL has
been criticized for being very sensitive to the choice
and ordering of in-context examples (Zhao et al.,
2021; Lu et al., 2022). To address this problem,
different criterion and context construction meth-
ods have been proposed. Gao et al. (2021a) and
Liu et al. (2022) select examples that are closer
to the test input in the embedding space; a line of
work (Su et al., 2022; Levy et al., 2022; Ye et al.,
2023) select the most representative examples in

the training set to encourage diversity of in-context
examples; Wu et al. (2022) observe that Minimum
Description Length (MDL) principle can be an ef-
fective criterion for in-context example selection.

Prompt Learning Prompt learning (Liu et al.,
2021) is a special case of ICL without any in-
context examples. Prompt learning comprises var-
ious topics including manual template engineer-
ing (Petroni et al., 2019; Brown et al., 2020), au-
tomated template learning (Wallace et al., 2019;
Shin et al., 2020; Li and Liang, 2021), and answer
engineering (Gao et al., 2021b; Schick and Schiitze,
2021). We refer the readers to the usage of Open-
Prompt (Ding et al., 2021) which is a toolkit spe-
cially designed for prompt learning. In comparison,
OpenlCL focuses more on integrating various ex-
emplar retrieving approaches and inference strate-
gies for in-context learning. Note that OpenICL
can also seamlessly support prompt learning by
setting the number of in-context examples to zero
and specifying the manual or pre-searched prompt
templates by OpenPrompt for different tasks.

3 OpenlCL

In this section, we first explain OpenlCL’s de-
sign principles. Then, we will briefly describe
OpenICL’s two major components, namely, the
Retriever and Inferencer.

3.1 Design Principles

The design principle of OpenlCL is to facilitate in-
context learning research and enable efficient and
robust large language model evaluation. In detail,
we consider the following principles:

[P1: Modularity] Since ICL is a fast-evolving
research field, the design of OpenICL should be de-
coupled such that different components can be eas-
ily modified to support latest methods and/or com-
bined to suit various tasks and application needs.

[P2: Efficiency] Nowadays, large language mod-
els can have hundreds of billions of parameters. To
support inference at such a massive scale, OpenlCL
should be optimized to enable efficient parallel in-
ference.

[P3: Generality] ICL has been widely used in all
fields in NLP, so OpenICL needs a flexible interface
that enables it to work with various LLMs, tasks,
retrieval methods, and inference approaches.

490

Index Set — > (X,Y) ——————

Retriever Inferencer
_a—
o)
1 input
query for each X ~
or whole X PromptTemplate 2 Y
(x,y) pairs Py
l .o fl
[—

Test Set

Figure 1: Overview of the architecture in OpenICL. Ope

in-context examples

nlCL first obtains proper in-context examples from an index

set for each test input or for the whole test set via retrieval methods (e.g., TopK or VoteK) specified by the users.
Then the in-context examples and test input are concatenated into a single sequence based on the provided prompt
template. Finally, all the prompts are fed into the language model to infer the output through defined inference

strategies (e.g., Chain-of-thought).

3.2 Architecture Overview

Figure 1 overviews OpenlCL’s architecture. For
each input & from the test set X, the Retriever
retrieves several (z,y) pairs (represented as one
row in the dashed box) from an index set (X,Y)
as Z’s in-context examples. These examples, as
well as Z, are then formatted according to the user-
defined prompt template and concatenated to form
a text sequence. After that, the Inferencer di-
gests these sequences and fed them into the LLMs
to obtain the model prediction Y.

3.3 Modularity

To satisfy Principle P1, OpenlCL adopts a loosely-
coupled design between components. These com-
ponents separate the data pre-processing, retrieval,
and inference processes with very flexible inter-
faces that allow easy customization to fit specific
needs. Two major components are detailed below:

Retriever Retriever is responsible for re-
trieving in-context examples from the pre-existing
training data. This module supports both corpus-
level (i.e., only retrieving one group of examples
for the whole test set) and instance-level (i.e., re-
trieving examples for each testing input individu-
ally) retrieval methods. OpenlCL primarily sup-
ports learning-free retrieval methods as follows:

* Random: Early practice (Brown et al., 2020)
of ICL often randomly select examples to con-
struct the context. Although Random brings
high variance for ICL performance, it is still
the popular choice when there are only a few
demonstrations available (Wei et al., 2022b;
Zhao et al., 2021).

* Heuristic method: To overcome the disad-
vantage of Random, various semantic sim-
ilarity based retrieval methods have been
proposed and shown great promise, such
as BM25 (Robertson and Zaragoza, 2009),
TopK (Liu et al., 2022; Gao et al., 2021a), and
VoteK (Su et al., 2022).

Model-based method: More recently, re-
searchers have explored using models’ con-
fidence in the output to select and order ex-
amples, such as entropy (Lu et al., 2022) and
MDL (Wu et al., 2022).

OpenICL has implemented the existing methods
above to facilitate future research and systematic
comparison. Furthermore, the flexibility of the
Retriever module allows practitioners to select the
retrieval method and make further modification
that best suits their task and data. The interface
of Retriever also allows users to pack those
in-context examples and use them somewhere else.

Inferencer Inferencer invokes the pre-
trained language model to generate predictions
based on the concatenation of in-context examples
and testing input. The Inferencer supports var-

ious inference methods:

e Direct: Brown et al. (2020) use tokens in the
vocabulary to represent candidate answers and
select the final prediction using the one with
the highest probability.

* Perplexity: (Brown et al., 2020) compute the
sentence perplexity of the sequence concate-
nation of input and candidate answers and

491

select the final prediction using the one with
the lowest perplexity.

* Channel: Min et al. (2022) proposed to utilize
channel models (Yu et al., 2016; Yee et al.,
2019) to compute the conditional probability
in a reversed direction, i.e., estimating the
likelihood of input query given the label.

The flexibility of Inferencer also allows users
to recursively invoke it to support multi-stage ICL
methods, such as chain-of-thought (Wei et al.,
2022b) and selection-inference (Creswell et al.,
2022). Additionally, Inferencer can be aug-
mented with a scorer to evaluate its prediction.

3.4 Efficiency

To satisfy Principle P2, we equip OpenlCL with
various parallelism techniques to enable efficient
inference for large-scale models.

Data Parallel Data parallel (Li et al., 2020) is
a common technique used in parallel computing
to improve the efficiency of large-scale computa-
tion tasks. OpenICL implements data parallelism
to improve the performance of both the retrieval
and inference steps. During retrieval and inference,
data is divided into smaller batches for processing.
Additionally, for models that can fit into GPU’s
VRAM, OpenICL implements data parallelism by
sharding the data across multiple GPUs and per-
forming parallel inference on each GPU with a
complete copy of the model. This significantly
increases the inference speed when working with
large datasets.

Model Parallel In the era of LLMs, models often
have billions or hundreds of billions of parameters
that exceed modern GPUs’ capacity. To handle
this problem, we resort to model parallel (Shoeybi
et al., 2019): a parallel computing technique that
divides a large deep learning model into smaller
sub-models, each of which can be run on a separate
GPU. OpenlICL supports model parallelism that
users can easily parallelize their models with mini-
mal modification to the code. Currently, we support
Megatron (Shoeybi et al., 2019) and Zero (Rajb-
handari et al., 2019).

3.5 Generality

To satisfy Principle P3, OpenICL is designed to
maximize users’ productivity by supporting a wide
range of models, tasks, and methods:

[Model] OpenICL supports both decoder-only
LMs (e.g., GPT family (Radford and Narasimhan,
2018; Radford et al., 2019; Black et al., 2021; Wang
and Komatsuzaki, 2021; Black et al., 2022), and
encoder-decoder-based LMs (e.g., T5 (Raffel et al.,
2020)). We also provide two alternatives for ac-
cessing the model: users can directly load model
checkpoints for evaluation or access a model via
API (e.g., OpenAI’s GPT-3 series models; Brown
et al. 2020; Chen et al. 2021; Ouyang et al.).!

[Tasks] With the help of OpenICL, users can eas-
ily conduct experiments on both classification and
generation tasks. OpenlCL integrates Hugging-
Face’s dataset s such that users can access and
download thousands of NLP tasks with ease.

[Methods] As aforementioned, OpenlCL pro-
vides broad support for ICL methods that cover
both retrieval and inference. Furthermore,
OpenlCL offers the flexibility to return the results
of the Retriever and Inferencer in a step-
by-step manner, making it easy to integrate these
intermediate results into other projects.

4 Toolkit Walkthrough

In this section, we demonstrate OpenICL by walk-
ing readers through several typical ICL use cases.

Example 1. We first demonstrate how to use
OpenlICL to develop a typical ICL pipeline for
language classification using a few lines of code
and conduct evaluation on the popular sentiment
classification dataset SST-2 (Socher et al., 2013).
As shown in Figure 2, the pipeline begins with a
DatasetReader which loads the dataset given
its name on HuggingFace Dataset Hub® or lo-
cal file path. Users need to specify the names
of columns where the input (“fext””) and output
(“label”) are stored. Secondly, a customized
Prompt Template is instantiated with a dictio-
nary that defines the prompts for each class label.
The placeholder </E> and </Q> will be replaced
by in-context examples and testing input, sepa-
rately. After that, we initiate the retriever based
on TopK (Liu et al., 2022) and set the number of
in-context examples to 8 (“ice_num = 87). We
select perplexity-based method to initiate the in-
ferencer and use GPT2-XL as the LLM. Having

'https://openai.com/api/
https://github.com/huggingface/datasets
3https://huggingface.co/datasets

492

https://openai.com/api/
https://github.com/huggingface/datasets
https://huggingface.co/datasets

16

W oo =

&

16
17
18
19

16
17

from openicl import DatasetReader, PromptTemplate
from openicl import TopkRetriever, PPLInferencer, AccEvaluator

Load dataset
data = DatasetReader ('gpt3mix/sst2’, input_columns=['text’], output_column=’label’)

Define the prompt template for the task

tp_dict = { 0: '</E> Positive Movie Review: </Q>',
l: ’"</E> Negative Movie Review: </Q>’ }
template = PromptTemplate (tp_dict, {’text’:’</0>"}, ice_token=’</E>")

2 # Initiate the retriever and inferencer

retriever = TopkRetriever (data, ice_num=8)
inferencer = PPLInferencer (model_name=’'gpt2-x1")

Run inference and calculate score
predictions = inferencer.inference (retriever, ice_template=template)
score = AccEvaluator () .score(predictions=predictions, references=data.references)

Figure 2: Illustration of Example 1 which evaluates the ICL performance of GPT2-XL (1.5B) on SST-2 dataset with
PPL inference strategy.

from datasets import load_dataset
from openicl import DatasetReader, PromptTemplate
from openicl import RandomRetriever, GenInferencer, BleuEvaluator

dataset = load_dataset ("wmtl6", ’"de-en’) .map(lambda example: example[’translation’])

data = DatasetReader (dataset, input_columns=[’de’], output_column="en’)
template = PromptTemplate (' </E> German:</German> \n English: </English>’,
/G ", "en’:'</English>’'}, ice_token=’'</E>"’)

"de’ :’ </German>', en

2> retriever = RandomRetriever (data, ice_num=8)

Inference by direct generation
inferencer = GenInferencer (model_name=’ facebook/xglm-7.5B")
predictions = inferencer.inference(retriever, ice_template=template)

calculate Bleu
score = BleuEvaluator () .score (predictions=predictions, references=data.references)

Figure 3: Illustration of Example 2 that evaluates the ICL performance of XGLM (7.5B) on WMT16 (de-en) dataset
with direct inference strategy.

from openicl import DatasetReader, PromptTemplate, BM25Retriever, CoTInferencer

data = DatasetReader (' gsm8k’, name="main’,
input_columns=[’'question’], output_column='"answer’)
template = PromptTemplate (' </E> Question: </0> 4
{"question’ :"</Q>", '

/T

ice_token=’'</E>")

retriever = BM25Retriever (data, ice_num=4)

2 # Inference by Chain-of-Thought

cot_list=["Let’s think step by
"\nTherefore, the

(arabic numerals) is"]

inferencer = CoTInferencer (cot_list=cot_list, api_name='gpt3’)
predictions = inferencer.inference (retriever, ice_template=template)

Figure 4: Illustration of Example 3, which evaluates the ICL performance of text-davinci-003 version of GPT-3
(175B) on GSMSK dataset with Chain-of-thought inference strategy.

493

Inferencer LM

Retriever Metric 7551

iff?i’?irl_:'/ birect orre Accuracy 90.61 PiQA

______ Channel GPT3 3512

i N GSMSK
L_ToPK) / A2 —— WMT16 (de-en)
e, PPL XGLM Gigaword

:' MDL :} Rouge-L @

CoT 75

Figure 5: Evaluation results. We conduct experiments on five representative tasks with OpenICL and use different
retrievers, inferencers, language models, and other components. In terms of model usage, we adopt GPT-Neo (2.7B)
for SST2, PiQA, and Gigaword, XGLM (7.5B) for WMT16 (de-en), and text-davinci-003 version of GPT-3 (175B)

for GSM8K.

all these been set, we can run the inference by in-
voking the inferencer (line 17) and calculating the
accuracy of the model’s prediction(line 18).

Example 2. Figure 3 shows how to use OpenICL
to work with generation problems. We consider the
popular machine translation dataset WMT16 (Bo-
jar et al., 2016). As in Example 1, we can easily
load the dataset, define the prompt template, and
initiate the retriever, by feeding new parameters
to the function, respectively. The major API dif-
ference from Example 1 is that (i) we add some
pre-processing for the translation task (line 5); (ii)
PPLInferencer is replaced by inferencer tailored for
generation (line 16); (iii) we use BLEU to evaluate
model performance.

Example 3. OpenlCL also supports more ad-
vanced ICL methods, as shown in Figure 4. Users
can seamlessly switch to CoT by only modifying
two lines of code: line 14 defines the template for
CoT and line 15 initiates the inferencer with GPT3
using OpenAI’s API. Similar multi-step ICL meth-
ods such as Self-Consistency (Wang et al., 2022)
and Selection-Inference (Creswell et al., 2022) can
also be easily implemented by inheriting the super-
class Inferencer designed in OpenICL.

5 Evaluation

To demonstrate OpenICL’s flexibility we conducted
experiments on a diverse set of datasets, LLMs, and
ICL methods. We consider PiQA (Bisk et al., 2019)
for commonsense reasoning, SST-2 (Socher et al.,
2013) for sentiment analysis, GSM8K (Cobbe et al.,

2021) for arithmetic reasoning, WMT16 de-en (Bo-
jar et al., 2016) for machine translation and Gi-
gaword (Napoles et al., 2012) for summarization.
We’ve also tested various LLMs, including GPT-
Neo (2.7B) (Black et al., 2021; Gao et al., 2020),
text-davinci-003 version of GPT-3 (175B), and
XGLM (7.5B) (Lin et al., 2021b). We use Ope-
nAD’s official API* to access GPT-3. The detailed
setups and results are shown in Figure 5. As we can
see, components of OpenlCL can be easily chained
to support different evaluation needs and replicate
results of state-of-the-art methods.

6 Conclusion

We present OpenICL, an open-source toolkit for
In-context learning. OpenlICL provides a conve-
nient and flexible interface for in-context learning
practice and research. Our modular design allows
it to support a wide range of LLMs, tasks, and ICL
methods with ease. We implement both model par-
allelism and data parallelism to make inference of
large models more efficient. OpenlICL is highly ex-
tensible, and we will continue to update it to keep
pace with the latest research. Despite the promis-
ing results, ICL is still in its early stages, and many
challenges remain. We believe OpenICL will be a
valuable resource for researchers and practitioners
to facilitate their research and development.

*https://openai.com/api/

494

https://openai.com/api/

References

Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke
Zettlemoyer, and Marjan Ghazvininejad. 2022. In-
context examples selection for machine translation.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. PIQA: Reasoning about
Physical Commonsense in Natural Language. arXiv
e-prints, page arXiv:1911.11641.

Sid Black, Stella Biderman, Eric Hallahan, Quentin An-
thony, Leo Gao, Laurence Golding, Horace He, Con-
nor Leahy, Kyle McDonell, Jason Phang, Michael
Pieler, USVSN Sai Prashanth, Shivanshu Purohit,
Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. Gpt-neox-20b: An open-
source autoregressive language model.

Sid Black, Gao Leo, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow. If you use this software, please cite it
using these metadata.

Ondrej Bojar, Christian Buck, Rajen Chatterjee, Chris-
tian Federmann, Liane Guillou, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Aurélie
Névéol, Mariana Neves, Pavel Pecina, Martin Popel,
Philipp Koehn, Christof Monz, Matteo Negri, Matt
Post, Lucia Specia, Karin Verspoor, Jorg Tiedemann,
and Marco Turchi, editors. 2016. Proceedings of the
First Conference on Machine Translation: Volume
1, Research Papers. Association for Computational
Linguistics, Berlin, Germany.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. CoRR,
abs/2005.14165.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Antonia Creswell, Murray Shanahan, and Irina Higgins.
2022. Selection-Inference: Exploiting Large Lan-
guage Models for Interpretable Logical Reasoning.
arXiv e-prints, page arXiv:2205.09712.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen,
Zhiyuan Liu, Hai-Tao Zheng, and Maosong Sun.
2021. OpenPrompt: An Open-source Frame-
work for Prompt-learning. arXiv e-prints, page
arXiv:2111.01998.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2022. Complexity-based prompting for
multi-step reasoning. CoRR, abs/2210.00720.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021a.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),

pages 3816-3830.

Tianyu Gao, Adam Fisch, and Dangi Chen. 2021b.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816-3830, Online. Association for Computa-
tional Linguistics.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did Aristotle
Use a Laptop? A Question Answering Benchmark
with Implicit Reasoning Strategies. arXiv e-prints,
page arXiv:2101.02235.

Itay Levy, Ben Bogin, and Jonathan Berant. 2022.
Diverse demonstrations improve in-context
compositional generalization. arXiv preprint
arXiv:2212.06800.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, and Soumith Chin-
tala. 2020. Pytorch distributed: Experiences on ac-
celerating data parallel training.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu
Wang, Shuohui Chen, Daniel Simig, Myle Ott, Na-
man Goyal, Shruti Bhosale, Jingfei Du, Ramakanth
Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav
Chaudhary, Brian O’Horo, Jeff Wang, Luke Zettle-
moyer, Zornitsa Kozareva, Mona T. Diab, Veselin

495

https://doi.org/10.48550/ARXIV.2212.02437
https://doi.org/10.48550/ARXIV.2212.02437
https://doi.org/10.48550/arXiv.1911.11641
https://doi.org/10.48550/arXiv.1911.11641
https://doi.org/10.48550/ARXIV.2204.06745
https://doi.org/10.48550/ARXIV.2204.06745
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.18653/v1/W16-2200
https://doi.org/10.18653/v1/W16-2200
https://doi.org/10.18653/v1/W16-2200
http://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2205.09712
https://doi.org/10.48550/arXiv.2205.09712
https://doi.org/10.48550/arXiv.2111.01998
https://doi.org/10.48550/arXiv.2111.01998
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.48550/arXiv.2101.02235
https://doi.org/10.48550/arXiv.2101.02235
https://doi.org/10.48550/arXiv.2101.02235
https://arxiv.org/abs/2212.06800
https://arxiv.org/abs/2212.06800
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353

Few-shot learn-
CoRR,

Stoyanov, and Xian Li. 2021a.
ing with multilingual language models.
abs/2112.10668.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu
Wang, Shuohui Chen, Daniel Simig, Myle Ott, Na-
man Goyal, Shruti Bhosale, Jingfei Du, Ramakanth
Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav
Chaudhary, Brian O’Horo, Jeff Wang, Luke Zettle-
moyer, Zornitsa Kozareva, Mona T. Diab, Veselin
Stoyanov, and Xian Li. 2021b. Few-shot learn-
ing with multilingual language models. CoRR,
abs/2112.10668.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B
Dolan, Lawrence Carin, and Weizhu Chen. 2022.
What makes good in-context examples for gpt-3?
In Proceedings of Deep Learning Inside Out (Dee-
LIO 2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100-114.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
CoRR, abs/2107.13586.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086-8098.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022. Noisy channel language
model prompting for few-shot text classification. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5316-5330, Dublin, Ireland. As-
sociation for Computational Linguistics.

Courtney Napoles, Matthew Gormley, and Benjamin
Van Durme. 2012. Annotated Gigaword. In Proceed-
ings of the Joint Workshop on Automatic Knowledge
Base Construction and Web-scale Knowledge Ex-
traction (AKBC-WEKEX), pages 95-100, Montréal,
Canada. Association for Computational Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, et al.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP),

pages 2463-2473, Hong Kong, China. Association
for Computational Linguistics.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models. CoRR, abs/2210.03350.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Jacob
Menick, Albin Cassirer, Richard Powell, George van
den Driessche, Lisa Anne Hendricks, Maribeth Rauh,
Po-Sen Huang, Amelia Glaese, Johannes Welbl,
Sumanth Dathathri, Saffron Huang, Jonathan Ue-
sato, John Mellor, Irina Higgins, Antonia Creswell,
Nat McAleese, Amy Wu, Erich Elsen, Siddhant
Jayakumar, Elena Buchatskaya, David Budden, Esme
Sutherland, Karen Simonyan, Michela Paganini,
Laurent Sifre, Lena Martens, Xiang Lorraine Li,
Adhiguna Kuncoro, Aida Nematzadeh, Elena Gri-
bovskaya, Domenic Donato, Angeliki Lazaridou,
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim-
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot-
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,
Daniel Toyama, Cyprien de Masson d’ Autume, Yujia
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,
Aidan Clark, Diego de Las Casas, Aurelia Guy,
Chris Jones, James Bradbury, Matthew Johnson,
Blake Hechtman, Laura Weidinger, lason Gabriel,
William Isaac, Ed Lockhart, Simon Osindero, Laura
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub,
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko-
ray Kavukcuoglu, and Geoffrey Irving. 2021. Scal-
ing Language Models: Methods, Analysis & In-
sights from Training Gopher. arXiv e-prints, page
arXiv:2112.11446.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yangqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2019. Zero: Memory optimization
towards training A trillion parameter models. CoRR,
abs/1910.02054.

Stephen Robertson and Hugo Zaragoza. 2009. The prob-
abilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval,
3(4):333-389.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ili¢, Daniel Hesslow, Roman

496

http://arxiv.org/abs/2112.10668
http://arxiv.org/abs/2112.10668
http://arxiv.org/abs/2112.10668
http://arxiv.org/abs/2112.10668
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.18653/v1/2022.acl-long.365
https://aclanthology.org/W12-3018
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.48550/arXiv.2210.03350
https://doi.org/10.48550/arXiv.2210.03350
https://doi.org/10.48550/arXiv.2210.03350
https://doi.org/10.48550/arXiv.2112.11446
https://doi.org/10.48550/arXiv.2112.11446
https://doi.org/10.48550/arXiv.2112.11446
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1910.02054
http://arxiv.org/abs/1910.02054
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019

Castagné, Alexandra Sasha Luccioni, Francois Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
ArXiv preprint, abs/2211.05100.

Timo Schick and Hinrich Schiitze. 2021. It’s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2339-2352, Online. Association
for Computational Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222-4235,
Online. Association for Computational Linguistics.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-LM: Training Multi-Billion
Parameter Language Models Using Model Paral-
lelism. arXiv e-prints, page arXiv:1909.08053.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
CoRR, abs/1909.08053.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A Smith, et al. 2022. Selec-
tive annotation makes language models better few-
shot learners. arXiv preprint arXiv:2209.01975.

Yi Tay, Vinh Q. Tran, Mostafa Dehghani, Jianmo Ni,
Dara Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe
Zhao, Jai Gupta, Tal Schuster, William W. Cohen,
and Donald Metzler. 2022. Transformer Memory as
a Differentiable Search Index. arXiv e-prints, page
arXiv:2202.06991.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019. Universal adversarial
triggers for attacking and analyzing NLP. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-1JCNLP), pages 2153-2162, Hong
Kong, China. Association for Computational Linguis-
tics.

Ben Wang and Aran Komatsuzaki. 2021. GPT-
J-6B: A 6 Billion Parameter Autoregressive
Language Model. https://github.com/
kingoflolz/mesh-transformer-jax.

Boshi Wang, Xiang Deng, and Huan Sun. 2022. Itera-
tively prompt pre-trained language models for chain
of thought. In The 2022 Conference on Empirical
Methods for Natural Language Processing.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022. Self-Consistency Improves
Chain of Thought Reasoning in Language Models.
arXiv e-prints, page arXiv:2203.11171.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022a. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022b.
Chain of thought prompting elicits reasoning in large
language models. CoRR, abs/2201.11903.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Ling-
peng Kong. 2022. Self-adaptive in-context learning.

Jiacheng Ye, Jiahui Gao, Zhiyong Wu, Jiangtao Feng,
Tao Yu, and Lingpeng Kong. 2022. ProGen: Pro-
gressive zero-shot dataset generation via in-context
feedback. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 3671—
3683, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu,
and Lingpeng Kong. 2023. Compositional ex-
emplars for in-context learning. arXiv preprint
arXiv:2302.05698.

Kyra Yee, Nathan Ng, Yann N. Dauphin, and Michael
Auli. 2019. Simple and effective noisy channel
modeling for neural machine translation. CoRR,
abs/1908.05731.

Lei Yu, Phil Blunsom, Chris Dyer, Edward Grefenstette,
and Tomds Kocisky. 2016. The neural noisy channel.
CoRR, abs/1611.02554.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022a. Opt: Open
pre-trained transformer language models.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022b. Automatic chain of thought
prompting in large language models. CoRR,
abs/2210.03493.

497

https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.48550/arXiv.1909.08053
https://doi.org/10.48550/arXiv.1909.08053
https://doi.org/10.48550/arXiv.1909.08053
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.48550/arXiv.2202.06991
https://doi.org/10.48550/arXiv.2202.06991
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.48550/arXiv.2203.11171
https://doi.org/10.48550/arXiv.2203.11171
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://doi.org/10.48550/ARXIV.2212.10375
https://aclanthology.org/2022.findings-emnlp.269
https://aclanthology.org/2022.findings-emnlp.269
https://aclanthology.org/2022.findings-emnlp.269
https://arxiv.org/abs/2302.05698
https://arxiv.org/abs/2302.05698
http://arxiv.org/abs/1908.05731
http://arxiv.org/abs/1908.05731
http://arxiv.org/abs/1611.02554
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate Before Use: Im-
proving Few-Shot Performance of Language Models.
arXiv e-prints, page arXiv:2102.09690.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In In-
ternational Conference on Machine Learning, pages

12697-12706. PMLR.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. ArXiv preprint,
abs/2205.10625.

498

https://doi.org/10.48550/arXiv.2102.09690
https://doi.org/10.48550/arXiv.2102.09690
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625

