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Abstract

Past work in natural language processing in-
terpretability focused mainly on popular clas-
sification tasks while largely overlooking gen-
eration settings, partly due to a lack of dedi-
cated tools. In this work, we introduce Inseq',
a Python library to democratize access to in-
terpretability analyses of sequence generation
models. Inseq enables intuitive and optimized
extraction of models’ internal information and
feature importance scores for popular decoder-
only and encoder-decoder Transformers archi-
tectures. We showcase its potential by adopting
it to highlight gender biases in machine trans-
lation models and locate factual knowledge in-
side GPT-2. Thanks to its extensible interface
supporting cutting-edge techniques such as con-
trastive feature attribution, Inseq can drive fu-
ture advances in explainable natural language
generation, centralizing good practices and en-
abling fair and reproducible model evaluations.

1 Introduction

Recent years saw an increase in studies and tools
aimed at improving our behavioral or mechanis-
tic understanding of neural language models (Be-
linkov and Glass, 2019). In particular, feature attri-
bution methods became widely adopted to quantify
the importance of input tokens in relation to mod-
els’ inner processing and final predictions (Madsen
et al., 2022b). Many studies applied such tech-
niques to modern deep learning architectures, in-
cluding Transformers (Vaswani et al., 2017), lever-
aging gradients (Baehrens et al., 2010; Sundarara-
jan et al., 2017), attention patterns (Xu et al., 2015;
Clark et al., 2019) and input perturbations (Zeiler
and Fergus, 2014; Feng et al., 2018) to quantify
input importance, often leading to controversial
outcomes in terms of faithfulness, plausibility and
overall usefulness of such explanations (Adebayo
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Figure 1: Feature importance and next-step probability
extraction and visualization using Inseq with a © Trans-
formers causal language model.

et al., 2018; Jain and Wallace, 2019; Jacovi and
Goldberg, 2020; Zafar et al., 2021). However, fea-
ture attribution techniques have mainly been ap-
plied to classification settings (Atanasova et al.,
2020; Wallace et al., 2020; Madsen et al., 2022a;
Chrysostomou and Aletras, 2022), with relatively
little interest in the more convoluted mechanisms
underlying generation. Classification attribution is
a single-step process resulting in one importance
score per input token, often allowing for intuitive
interpretations in relation to the predicted class.
Sequential attribution® instead involves a compu-
tationally expensive multi-step iteration producing
a matrix A;; representing the importance of ev-
ery input 7 in the prediction of every generation
outcome j (Figure 1). Moreover, since previous

2We use sequence generation to refer to all iterative tasks
including (but not limited to) natural language generation.
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generation steps causally influence following pre-
dictions, they must be dynamically incorporated
into the set of attributed inputs throughout the pro-
cess. Lastly, while classification usually involves a
limited set of classes and simple output selection
(e.g. argmax after softmax), generation routinely
works with large vocabularies and non-trivial de-
coding strategies (Eikema and Aziz, 2020). These
differences limited the use of feature attribution
methods for generation settings, with relatively few
works improving attribution efficiency (Vafa et al.,
2021; Ferrando et al., 2022) and explanations’ in-
formativeness (Yin and Neubig, 2022).

In this work, we introduce Inseq, a Python li-
brary to democratize access to interpretability anal-
yses of generative language models. Inseq central-
izes access to a broad set of feature attribution meth-
ods, sourced in part from the Captum (Kokhlikyan
et al., 2020) framework, enabling a fair compar-
ison of different techniques for all sequence-to-
sequence and decoder-only models in the popu-
lar # Transformers library (Wolf et al., 2020).
Thanks to its intuitive interface, users can easily in-
tegrate interpretability analyses into sequence gen-
eration experiments with just 3 lines of code (Fig-
ure 2). Nevertheless, Inseq is also highly flexible,
including cutting-edge attribution methods with
built-in post-processing features (§ 4.1), support-
ing customizable attribution targets and enabling
constrained decoding of arbitrary sequences (§ 4.2).
In terms of usability, Inseq greatly simplifies access
to local and global explanations with built-in sup-
port for a command line interface (CLI), optimized
batching enabling dataset-wide attribution, and var-
ious methods to visualize, serialize and reload attri-
bution outcomes and generated sequences (§ 4.3).
Ultimately, Inseq’s aims to make sequence models
first-class citizens in interpretability research and
drive future advances in interpretability for genera-
tive applications.

2 Related Work

Feature Attribution for Sequence Generation
Work on feature attribution for sequence gener-
ation has mainly focused on machine translation
(MT). Bahdanau et al. (2015) showed how attention
weights of neural MT models encode interpretable
alignment patterns. Alvarez-Melis and Jaakkola
(2017) adopted a perturbation-based framework
to highlight biases in MT systems. Ding et al.
(2019); He et al. (2019); Voita et al. (2021a,b) inter

import inseq

# Load HF Hub model and attribution method
model = inseq.load_model(
"google/flan-t5-base",
"integrated_gradients"
)
# Answer and attribute generation steps
attr_out = model.attribute(
"Does 3 + 3 equal 67",
attribute_target=True
)
# Visualize the generated attribution,
# applying default token-level aggregation
attr_out.show()

Source Saliency Prefix Saliency

‘_yes ‘ </[s>

‘ </s> ‘ ‘

’ _yes ’ </s>
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Figure 2: Computing and visualizing source and target-
side attributions using Flan-T5 (Chung et al., 2022).

alia conducted analyses on MT word alignments,
coreference resolution and training dynamics with
various gradient-based attribution methods. Vafa
et al. (2021); Ferrando et al. (2022) developed ap-
proaches to efficiently compute sequential feature
attributions without sacrificing accuracy. Yin and
Neubig (2022) introduced contrastive feature attri-
bution to disentangle factors influencing generation
in language models. Attribution scores obtained
from MT models were also used to detect hallucina-
tory behavior (Dale et al., 2022; Tang et al., 2022;
Xu et al., 2023), providing a compelling practical
use case for such explanations.

Tools for NLP Interpretability Although many
post-hoc interpretability libraries were released re-
cently, only a few support sequential feature at-
tribution. Notably, LIT (Tenney et al., 2020), a
structured framework for analyzing models across
modalities, and Ecco (Alammar, 2021), a library
specialized in interactive visualizations of model
internals. LIT is an all-in-one GUI-based tool to an-
alyze model behaviors on entire datasets. However,
the library does not provide out-of-the-box support
for ® Transformers models, requiring the defini-
tion of custom wrappers to ensure compatibility.
Moreover, it has a steep learning curve due to its
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advanced UI, which might be inconvenient when
working on a small amount of examples. All these
factors limit LIT usability for researchers working
with custom models, needing access to extracted
scores, or being less familiar with interpretabil-
ity research. On the other hand, Ecco is closer
to our work, being based on = Transformers and
having started to support encoder-decoder models
concurrently with Inseq development. Despite a
marginal overlap in their functionalities, the two li-
braries provide orthogonal benefits: Inseq’s flexible
interface makes it especially suitable for method-
ical quantitative analyses involving repeated eval-
uations, while Ecco excels in qualitative analyses
aimed at visualizing model internals. Other popu-
lar tools such as ERASER (DeYoung et al., 2020),
Thermostat (Feldhus et al., 2021), transformers-
interpret (Pierse, 2021) and ferret (Attanasio et al.,
2022) do not support sequence models.

3 Design

Inseq combines sequence models sourced from
@ Transformers (Wolf et al., 2020) and attribution
methods mainly sourced from Captum (Kokhlikyan
et al., 2020). While only text-based tasks are cur-
rently supported, the library’s modular design’
would enable the inclusion of other modeling
frameworks (e.g. fairseq (Ott et al., 2019)) and
modalities (e.g. speech) without requiring sub-
stantial redesign. Optional dependencies include
¢ Datasets (Lhoest et al., 2021) and Rich*.

3.1 Guiding Principles

Research and Generation-oriented Inseq
should support interpretability analyses of a
broad set of sequence generation models without
focusing narrowly on specific architectures or
tasks. Moreover, the inclusion of new, cutting-edge
methods should be prioritized to enable fair
comparisons with well-established ones.

Scalable The library should provide an opti-
mized interface to a wide range of use cases, mod-
els and setups, ranging from interactive attributions
of individual examples using toy models to compil-
ing statistics of large language models’ predictions
for entire datasets.

Beginner-friendly Inseq should provide built-in
access to popular frameworks for sequence genera-

*More details are available in Appendix B.
*https://github.com/Textualize/rich

Method Source f(
(Input x) Gradient Simonyan et al. v
DeepLIFT Shrikumar et al. v
G GradientSHAP Lundberg and Lee X
Integrated Gradients Sundararajan et al. v
Discretized IG Sanyal and Ren X
I Attention Weights Bahdanau et al. 4
Occlusion (Blank-out)  Zeiler and Fergus X
P LIME Ribeiro et al. X

(Log) Probability -
Softmax Entropy -

S Target Cross-entropy -
Perplexity -
Contrastive Prob. A Yin and Neubig
1 MC Dropout Prob. Gal and Ghahramani

Table 1: Overview of gradient-based (G), internals-
based (I) and perturbation-based (P) attribution methods
and built-in step functions (S) available in Inseq. f(I)
marks methods allowing for attribution of arbitrary in-
termediate layers.

tion modeling and be fully usable by non-experts
at a high level of abstraction, providing sensible
defaults for supported attribution methods.

Extensible Inseq should support a high degree of
customization for experienced users, with out-of-
the-box support for user-defined solutions to enable
future investigations into models’ behaviors.

4 Modules and Functionalities

4.1 Feature Attribution and Post-processing

At its core, Inseq provides a simple interface
to apply feature attribution techniques for se-
quence generation tasks. We categorize methods in
three groups, gradient-based, internals-based and
perturbation-based, depending on their underlying
approach to importance quantification.> Table 1
presents the full list of supported methods. Aside
from popular model-agnostic methods, Inseq no-
tably provides built-in support for attention weight
attribution and the cutting-edge Discretized Inte-
grated Gradients method (Sanyal and Ren, 2021).
Moreover, multiple methods allow for the impor-
tance attribution of custom intermediate model lay-
ers, simplifying studies on representational struc-
tures and information mixing in sequential models,
such as our case study of Section 5.2.

Source and target-side attribution When using
encoder-decoder architectures, users can set the

>We distinguish between gradient- and internals-based
methods to account for their difference in scores’ granularity.
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attribute_target parameter to include or exclude
the generated prefix in the attributed inputs. In
most cases, this should be desirable to account for
recently generated tokens when explaining model
behaviors, such as when to terminate the genera-
tion (e.g. relying on the presence _yes in the tar-
get prefix to predict </s> in Figure 2, bottom-right
matrix). However, attributing the source side sep-
arately could prove useful, for example, to derive
word alignments from importance scores.

Post-processing of attribution outputs Aggre-
gation is a fundamental but often overlooked step
in attribution-based analyses since most methods
produce neuron-level or subword-level importance
scores that would otherwise be difficult to interpret.
Inseq includes several Aggregator classes to per-
form attribution aggregation across various dimen-
sions. For example, the input word “Explanation”
could be tokenized in two subword tokens “Expl”
and ‘“‘anation”, and each token would receive N
importance scores, with /N being the model em-
bedding dimension. In this case, aggregators could
first merge subword-level scores into word-level
scores, and then merge granular embedding-level
scores to obtain a single token-level score that is
easier to interpret. Moreover, aggregation could
prove especially helpful for long-form generation
tasks such as summarization, where word-level im-
portance scores could be aggregated to obtain a
measure of sentence-level relevance. Notably, In-
seq allows chaining multiple aggregators like in the
example above using the AggregatorPipeline class,
and provides a PairAggregator to aggregate differ-
ent attribution maps, simplifying the conduction of
contrastive analyses as in Section 5.1.°

4.2 Customizing generation and attribution

During attribution, Inseq first generates target to-
kens using # Transformers and then attributes
them step by step. If a custom target string is
specified alongside model inputs, the generation
step is instead skipped, and the provided text is
attributed by constraining the decoding of its to-
kens’. Constrained attribution can be used, among
other things, for contrastive comparisons of min-
imal pairs and to obtain model justifications for
desired outputs.

8See Appendix C for an example.

"Constrained decoding users should be aware of its limita-
tions in the presence of a high distributional discrepancy with
natural model outputs (Vamvas and Sennrich, 2021).

Custom step functions At every attribution step,
Inseq can use models’ internal information to ex-
tract scores of interest (e.g. probabilities, entropy)
that can be useful, among other things, to quantify
model uncertainty (e.g. how likely the generated
_yes token was given the context in Figure 2). In-
seq provides access to multiple built-in step func-
tions (Table 1, S) enabling the computation of these
scores, and allows users to create and register new
custom ones. Step scores are computed together
with the attribution, returned as separate sequences
in the output, and visualized alongside importance
scores (e.g. the p(y¢|y<;) row in Figure 1).

Step functions as attribution targets For meth-
ods relying on model outputs to predict input impor-
tance (gradient and perturbation-based), feature at-
tributions are commonly obtained from the model’s
output logits or class probabilities (Bastings et al.,
2022). However, recent work showed the effec-
tiveness of using targets such as the probability
difference of a contrastive output pair to answer
interesting questions like “What inputs drive the
prediction of y rather than §?” (Yin and Neubig,
2022). In light of these advances, Inseq users can
leverage any built-in or custom-defined step func-
tion as an attribution target, enabling advanced use
cases like contrastive comparisons and uncertainty-
weighted attribution using MC Dropout (Gal and
Ghahramani, 2016).

4.3 Usability Features

Batched and span-focused attributions The li-
brary provides built-in batching capabilities, en-
abling users to go beyond single sentences and at-
tribute even entire datasets in a single function call.
When the attribution of a specific span of interest
is needed, Inseq also allows specifying a start and
end position for the attribution process. This func-
tionality greatly accelerates the attribution process
for studies on localized phenomena (e.g. pronoun
coreference in MT models).

CLI, Serialization and Visualization The Inseq
library offers an API to attribute single examples or
entire # Datasets from the command line and save
resulting outputs and visualizations to a file. Attri-
bution outputs can be saved and loaded in JSON
format with their respective metadata to easily iden-
tify the provenance of contents. Attributions can
be visualized in the command line or IPython note-
books and exported as HTML files.
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Quantized Model Attribution Supporting the
attribution of large models is critical given re-
cent scaling tendencies (Kaplan et al., 2020).
All models allowing for quantization using
bitsandbytes (Dettmers et al., 2022) can be loaded
in 8-bit directly from # Transformers, and their at-
tributions can be computed normally using Inseq.®
A minimal manual evaluation of 8-bit attribution
outputs for Section 5.2 study shows minimal dis-
crepancies compared to full-precision results.

5 Case Studies

5.1 Gender Bias in Machine Translation

In the first case study, we use Inseq to investigate
gender bias in MT models. Studying social biases
embedded in these models is crucial to understand
and mitigate the representational and allocative
harms they might engender (Blodgett et al., 2020).
Savoldi et al. (2021) note that the study of bias in
MT could benefit from explainability techniques to
identify spurious cues exploited by the model and
the interaction of different features that can lead to
intersectional bias.

Synthetic Setup: Turkish to English The Turk-
ish language uses the gender-neutral pronoun o,
which can be translated into English as either “he”,
“she”, or “it”, making it interesting to study gender
bias in MT when associated with a language such
as English for which models will tend to choose a
gendered pronoun form. Previous works leveraged
translations from gender-neutral languages to show
gender bias present in translation systems (Cho
et al., 2019; Prates et al., 2020; Farkas and Németh,
2022). We repeat this simple setup using a Turkish-
to-English MarianMT model (Tiedemann, 2020)
and compute different metrics to quantify gender
bias using Inseq.

We select 49 Turkish occupation terms verified
by a native speaker (see Appendix E) and use them
to infill the template sentence “O bir __” (He/She
is a(n) __). For each translation, we compute at-
tribution scores for source Turkish pronoun (zpron)
and occupation (Zocc) tokens® when generating the
target English pronoun (yr0n) using Integrated Gra-
dients (IG), Gradients (V), and Input x Gradient
(IxG),'°. We also collect target pronoun probabili-

8hitsandbytes 0.37.0 required for backward method, see
Appendix D for an example.

°For multi-token occupation terms, e.g., bilim insani (sci-
entist), the attribution score of the first token was used.

1%We set approx. steps to ensure convergence A < 0.05

Base @ > a
Lpron Locc ‘ Tpron Locc
D(Ypron) 0.01 -0.44*
v -0.16 0.25* 0.23* -0.00
IG -0.08 0.09 0.11 0.17
IxG -0.11 0.22* 0.22* -0.01

Table 2: Gender Bias in Turkish-to-English MT:
Kendall’s 7 correlation of MT model metrics with U.S.
labor statistics. * = Significant correlation (p < .05).

ties (p(Ypron)), rank the 49 occupation terms using
these metrics, and finally compute Kendall’s 7 cor-
relation with the percentage of women working
in the respective fields, using U.S. labor statistics
as in previous works (e.g., Caliskan et al., 2017;
Rudinger et al., 2018). Table 2 presents our results.

In the base case, we correlate the different met-
rics with how much the gender distribution deviates
from an equal distribution (50 — 50%) for each oc-
cupation (i.e., the gender bias irrespective of the
direction). We observe a strong gender bias, with
“she” being chosen only for 5 out of 49 translations
and gender-neutral variants never being produced
by the MT model. We find a low correlation be-
tween pronoun probability and the degree of gender
stereotype associated with the occupation. More-
over, we note a weaker correlation for IG compared
to the other two methods. For those, attribution
scores for xoc. show significant correlations with
labor statistics, supporting the intuition that the MT
model will accord higher importance to source oc-
cupation terms associated to gender-stereotypical
occupations when predicting the gendered target
pronoun.

In the gender-swap case (¢ — &), we use the
PairAggregator class to contrastively compare at-
tribution scores and probabilities when translating
the pronoun as “She” or “He”.!! We correlate re-
sulting scores with the % of women working in the
respective occupation and find strong correlations
for p(Ypron), supporting the validity of contrastive
approaches in uncovering gender bias.

Qualitative Example: English to Dutch We
qualitatively analyze biased MT outputs, showing
how attributions can help develop hypotheses about
models’ behavior. Table 3 (top) shows the I x G
attributions for English-to-Dutch translation using
M2M-100 (418M, Fan et al., 2021). The model

for IG. All methods use the L2 norm to obtain token-level
attributions.
" An example is provided in Appendix C.
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Source De leraar verliest zijn baan

The 0.10 0.08 0.04 0.03 0.02
teacher 0.11 0.20 0.06 0.03 0.05
loses 0.11 0.09 0.25 0.07 0.07
her 0.15 0.09 0.10 0.21 0.07
job 0.10 0.08 0.08 0.10 0.24
Target De leraar verliest zijn baan

De 0.23 0.05 0.06 0.04
leraar 0.17 0.13 0.03
verliest 0.18 0.08
zijn 0.26
p(ye) 0.69 0.28 0.35 0.65 0.29

Source De d— o verliest haar baan
The 0.00 -0.02 0.00 0.00 0.00
teacher 0.00 -0.05 -0.01 -0.01 -0.01
loses 0.00 -0.02 -0.01 -0.02 -0.01
her 0.00 -0.01 -0.01 -0.10 0.01

job 0.00 -0.02 -0.01 -0.02 -0.02
Target De d— o verliest haar baan
De -0.07 -0.01 0.01 -0.01
d— o 0.09 0.18 0.02
verliest -0.03 0.00
haar 0.00
Ap(yt) 0.00 -0.23 0.13 0.20 0.00

Table 3: Top: Attribution of pronoun gender mistrans-
lation using M2M-100. Bottom: Target attribution
difference when swapping the target noun gender (& —
o) from leraar (male) to leerkracht (gender-neutral).

mistranslates the pronoun “her” into the masculine
form zijn (his). We find that the wrongly trans-
lated pronoun exhibits high probability but does
not associate substantial importance to the source
occupation term “teacher”. Instead, we find good
relative importance for the preceding word and ler-
aar (male teacher). This suggests a strong prior
bias for masculine variants, shown by the pronoun
zijn and the noun leraar, as a possible cause for
this mistranslation. When considering the con-
trastive example obtained by swapping leraar with
its gender-neutral variant leerkracht (Table 3, bot-
tom), we find increased importance of the target
occupation in determining the correctly-gendered
target pronoun haar (her). Our results highlight
the tendency of MT models to attend inputs se-
quentially rather than relying on context, hinting
at the known benefits of context-aware models for
pronoun translation (Voita et al., 2018).

5.2 Locating Factual Knowledge inside GPT-2
with Contrastive Attribution Tracing

For our second case study, we experiment with
a novel attribution-based technique to locate fac-
tual knowledge encoded in the layers of GPT-2
1.5B (Radford et al., 2019). Specifically, we aim to
reproduce the results of Meng et al. (2022), show-
ing the influence of intermediate layers in mediat-

First subject token - 015
Middle subject tokens early site
Last subject token - 0.10
First subsequent token -
Further tokens late site 0.05
Last token - 0.00
0 5 101520 25 30 35 40 AIE
First subject token - G
Middle subject tokens 0.60
Last subject token - 0.45
First subsequent token - 0.30
Further tokens 0.15
Last token -
0.00

0 5 101520 25 30 35 40 Layer GxXA

Figure 3: Top: Estimated causal importance of GPT-2
XL layers for predicting factual associations, as reported
by Meng et al. (2022). Bottom: Average GPT-2 XL
Gradient x Layer Activation scores obtained with Inseq
using contrastive factual pairs as attribution targets.

ing the recall of factual statements such as ‘The Eif-
fel Tower is located in the city of — Paris’. Meng
et al. (2022) estimate the effect of network com-
ponents in the prediction of factual statements as
the difference in probability of a correct target (e.g.
Paris), given a corrupted subject embedding (e.g.
for Eiffel Tower), before and after restoring clean
activations for some input tokens at different layers
of the network. Apart from the obvious importance
of final token states in terminal layers, their results
highlight the presence of an early site associated
with the last subject token playing an important
role in recalling the network’s factual knowledge
(Figure 3, top).

To verify such results, we propose a novel knowl-
edge location method, which we name Contrastive
Attribution Tracing (CAT), adopting the contrastive
attribution paradigm of Yin and Neubig (2022) to
locate relevant network components by attribut-
ing minimal pairs of correct and wrong factual
targets (e.g. Paris vs. Rome for the example
above). To perform the contrastive attribution, we
use the Layer Gradient x Activation method, a
layer-specific variant of Input x Gradient, to prop-
agate gradients up to intermediate network activa-
tions instead of reaching input tokens. The result-
ing attribution scores hence answer the question
“How important are layer L activations for prefix
token ¢ in predicting the correct factual target over
a wrong one?”’. We compute attribution scores
for 1000 statements taken from the Counterfact
Statement dataset (Meng et al., 2022) and present

426



averaged results in Figure 3 (bottom).'? Our results
closely match those of the original authors, provid-
ing further evidence of how attribution methods
can be used to identify salient network components
and guide model editing, as shown by Dai et al.
(2022) and Nanda (2023).

To our best knowledge, the proposed CAT
method is the most efficient knowledge location
technique to date, requiring only a single for-
ward and backward pass of the attributed model.
Patching-based approaches such as causal media-
tion (Meng et al., 2022), on the other hand, pro-
vide causal guarantees of feature importance at
the price of being more computationally intensive.
Despite lacking the causal guarantees of such meth-
ods, CAT can provide an approximation of feature
importance and greatly simplify the study of knowl-
edge encoded in large language model representa-
tions thanks to its efficiency.

6 Conclusion

We introduced Inseq, an easy-to-use but versatile
toolkit for interpreting sequence generation models.
With many libraries focused on the study of clas-
sification models, Inseq is the first tool explicitly
aimed at analyzing systems for tasks such as ma-
chine translation, code synthesis, and dialogue gen-
eration. Researchers can easily add interpretability
evaluations to their studies using our library to iden-
tify unwanted biases and interesting phenomena
in their models’ predictions. We plan to provide
continued support and explore developments for
Inseq,'? to provide simple and centralized access
to a comprehensive set of thoroughly-tested imple-
mentations for the interpretability community. In
conclusion, we believe that Inseq has the poten-
tial to drive real progress in explainable language
generation by accelerating the development of new
analysis techniques, and we encourage members of
this research field to join our development efforts.
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Reliability of Attribution Methods The plausi-
bility and faithfulness of attribution methods sup-
ported by Inseq is an active matter of debate in
the research community, without clear-cut guaran-
tees in identifying specific model behaviors, and
prone to users’ own biases (Jacovi and Goldberg,
2020). We emphasize that explanations produced
with Inseq should not be adopted in high-risk and
user-facing contexts. We encourage Inseq users to
critically approach results obtained from our toolkit
and validate them on a case-by-case basis.

Technical Limitations and Contributions
While Inseq greatly simplifies comparisons across
different attribution methods to ensure their mutual
consistency, it does not provide explicit ways of
evaluating the quality of produced attributions in
terms of faithfulness or plausibility. Moreover,
many recent methods still need to be included
due to the rapid pace of interpretability research
in natural language processing and the small size
of our development team. To foster an open and
inclusive development environment, we encourage
all interested users and new methods’ authors to
contribute to the development of Inseq by adding
their interpretability methods of interest.

Gender Bias Case Study The case study of Sec-
tion 5.1 assumes a simplified concept of binary
gender to allow for a more straightforward evalu-
ation of the results. However, we encourage other
researchers to consider non-binary gender and dif-
ferent marginalized groups in future bias studies.
We acknowledge that measuring bias in language
models is complex and that care must be taken
in its conceptualization and validation (Blodgett
et al., 2020; van der Wal et al., 2022; Bommasani
and Liang, 2022), even more so in multilingual set-
tings (Talat et al., 2022). For this reason, we do not
claim to provide a definite bias analysis of these
MT models — especially in light of the aforemen-
tioned attributions’ faithfulness issues. The study’s
primary purpose is to demonstrate how attribution
methods could be used for exploring social biases
in sequence-to-sequence models and showcase the
related Inseq functionalities.
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Gabriele Sarti  Organized and led the project, de-
veloped the first public release of the Inseq library,
conducted the case study of Section 5.2.

Nils Feldhus Implemented the perturbation-
based methods in Inseq and contributed to the vali-
dation of the case study of Section 5.2.

Ludwig Sickert Implemented the attention-
based attribution method in Inseq.

Oskar van der Wal Conducted the experiments
in the gender bias case study of Section 5.1.

Malvina Nissim and Arianna Bisazza ensured
the soundness of the overall process and provided
valuable inputs for the initial design of the toolkit.

B Additional Design Details

Figure 4 presents the Inseq hierarchy of mod-
els and attribution methods. The model-method
connection enables out-of-the-box attribution us-
ing the selected method. Framework-specific and
architecture-specific classes enable extending Inseq
to new modeling architectures and frameworks.

C Example of Pair Aggregation for
Contrastive MT Comparison

An example of gender translation pair using the
synthetic template of Section 5.1 is show in Fig-
ure 5, highlighting a large drop in probability when
switching the gendered pronoun for highly gender-
stereotypical professions, similar to Table 2 results.

D Example of Quantized Contrastive
Attribution of Factual Knowledge

Figure 6 presents code used in Section 5.2 case
study, with visualized attribution scores for con-
trastive examples in the evaluated dataset.

E Gender Bias in Machine Translation

Table 4 shows the list of occupation terms used
in the gender bias case study (Section 5.1). We
correlate the ranking of occupations based on
the selected attribution metrics and probabilities
with U.S. labor statistics!* (bls_pct_female col-
umn). Table 3 example was taken from the BUG
dataset (Levy et al., 2021).

Turkish English ‘ Turkish English
teknisyen technician memur officer
muhasebeci accountant patolog pathologist
siipervizor supervisor Ogretmen teacher
miihendis engineer avukat lawyer

isci worker planlamaci planner
egitimci educator yonetici practitioner
katip clerk tesisatgl plumber
danigman consultant egitmen instructor
miifettis inspector cerrah surgeon
tamirci mechanic veteriner veterinarian
miidiir manager kimyager chemist
terapist therapist makinist machinist
resepsiyonist  receptionist mimar architect
kiitiiphaneci librarian kuafor hairdresser
ressam painter firmer baker
eczacl pharmacist programlamaci  programmer
kapici janitor itfaiyeci firefighter
psikolog psychologist | bilim insant scientist
doktor physician sevk memuru dispatcher
marangoz carpenter kasiyer cashier
hemsire nurse komisyoncu broker
aragtirmact investigator sef chef
barmen bartender doktor doctor
uzman specialist sekreter secretary
elektrikei electrician

Table 4: List of the 49 Turkish occupation terms and
their English translations used in the gender bias case
study (Section 5.1).

Method Source

Guided Integrated Gradients
LRP

Kapishnikov et al.
Bach et al.

Attention Rollout & Flow Abnar and Zuidema

Attention X Vector Norm Kobayashi et al.

I Attention x Attn. Block Norm Kobayashi et al.
GlobEnc Modarressi et al.
ALTI+ Ferrando et al.
Attention X Trans. Block Norm  Kobayashi et al.
ALTI-Logit Ferrando et al.
Information Bottlenecks Jiang et al.

P Value Zeroing Mohebbi et al.
Input Reduction Feng et al.
Activation Patching Meng et al.

Table 5: Gradient-based (G), internals-based (I) and
perturbation-based (P) attribution methods for which
we plan to include support in future Inseq releases.

F Planned Developments and Next Steps

We plan to continuously expand the core function-
ality of the library by adding support for a wider
range of attribution methods. Table 5 shows a
subset of methods we consider including in fu-
ture releases. Besides new methods, we also in-
tend to significantly improve result visualization
using an interactive interface backed by Gradio
Blocks (Abid et al., 2019), work on interoperability
features together with ferret developers (Attanasio
et al., 2022) to simplify the evaluation of sequence
attributions, and include sequential instance attri-
bution methods (Lam et al., 2022; Jain et al., 2022)
for training data attribution.

“https://github.com/rudinger/winogender-schemas
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import inseq
from inseq.data.aggregator import AggregatorPipeline, SubwordAggregator,
SequenceAttributionAggregator, PairAggregator

# Load the TR-EN translation model and attach the IG method
model = inseq.load model("Helsinki-NLP/opus-mt-tr-en", "integrated_gradients")

# Batch attribute with forced decoding. Return probabilities, no target attr.
out = model.attribute(
["O bir teknisyen", "O bir teknisyen"],
["She is a technician.","He is a technician."],
step_scores=["probability"],
# The following attributes are specific to the IG method
internal_batch_size=100,
n_steps=300
)

# Aggregation pipeline composed by two steps:

# 1. Aggregate subword tokens across all dimensions: [11, 12, dim] -> [13, 14, dim]

# 2. Aggregate hidden size to produce token-level attributions: [11, 12, dim] -> [11, 12]
subw_aggregator = AggregatorPipeline([SubwordAggregator, SequenceAttributionAggregator])

# Aggregate attributions using the pipeline
masculine = out.sequence_attributions[0].aggregate(aggregator=subw_aggregator)
feminine = out.sequence_attributions[1l].aggregate(aggregator=subw_aggregator)

# Take the diff of the scores of the two attributions, show it and return the HTML
html = masculine.show(aggregator=PairAggregator, paired_attr=feminine, return_html=True)

Source Saliency Heatmap
x: Generated tokens, y: Attributed tokens

| She - _He ‘ | _a ‘ technician. ‘ </s>
ISR 0.004 [0.011 | 0003 [0.014
b _ -0.023 [-0.019 | -0.006 |-0.015

_teknisyen _\ 0.027 [0.008 | 0.003 | 0.001

‘ </s> | 0.0 \ 0.0 | 0.0 \ 0.0 \ 0.0

|prohabih'ty | 0.46 ‘0.004 |o.003 ‘ -0.014 ‘ 0.001 ‘

Figure 5: Comparing attributions for a synthetic Turkish-to-English translation example with underspecified source
pronoun gender using a MarianMT Turkish-to-English translation model (Tiedemann, 2020). Values in the visualized
attribution matrix show a 46% higher probability of producing the masculine pronoun in the translation and a
relative decrease of 18.4% in the importance of the Turkish occupation term compared to the feminine pronoun case.
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import inseq
from datasets import load_dataset
from transformers import AutoModelForCausallLM, AutoTokenizer

# The model is loaded in 8-bit on available GPUs

model = AutoModelForCausallLM.from pretrained("gpt2-x1", load_in_8bit=True, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("gpt2-x1")

# Counterfact datasets used by Meng et al. (2022)

data = load dataset("NeelNanda/counterfact-tracing")["train"]

# GPT-2 XL is a Transformer model with 48 layers
for layer in range(48):
attrib_model = inseq.load _model(
model,
"layer_gradient_x_activation",
tokenizer="gpt2-x1",
target_layer=model.transformer.h[layer].mlp,

for i, ex in data:
# e.g. "The capital of Second Spanish Republic is"
prompt = ex["relation"].format{ex["subject"]}
# e.g. "The capital of Second Spanish Republic is Madrid"
true_answer = prompt + ex["target_true"]
# e.g. "The capital of Second Spanish Republic is Paris"
false_answer = prompt + ex["target_false"]
contrast = attrib_model.encode(false_answer)
# Contrastive attribution of true vs false answer
out = attrib_model.attribute(
prompt,
true_answer,
attributed_fn="contrast_prob_diff",
contrast_ids=contrast.input_ids,
contrast_attention_mask=contrast.attention_mask,
step_scores=["contrast_prob_diff"],
show_progress=False,
)
# Aggregation and plotting omitted for brevity
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Figure 6: Top: Example code to contrastively attribute factual statements from the Counterfact Tracing dataset,
using Layer Gradient x Activation to compute importance scores until intermediate layers of the GPT2-XL model.
Bottom: Visualization of contrastive attribution scores on a subset of layers (23 to 48) for some selected dataset
examples. Plot labels show the contrastive pairs of false — true answer used as attribution targets.
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