ESPnet-ST-v2: Multipurpose Spoken Language Translation Toolkit
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Abstract

ESPnet-ST-v2 is a revamp of the open-source
ESPnet-ST toolkit necessitated by the broad-
ening interests of the spoken language trans-
lation community. ESPnet-ST-v2 supports 1)
offline speech-to-text translation (ST), 2) simul-
taneous speech-to-text translation (SST), and
3) offline speech-to-speech translation (S2ST)
— each task is supported with a wide variety
of approaches, differentiating ESPnet-ST-v2
from other open source spoken language trans-
lation toolkits. This toolkit offers state-of-
the-art architectures such as transducers, hy-
brid CTC/attention, multi-decoders with search-
able intermediates, time-synchronous block-
wise CTC/attention, Translatotron models, and
direct discrete unit models. In this paper, we
describe the overall design, example models for
each task, and performance benchmarking be-
hind ESPnet-ST-v2, which is publicly available
at https://github.com/espnet/espnet.!

1 Introduction

The objective of this project is to contribute to
the diversity of the open-source spoken language
translation ecosystem. Toward this, we launched
this ESPnet-ST-v2 update in collaboration with re-
searchers working on Fairseq (Ott et al., 2019) and
TorchAudio (Yang et al., 2021b). This project fo-
cuses on: offline speech-to-text (ST), simultaneous
speech-to-text (SST), and offline speech-to-speech
(S2ST). These three spoken language translation
tasks have drawn significant interest, as evidenced
by rising IWSLT? shared task participation.

The ST task can be considered a base form of
spoken language translation. Early approaches to
ST stemmed from coupling statistical automatic
speech recognition (ASR) (Huang et al., 2014) and
text-to-text translation (MT) (Al-Onaizan et al.,
1999), and this type of cascaded approach is still

"Please see our documentation for ST/SST and S2ST to

get started. Example models and tutorials are provided.
International Workshop on Spoken Language Translation

common in the neural network era (Bentivogli et al.,
2021; Zhang et al., 2022). End-to-end differen-
tiable (E2E) approaches have recently emerged as
an alternative offering greater simplicity and su-
perior performance in some cases (Inaguma et al.,
2021b); however, E2E approaches still benefit from
techniques originating from ASR and MT (Gaido
et al., 2021; Inaguma et al., 2021a).

SST modifies ST by imposing an additional
streaming requirement, where systems are expected
to produce textual outputs while incrementally in-
gesting speech input. Both the aforementioned cas-
caded and end-to-end approaches to ST have been
adapted for SST (Ma et al., 2020b; Iranzo-Sdnchez
et al., 2021; Chen et al., 2021), although the more
direct nature of the latter may be advantageous for
latency-sensitive applications. On the other hand,
S2ST extends ST by producing target speech rather
than target text. Again, cascaded approaches of
ST followed by text-to-speech (TTS) came first
(Waibel et al., 1991; Black et al., 2002) and E2E
approaches followed (Jia et al., 2019; Lee et al.,
2022a; Jia et al., 2022a; Inaguma et al., 2022), with
the latter offering smaller footprints and greater
potential to retain source speech characteristics.

Given the recent swell in E2E ST, SST, and S2ST
research, we have revamped ESPnet-ST (Inaguma
et al., 2020) which previously only supported E2E
ST. In particular, this work:

* Implements ST, SST, and S2ST using common
Pytorch-based modules, including encoders, de-
coders, loss functions, search algorithms, and
self-supervised representations.

* Builds a variety of example E2E models:
attentional encoder-decoders, CTC/attention,
multi-decoders with searchable intermediates,
and transducers for ST. Blockwise attentional
encoder-decoders, time-synchronous blockwise
CTCl/attention and blockwise transducers for
SST. Spectral models (i.e. Translatotron) and
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discrete unit based models for S2ST.

* Benchmarks the ST, SST, and S2ST performance
of ESPnet-ST-v2 against top IWSLT shared task
systems and other prior works.

With this major update, ESPnet-ST-v2 keeps pace
with the interests of the community and offers a va-
riety of unique features, making it a valuable com-
plement to Fairseq (Wang et al., 2020), NeurST
(Zhao et al., 2021), and other spoken language
translation toolkits.

2 Related Works

ESPnet-ST-v2 follows a long line of open-source
speech processing toolkits which can support spo-
ken language translation (Zenkel et al., 2018; Shen
et al., 2019; Kuchaiev et al., 2019; Hayashi et al.,
2020; Wang et al., 2020; Zhao et al., 2021).

In Table 1 we compare ESPnet-ST-v2 to Fairseq
(Wang et al., 2020) and NeurST (Zhao et al., 2021),
two toolkits which also cover multiple types of spo-
ken language translation. Fairseq and NeurST offer
cascaded and E2E approaches to ST and SST (some
of which are not offered by ESPnet-ST-v2). Mean-
while, ESPnet-ST-v2 focuses on E2E approaches
and offers multiple unique core architectures not
covered by the other toolkits. For S2ST, Fairseq
and ESPnet-ST-v2 both offer a range of approaches.
All told, ESPnet-ST-v2 offers the greatest variety
across ST, SST, and S2ST — however, we view these
toolkits as complementary. The following section
elaborates on the unique features of ESPnet-ST-v2.

3 ESPnet-ST-v2

In this section, we first describe the overall design
and then introduce a few key features.

3.1 Modular Design

Figure 1 illustrates the software architecture of
ESPnet-ST-v2. This modular design is an improve-
ment over the ESPnet-ST-vl where monolithic
model and task definitions made it more difficult
to extend and modify the toolkit. We also designed
ESPnet-ST-v2 such that modules developed for ad-
jacent tasks (e.g. ASR, TTS, MT) can also be
readily used for spoken language translation.

In ESPnet-ST-v2 major neural network mod-
ules, such as frontends, encoders, decoders, search,
and loss functions, inherit from common abstract
classes making them easy to interchange. These
modules, which are detailed further in the next
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Table 1: Key features of ESPnet-ST-v2 compared to
ESPnet-ST-v1 (Inaguma et al., 2020), Fairseq (Wang
et al., 2020), and NeurST (Zhao et al., 2021). Com-
parison intends to highlight unique features of ESPnet-
ST-v2 and not to comprehensively review all toolkits.
LSupports S3PRL (Yang et al., 2021a). 2Supports both
spectral and discrete. 2Only supports text-to-text.

subsection, are used as building blocks in wrapper
classes which are used to construct model architec-
tures. Then the fully constructed models are fed to
task wrappers which prepare data loaders, initialize
models, and handle training/validation. For infer-
ence, pythonic APIs invoke search algorithms over
the trained models and direct outputs to scoring
scripts. For instance, the third-party SimulEval tool
for evaluating SST latency (Ma et al., 2020a) is in-
tegrated via this API layer. We are also integrating
with TorchAudio (Yang et al., 2021b) in the same
manner. Finally, recipe scripts define experimental
pipelines from data preparation to evaluation.

3.2 Key Features

Each of the following modeling components fea-
ture a variety of interchangeable approaches.



Modules (Python/Pytorch)

# Frontend modules
AbsFrontend
DefaultFrontend
S3prlFrontend
FusedFrontends

# Encoder modules

AbsEncoder

ConformerEncoder
TransformerEncoder
EBranchfromerEncoder
ContextBlkConformerEncoder
ContextBlkTransformerEncoder

# Decoder modules

AbsDecoder

TransformerDecoder
RNNDecoder

TransducerDecoder
HuggingFaceTransformerDecoder

# Search modules
BeamSearch
BeamSearchOnline

# Misc. modules
CTC
JointNetwork

Wrappers (Python)

# Model wrappers for
connecting modules
ESPnetSTModel # ST/SST
ESPnetS2STModel

# Task wrappers for

model init & training

AbsTask
STTask
S2STTask

# ST/SST

APIs (Python)

# Inference APIs
Speech2Text
Speech2TextStreaming
Speech2Speech

Scripts (Bash/Python)

simuleval_agent.py
nbest_mbr.py

Recipes (Bash)

st.sh # ST/SST

s2st.sh

Figure 1: Software architecture of ESPnet-ST-v2.

Frontends & Targets Spectral features (e.g.
FBANK) and features extracted from speech self-
supervised learning (SSL) representations are sup-
ported, as well as fusions over multiple features
(Berrebbi et al., 2022). For speech SSL features,
ESPnet-ST-v2 integrates with the S3PRL toolkit
(Yang et al., 2021a). These speech SSL representa-
tions are also used to generate discrete targets for
S2ST (Lee et al., 2022a).

Encoder Architectures Conformer (Gulati et al.,
2020; Guo et al., 2021), Branchformer (Peng et al.,
2022), EBranchformer (Kim et al., 2023), and
Transformer (Vaswani et al., 2017; Karita et al.,
2019) encoder architectures are supported for ST
and S2ST. For SST, a blockwise scheme is adopted
following (Tsunoo et al., 2021; Deng et al., 2022) to
form contextual block Conformer and Transformer
encoders. Intermediate CTC (Lee and Watanabe,
2021) and Hierachical CTC (Sanabria and Metze,
2018) encoding are also supported; these tech-
niques have been shown to stabilize deep encoder
optimization (Lee and Watanabe, 2021) and im-
prove representations for sequence tasks involving
source-to-target re-ordering (Yan et al., 2023).

Decoder Architectures Attentional Transformer
and recurrent neural network decoders are sup-
ported (Karita et al., 2019). Multi-decoder schemes
which allow for E2E differentiable decoder cas-
cades via searchable hidden intermediates (Dalmia
et al., 2021), are also supported; this technique

has been shown to improve sequence modeling for
tasks which naturally decompose into sub-tasks. Fi-
nally, large language model decoders (e.g. mBART
(Liu et al., 2020b)) can be adopted through an inte-
gration with HuggingFace (Wolf et al., 2020).

Loss Functions Cross-entropy (for attentional
decoders), CTC, and Transducer are supported
for ST and SST. Multi-objective training with
CTCl/attention and CTC/transducer as well as multi-
tasked training (e.g. ASR/MT/ST) is also sup-
ported. For S2ST, L1 and mean square error losses
are also supported for spectral models.

Search Algorithms For offline attentional de-
coder models, label-synchronous beam search is
supported with optional CTC joint decoding for
multi-objective models (Watanabe et al., 2017).
For offline Transducer models, the original Graves
beam search (Graves, 2012) as well as time-
synchronous and alignment-synchronous beam
search (Saon et al., 2020) beam searches are sup-
ported. For SST, both incremental decoding and
non-incremental (allowing re-translation) decoding
are supported (Liu et al., 2020a). Blockwise at-
tentional decoder models use a label-synchronous
beam search or time-synchronous beam search if
a CTC branch is available. Blockwise transducer
models use time-synchronous beam search.

Synthesis & Post-processing For ST, Minimum
Bayes Risk (MBR) ensembling (Fernandes et al.,
2022) is supported for leveraging quality-metrics
(e.g. BLEU) to compare and rank n-best out-
puts from one or more models. For S2ST, neu-
ral vocoders are supported for both spectral and
discrete inputs (Hayashi et al., 2020, 2021).

4 Example Models

In this section, we introduce example models which
are pre-built in ESPnet-ST-v2 using the neural net-
work components described in the previous sec-
tion. These examples include state-of-the-art core
architectures, as evidenced by prior studies and our
performance benchmarking (presented in §5).

4.1 ST Models

CTC/Attention (CA) Following Yan et al.
(2023), we use Conformer encoders with hierarchi-
cal CTC encoding and Transformer decoders. The
hierachical CTC encoding, which aligns the first
N layers of the encoder towards ASR targets and
the last M layers towards ST targets, regularizes
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Figure 2: Multi-Decoder CTC/Attention for ST.

Time-Sync CTC/Attn Decoding

BeamSearchOnline Translation

A

TransformerDecoder

+ Attention

|CTC (ST) H CtxBlkConformerEnc

* Hier Enc

|CTC (ASR)H CtxBlkConformerEnc

)

Speech

Figure 3: Time-Sync Blockwise CTC/Attn for SST.

the final encoder representations to be monotonic
with respect to the target. CTC/attention models
are jointly decoded using either label-synchronous
(wherein the attention branch is primary) or time-
synchronous (wherein the CTC branch is primary)
beam search. For offline tasks, label-synchrony has
shown greater performance (Yan et al., 2023).

Multi-Decoder CTC/Attention (MCA) As
shown in Figure 2, the Multi-decoder decomposes
ST into two sub-tasks, logically corresponding to
ASR and MT encoder-decoder models, while main-
taining E2E differentiability (Dalmia et al., 2021).
This Multi-decoder scheme is also combined with
the CTC/attention scheme described in the blurb
above, following Yan et al. (2022). We use Con-
former encoders with hierarchical CTC for encod-
ing speech and Transformer encoders for encoding
intermediate ASR text. We use Transformer de-
coders for both ASR and ST. During inference, the
ASR stage is decoded first and then the final MT/ST
stage is decoded; both stages use label-synchronous
joint CTC/attention beam search.

4.2 SST Models

Time-Synchronous Blockwise CTC/Attention
(TBCA) As shown in Figure 3, we adapt the
aforementioned CTC/attention model for ST (§4.1)
to SST by replacing the Conformer encoder with
a contextual block Conformer (Tsunoo et al.,

TransformerEncoder
8T Hidden
Intermediates v Attention

| BeamSearch (ST) |

TransformerDecoder

TransformerDecoder | BeamSearch (S2ST) ‘

$ Attention V Discrete Units

Vocoder

TransformerEncoder |

Speech (Src) Speech (Tgt)

Figure 4: Discrete Multi-Decoder (UnitY) for S2ST.

2021). During inference, we initially followed
Deng et al. (2022) and used the label-synchronous
CTCl/attention beam search originally proposed
for ASR by Tsunoo et al. (2021). However, we
found that label-synchrony results in overly conser-
vative boundary block detection for SST. Therefore
we opt instead for the time-synchronous variant
which relies on CTC’s more robust end-detection
(Yan et al., 2023) to control boundary block de-
tection; this change reduces latency without sacri-
ficing quality. To perform incremental decoding
without re-translation (as expected by SimulEval),
hypotheses are pruned after processing all of the
time steps for each encoder block.

Blockwise Transducer (BT) As demonstrated
by Xue et al. (2022), Transducers can be effec-
tively applied to SST despite the monotonic na-
ture of their underlying alignment model. We
build Transducers for SST using contextual block
Conformer encoders and unidirectional LSTM de-
coders. We found that the aforementioned hier-
archical CTC encoding (§4.1) improves training
stability and convergence rate. During inference,
we found that the time-synchronous algorithm de-
scribed by Saon et al. (2020) outperformed the
original Graves decoding (Graves, 2012) and the
later proposed alignment-synchronous algorithms
(Saon et al., 2020). We also found that length nor-
malization is required to avoid overly short outputs.
Incremental decoding is applied in the same man-
ner as for TBCA.

4.3 S2ST Models

Spectral Multi-Decoder (Translatotron 2) Sim-
ilar to the MCA model for ST (§4.1), the spec-
tral Multi-decoder (Jia et al., 2022a) decomposes
S2ST into ST and TTS sub-tasks. The ST sub-
task is modeled with an encoder-decoder network
while the TTS sub-task is modeled with an auto-
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TOOLKIT MODEL TYPE DE ES FR avg
OFFLINE SPEECH TRANSLATION (ST) BLEU 1t
NeurST (Zhao et al., 2021) Attentional Enc-Dec (AED) 22.8 27.4 333 27.8
Fairseq (Wang et al., 2020) Attentional Enc-Dec (AED) 22.7 27.2 329 27.6
ESPnet-ST-v1 (Inaguma et al., 2020)  Attentional Enc-Dec (AED) 22.9 28.0 32.8 27.9
ESPnet-ST-v2 (this work) Multi-Decoder CTC/Attn (MCA) 27.9 32.1 38.5 32.8
SIMULTANEOUS SPEECH TRANSLATION (SST) BLEU 1/ AL |

Fairseq (Wang et al., 2020)
ESPnet-ST-v2 (this work)

Wait-K Attentional Enc-Dec (WAED)
Time-Sync Blockwise CTC/Attn (TBCA) 23.5/2.3 29.2/24 327/23 285/23

18.6/6.8 229/69 285/6.7 233/6.8

OFFLINE SPEECH-TO-SPEECH TRANSLATION (S2ST) ASR-BLEU 1
Fairseq (Inaguma et al., 2022) Discrete Multi-Decoder (UnitY) 25.5 323 30.9 29.6
ESPnet-ST-v2 (this work) Discrete Multi-Decoder (UnitY) 23.7 32.0 33.1 29.6

Table 2: Overview of ESPnet-ST-v2’s ST, SST, and S2ST performances compared to other open-source toolKkits.
Results are presented on MuST-C-v1 (English-to-X) for ST/SST and on CVSS-C (X-to-English) for S2ST.

regressive synthesizer. The synthesizer attends over
both the ST-encoder and ST-decoder hidden states.
We use Transformers for the ST encoder-decoder
and a Tacotron-style (Wang et al., 2017) decoder
as the synthesizer. During inference, we first use
beam search for the ST sub-task and then auto-
regressively generate Mel-spectrograms. The final
waveform speech is generated with a HiFi-GAN
vocoder (Kong et al., 2020).

Discrete Multi-Decoder (UnitY) The UnitY
model (Inaguma et al., 2022) is similar to Trans-
latotron 2, but critically predicts discrete units of
speech SSL representations rather than spectral
information in the final stage. In other words,
UnitY is Multi-decoder consisting of a ST sub-
task followed by a text-to-unit (T2U) sub-task (see
Figure 4). We use Transformer-based encoder-
decoders for both sub-tasks. During inference,
the ST stage is first decoded and then followed by
the T2U stage. Both stages use label synchronous
beam search. The final speech is generated with a
unit HiFi-GAN vocoder with Fastspeech-like du-
ration prediction (Polyak et al., 2021; Lee et al.,
2022a), which is separately trained in the Parallel-
WaveGAN toolkit (Hayashi et al., 2020, 2021).

5 Performance Benchmarking

In this section, we 1) compare open-source toolkits
2) compare our different example models and 3)
compare our models with top IWSLT shared task
systems and state-of-the-art prior works.

5.1 Experimental Setup

Please refer to §A.1 for reproducibility details. The
following is only a summary of our setup.

MODEL HIERENC BLEUT

Attn Enc-Dec (AED) - 25.7

Multi-Decoder Attn Enc-Dec (MAED) - 27.6
CTC/Attention (CA) v 28.6
Multi-Decoder CTC/Attn (MCA) v 28.8
Transducer (T) v 27.6

Table 3: Example ST models — results on MuST-C-v2
En-De tst-COMMON. HierEnc=Hierarchical Encoder.

Data We use MuST-C-vl or MuST-C-v2
(Di Gangi et al., 2019) for ST/SST and CVSS-C
for S2ST (Jia et al., 2022b). For IWSLT compar-
isons, we combine MuST-C-v1, MuST-C-v2, and
ST-TED (Nichues et al., 2018) for ST/SST.

Models Unless otherwise indicated, we use a
"base" setting for our models. Our base models
have 40-80M trainable parameters across all tasks
and are trained on a ~400h of single language pair
data from a single corpus. For ST/SST, we also use
a "large" setting for benchmarking against IWSLT
submissions. Our large models have 150-200M
trainable parameters and are trained on ~1000h of
single language pair data from multiple corpora.

Scoring For ST/SST, we evaluate detokenized
case-sensitive BLEU (Post, 2018). For SST, we
additionally evaluate Average Lagging (AL) (Ma
et al., 2020a). For S2ST, we evaluate ASR-BLEU
by transcribing the generated speech and then eval-
uating the BLEU of this transcription.

5.2 Results

Toolkit Comparison Table 2 summarizes
ESPnet-ST-v2 performance, showing one best
example model (§4) for each task. ESPnet-ST-v1,
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MODEL KD BT ENS BLEUft MODEL SSL LLM KD BLEUtT/ALJ]

IWSLT’21 (Top 3 of 6) IWSLT’22 (Top 3 of 5)

1 Volctrans E2ET s _ v 243 1 CUNI-KIT E2E v v - 31.5/1.93

2 OPPO Cascade! S v/ 226 2 UPV Cascade' - - - 27.8/1.93

3 Volctrans Cascade! v v v 22.2 3 FBK E2Ef - - 4 25.0/1.99

ESPnet-ST-v2 ESPnet-ST-v2

A Base CA L 232 A Base TBCA - - - 24.711.93

B Base MCA - - - 23.6 B Large TBCA - - - 26.6/1.93

C Large CA - - - 24.3

D Large MCA - - - 25.1 . .
Table 6: Base and large time-sync CTC/attention

E MBR (A+B+C+D) - - v 254

Table 4: Base and large CTC/attention (CA) and Multi-
decoder CTC/attention (MCA) models compared to top
IWSLT 2021 systems for the given segmentation tst2020
En-De test set. KD=Knowledge Distillation, BT=Back-
Translation, Ens=Ensemble. TUses WMT MT data.

MODEL BSz | BLEUY/AL|
Blockwise Attn Enc-Dec (BAED) 40 22.8/3.23
Label-Sync Blockwise CTC/Attn (LBCA) 40 24.4/3.23
Time-Sync Blockwise CTC/Attn (TBCA) 40 24.6 /2.34
Blockwise Transducer (BT) 40 22.9/2.37
Blockwise Attn Enc-Dec (BAED) 20 21.0/2.77
Label-Sync Blockwise CTC/Attn (LBCA) 20 22.9/2.77
Time-Sync Blockwise CTC/Attn (TBCA) 20 22.8/1.63
Blockwise Transducer (BT) 20 209/1.71

Table 5: Example SST models — results on MuST-C-v2
En-De tst-COMMON. BSz=Block Size.

Fairseq, and NeurST models are also referenced
for comparison. On ST/SST, ESPnet-ST-v2 is 4-7
BLEU higher with 4.5 sec lower AL.?> On S2ST
ESPnet-ST-v2 is on par with Fairseq.

ST Table 3 shows a variety of approaches,
of which the CTC/attention and Multi-decoder
CTC/attention (MCA) models show the strongest
performances. In Table 4, we scale these two ap-
proaches by training on larger corpora and increas-
ing model capacity — our large MCA model outper-
forms the best INSLT 2021 offline track submission
on the 2020 test set with given segmentation.

SST Table 5 shows a variety of approaches, of
which the blockwise Transducer (BT) and time-
synchronous blockwise CTC/attention (TBCA)
models have the lowest AL. We choose to scale
the TBCA to compare with IWSLT submissions
due to its superior translation quality, but note that
the BT has lower computational overhead due pri-

3This comparison refers to the originally published results
from the toolkit description papers. Note that subsequent
works using these toolkits have improved the performance.

(TBCA) models compared to top IWSLT 2022 sys-
tems for the medium latency regime. Evaluated on En-
De tst-=COMMON-v2. SSL=Speech Self-Supervised
Learning, LLM=Large Pre-trained Language Model,
KD=Knowledge Distillation. TUses WMT MT data.

MODEL TYPE ASR-BLEU?
Prior Works

1 Translatotron (Jia et al., 2019) Spectral 14.4
2 Translatotron2 (Jia et al., 2022a) Spectral 30.3
3 Translatotron2+ (Inaguma et al., 2022)  Spectral 32.8
4 Speech-to-Unit (Lee et al., 2022a) Discrete 30.8
5 UnitY (Inaguma et al., 2022) Discrete 323
ESPnet-ST-v2

A Attn Enc-Dec (Translatotron) Spectral 16.6
B Multi-Decoder (Translatotron2) Spectral 24.3
C Attn Enc-Dec (Speech-to-Unit) Discrete 31.3
D Multi-Decoder (UnitY) Discrete 32.0

Table 7: Example S2ST models — results on CVSS-C
Es-En test set. Prior works shown for comparison.

FRONTEND DISCRETE UNIT ASR-BLEU?T

FBANK HuBERT 14.8
wav2vec2 HuBERT 21.2
HuBERTY HuBERT 21.4
mHuBERT HuBERT 21.5
WavLM HuBERT 22.8
FBANK WavLM 15.0
wav2vec2t WavLM 21.6
HuBERTY} WavLM 22.1
mHuBERT WavLM 22.0
WavLM+ WavLM 23.1

Table 8: Ablation on different types of SSL for the
frontend and discrete unit portions of S2ST models.
tTrained with large settings, others with base settings.

marily to the lack of source-target computation;
AL is non-computation aware. In Table 6, we fit
the TBCA to the 2 second AL latency regime by
selecting a blocksize of 32 and scale it with more
data and model capacity — our large TBCA model
would have ranked 3rd out of 6 amongst IWSLT
2022 submissions without using any SSL / LLM
representations or knowledge distillation.
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S2ST Table 7 shows a variety of approaches com-
pared to prior works with comparable architectures
— our S28T models are generally on par with prior
works which are considered state-of-the-art. In
fact, all of our models slightly outperform their
respective prior works except for Translatotron 2.
Further, in Table 8 we ablate a range of SSL types
for both the frontend and discrete units demonstrat-
ing the flexibility of our toolkit.

6 Conclusion

We presented ESPnet-ST-v2 which now supports
offline speech translation, simultaneous speech
translation, and offline speech-to-speech transla-
tion. ESPnet-ST-v2 will continue to grow to sup-
port the community’s interests. Future updates
may include more new tasks, such as simultane-
ous speech-to-speech translation, and cross-toolkit
integrations via TorchAudio.

Limitations

The first set of limitations to be aware of are data-
related. Although prior works have shown the fea-
sibility of building E2E systems without source lan-
guage transcriptions (Lee et al., 2022b; Chen et al.,
2022; Zhang et al., 2021), in this work we only
investigate cases where triplet data (source speech,
source transcript, target translation) is available for
ST/SST and where quadruplet data (source speech,
source transcript, target translation, target speech)
is available for S2ST.

The second set of limitations to be aware of
are evaluation-related. For SST, we follow prior
works (Ma et al., 2020a; Wang et al., 2020; Anas-
tasopoulos et al., 2022) and evaluate AL which is
a measure of how much the system outputs lags
behind the amount of input read. Notably, this
does not consider the actual computation time and
only the input-to-output ratio. For S2ST, we follow
prior works (Jia et al., 2022a; Inaguma et al., 2022)
and evaluate ASR-BLEU. This evaluation is depen-
dent on an ASR system, which is not standardized
across prior works. And further, our evaluation of
S2ST outputs does not include naturalness. Finally,
in this work we have not conducted any human
evaluation of translation outputs.
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A Appendix

A.1 Reproducibility

Table 9 shows the hyperparameters for the models
presented in §5. All of our data preparation scripts
are available in ESPnet: https://github.com/
espnet/espnet/tree/master/egs?2.
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Model Task Encoder(s) Decoder(s) Frontend Pre-Train Init Multi-Obj  Src BPE Tgt BPE  # Params

AED (Table 3) ST 12 lyr, 4 head, 256 adim (ASR) 6 lyr, 4 head FBANK ASR Enc/Dec ASR 4k 4k 60M
(ST) 6 lyr, 4 head
MAED (Table 3) ST  (ASR) 12 lyr, 4 head, 256 adim (ASR) 6 lyr, 4 head FBANK ASR Enc/Dec ASR 4k 4k 60M
(MT) 2 lyr, 4 head, 256 adim (MT) 6 lyr, 4 head
CA (Table 3) ST 18 lyr, 4 head, 256 adim (ASR) 6 lyr, 4 head FBANK ASR Enc/Dec ASR 4k 4k 70M
(ST) 6 lyr, 4 head
MCA (Table 3) ST  (ASR) 18 lyr, 4 head, 256 adim (ASR) 6 lyr, 4 head FBANK  ASR Enc/Dec/CTC ASR 4k 4k 70M
(MT) 4 lyr, 4 head, 256 adim (MT) 6 lyr, 4 head
T (Table 3) ST 18 lyr, 4 head, 256 adim 1 lyr, 512 dim, 640 joint FBANK  ASR Enc/Dec/CTC ASR 4k 4k 70M
(ASR) 6 lyr, 4 head
Large CA (Table 4) ST 18 lyr, 8 head, 512 adim (ASR) 6 lyr, 4 head HuBERT  ASR Enc/Dec/CTC ASR 8k 16k 210M
(ST) 6 lyr, 4 head
Large MCA (Table 4) ST  (ASR) 18 lyr, 8 head, 512 adim (ASR) 6 lyr, 8 head HuBERT ASR Enc/Dec/CTC ASR 8k 8k 210M
(MT) 4 lyr, 8 head, 512 adim (MT) 6 lyr, 8 head
BAED (Table 5) SST 18 lyr, 4 head, 256 adim 6 lyr, 4 head FBANK  ASR Enc lyr 1-12 - 4k 4k 70M
LBCA (Table 5) SST 18 lyr, 4 head, 256 adim 6 lyr, 4 head FBANK ASR Enc lyr 1-12 - 4k 4k T70M
TBCA (Table 5) SST 18 lyr, 4 head, 256 adim 6 lyr, 4 head FBANK  ASR Enc lyr 1-12 - 4k 4k 70M
BT (Table 5) SST 18 lyr, 4 head, 256 adim 11yr, 4 head, 640 joint FBANK  ASR Enc lyr 1-12 - 4k 4k 40M
Large TBCA (Table 6) SST 18 lyr, 8 head, 512 adim 6 lyr, 8 head FBANK  ASR Enc lyr 1-12 - 8k 8k 150M
Translatotron (Table 7) S2ST 12 1yr, 4 head, 256 adim 6 lyr, 1024 dim FBANK - ASR, ST 7k 500 8OM
Translatotron2 (Table 7)  S2ST 16 lyr, 4 head, 256 adim (ST) 6 lyr, 4 head FBANK - ASR, ST 7Tk 500 50M
(TTS) 2 lyr, 1024 dim
Speech-to-Unit (Table 7)  S2ST 12 1yr, 4 head, 512 adim 6 lyr, 8 head FBANK - ASR, ST 7k 500 40M
UnitY (Table 7) S2ST  (ST) 16 lyr, 4 head, 256 adim (ST) 4 lyr, 4 head FBANK - ASR, ST Tk 500 40M

(T2U) 2 lyr, 4 head, 256 adim (T2U) 2 lyr, 8 head

Table 9: ST, SST, and S2ST model hyperparameters. Parameter counts are rounded to the nearest 10 million.
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