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Abstract

The goal of whitespace correction is to fix
space errors in arbitrary given text. For ex-
ample, given the text whi te space correc-
tio nwithTransf or mers, produce whitespace
correction with Transformers. We compare
two Transformer-based models, a character-
level encoder-decoder model and a byte-level
encoder-only model. We find that the encoder-
only model is both faster and achieves higher
quality. We provide an easy-to-use tool that is
over 900 times faster than the previous best tool,
with the same high quality. Our tool repairs
text at a rate of over 200 kB/s on GPU, with
a sequence-averaged F1-score ranging from
87.5% for hard-to-correct text up to 99% for
text without any spaces.

1 Introduction

Most natural language processing applications as-
sume a segmentation of the text into words. In
English (and many other languages), this segmen-
tation is typically achieved by splitting the text at
space characters (and a few additional rules). How-
ever, many texts contain a significant amount of
space errors, that is, spurious spaces or missing
spaces. These can be due to OCR errors, imperfect
extraction from PDF files, or typing errors. See
Bast et al. (2021) for a more thorough discussion
of the sources of such errors.

We consider the following whitespace correc-
tion problem: given a text in natural language, with
an arbitrary amount of missing or spurious spaces,
compute a variant of the text with correct spac-
ing. The text may contain spelling errors, which
make the task more difficult, but it’s not part of the
problem to correct them. However, as shown in
Bast et al. (2021), with spaces repaired, spelling-
correction algorithms do a much better job.

The best previous methods for whitespace cor-
rection achieve high F1-scores, however, at the

∗ Author contributions are stated in the end.

price of very slow processing speeds; see Section
2. This is a major obstacle for the practical use of
such systems for large amounts of text. Our goal in
this work is to provide a practical tool with a much
higher speed, without sacrificing the high quality.

1.1 Contributions

We consider these as our main contributions:
• We provide a practical method for whitespace
correction that is over 900 times faster than the
best previous method, with the same high quality
across a wide selection of benchmarks. On an A100
GPU, our tool repairs text at over 200 kB/s with a
sequence-averaged F1-score ranging from 87.5%
(for hard-to-correct text) to 99% (for text without
any spaces).

• We compare two Transformer-based models: a
character-level encoder-decoder model (that out-
puts the repaired sequence), and a byte-level
encoder-only model (that predicts for each gap be-
tween two characters whether there should be a
space or not). Both models take existing spaces in
the input into account. The encoder-only model is
both faster and better.

• We provide our whitespace correction mod-
els as a Python package with an easy-to-use
command-line tool and as a web application; see
Figure 1 and https://whitespace-correction.cs.uni-
freiburg.de. The website provides links to public
GitHub repositories with all our code, data, bench-
marks, trained models, and a Docker setup. It also
includes features to easily replicate our benchmark
results and visualize model predictions on bench-
marks.

2 Related Work

Recent work on spelling correction (Sakaguchi
et al., 2017; Li et al., 2018; Pruthi et al., 2019;
Jayanthi et al., 2020) and OCR postcorrection
(Hämäläinen and Hengchen, 2019) predicts one
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Legend: Clear input, Paste clipboard into input, Upload a text file, Choose an example input, Load a benchmark
(see Section 4.1), Insert whitespaces between all characters, Delete whitespaces between all characters, Copy output to
clipboard, Download output as text file, Run model on input, Live as-you-type whitespace correction1

Figure 1: Our web interface for whitespace correction. The user can run any of our EO and ED models (panel for
model selection not shown) on arbitrary text input. In the web app, there are tooltips instead of a legend.

word for every input token, without addressing
space errors. To use these systems for text with a
combination of spelling or OCR errors and whites-
pace errors, it is necessary to correct the spaces first.
Other OCR postprocessing systems also try to cor-
rect space errors, but with limited success (Kissos
and Dershowitz, 2016; D’hondt et al., 2017; Schulz
and Kuhn, 2017; Nguyen et al., 2020). Bast et al.
(2021) showed that space errors can be corrected
separately with models that are robust against OCR
and spelling errors.

Previous work on whitespace correction uses au-
toregressive models to determine the most likely
segmentation of a given text into words. The used
models are n-gram models, character-level recur-
rent neural network language models or character-
level neural machine translation (NMT) models.
Mikša et al. (2010) use a beam search with an n-
gram language model to split unknown tokens in
OCR’ed Croatian text into multiple words. Nastase
and Hitschler (2018) use a character-level GRU
NMT model to segment texts from the ACL an-
thology corpus. Soni et al. (2019) use n-gram
statistics to split tokens in digitized historic En-
glish newspapers. Doval and Gómez-Rodríguez
(2019) use a beam search with a character LSTM
language model or n-gram language model for En-
glish word segmentation. Bast et al. (2021) use a
beam search with a combination of a unidirectional
character LSTM language model and a bidirec-
tional LSTM whitespace classification model and
introduce penalty terms to make use of existing
spaces in the input text.

In contrast to previous work, our best approach
does not use an autoregressive model, but instead
addresses the task with a sequence-labeling classi-
fication model. We make use of the Transformer
architecture, which improved the state of the art
in many NLP tasks, including machine translation
(Vaswani et al., 2017), language modeling (Radford
et al., 2019), language understanding (Devlin et al.,
2019), and Chinese word segmentation (Huang
et al., 2020). We compare our approach with the
previous best results from Bast et al. (2021) and
other baselines.

3 Approach

We compare two approaches for the whitespace
correction problem: A character-level encoder-
decoder (ED) model and a byte-level encoder-only
model (EO). Both models respect existing whites-
pace information in the input text. We pre-process
the input text by removing duplicate, leading, and
trailing whitespaces, and applying NFKC normal-
ization2.

3.1 Encoder-only (EO)
The EO approach treats the whitespace correction
problem as a sequence-labeling task where we pre-
dict one of three repair tokensR = {K, I,D} for
each character xi in the input sequence

1For live as-you-type whitespace correction we limit the
input size to 512 characters, because we simply correct the
full input after every keystroke. Non-live correction supports
larger inputs such as text files in the order of several MB.

2This is a form of Unicode normalization. It is only rele-
vant for our EO models with byte input, see Section 3.1
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K → Keep the character
I → Insert a space before the character
D → Delete the character

and use them afterwards to change the whitespac-
ing in the input sequence accordingly.

For the EO approach, we directly input and em-
bed UTF-8 encoded bytes instead of characters. We
found the performance of using bytes directly to
be on par with using characters, while introducing
only a negligible runtime overhead. It also enables
us to process any text without a character vocabu-
lary or a special token for unknown characters. We
also add sinusoidal positional encodings as defined
by Vaswani et al. (2017) to the byte embeddings.
To keep inference speeds high we aggregate all
byte embeddings belonging to a character3 into a
single embedding before processing them further4:
Within a grapheme cluster we first average the byte
embeddings belonging to individual code points,
then average the code point embeddings to get the
final character embedding.

To process the character embeddings, we employ
a standard Transformer encoder (Vaswani et al.,
2017) with a linear output layer on top, which al-
lows us to predict a probability distribution over the
repair tokensR for each character in parallel. Dur-
ing inference we simply take the repair token with
the highest probability for each character as output.
However, we only allow the model to predict I
between two non-space characters or D for space
characters, otherwise we ignore the prediction and
fall back to K:

yi = argmaxr∈R p(r | x, i) with 1 ≤ i ≤ n,

yi ←





K if yi = D and xi ̸= ’ ’
K if yi = I and (xi = ’ ’ or xi−1 = ’ ’)
yi else.

3.2 Encoder-decoder (ED)
For the ED approach, we tokenize the in-
put text into a sequence of characters x =
(x1, . . . , xn) with xi ∈ C. C is a character vocab-
ulary containing all uppercase and lowercase let-
ters of the English alphabet, common punctuation
marks, and special tokens, e.g., for unknown char-
acters.

3In accordance with the Unicode standard, we deter-
mine all characters in a UTF-8 encoded byte sequence using
grapheme cluster boundaries.

4For languages using non-Latin alphabets, e.g. Russian,
where characters are usually encoded into multiple bytes in
UTF-8 this can make a large difference.

The ED approach uses an encoder-decoder
Transformer model (Vaswani et al., 2017) with a
linear output layer trained to translate sequences of
characters with space errors into sequences with-
out space errors by outputting characters one by
one. At each output step t, we use the ED de-
coder to predict a probability distribution over C
given the input sequence and the previous outputs
y<t = (y1, . . . , yt−1). To ensure that the ED model
only changes the whitespaces of a sequence during
inference, we limit the set of possible outputs at
each step to the space character or the next charac-
ter to copy from the input sequence xj :

yt = argmaxc∈{’ ’,xj} p(c | x, y<t).

Sliding window Both the EO and ED ap-
proaches are trained with and limited to input se-
quences containing up to 512 tokens. Since real-
world paragraphs often exceed this length bound,
we use a sliding window approach during infer-
ence: We split input sequences into windows of
384 tokens and add the 64 tokens to the left and
right of the window as additional context.5 For
a given sequence we run our model on each in-
dividual window separately and recombine the
whitespace correction results of all windows af-
terwards. For example, a 950 byte long sequence
would be split into three consecutive windows
w1 = (0, 448, 64), w2 = (64, 384, 64), and w3 =
(64, 118, 0), specifying the sizes of the left context,
the window itself, and the right context respec-
tively. Note that at the beginning and end of the
sequence, the left and right context sizes are 0, each
window contains a maximum of 512 bytes, and all
non-context sizes add up to 950.

We train a medium-sized and large model for
each of the two approaches. All models use a hid-
den dimensionality of 512 and only differ in the
number of encoder or decoder layers. See Table 1
for an overview over all models.

3.3 Training

We train our models on the publicly available train-
ing dataset from Bast et al. (2021).6 This dataset
consists of 108,068,848 paragraphs extracted from

5We experimented with 16, 32, 64, and 128 as context size,
but found it to have very little effect on correction quality. To
be on the safe side we finally chose 64 as context size leaving
us with 384 tokens for the actual window. Also, because of
missing left and right context, the windows can contain more
than 384 tokens at the beginning and end of sequences.

6At https://whitespace-correction.cs.uni-freiburg.de
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Model #Parameters #Layers

EDmedium 22.2 M 3 encoder, 3 decoder
EDlarge 44.2 M 6 encoder, 6 decoder
EOmedium 19.0 M 6 encoder
EOlarge 38.0 M 12 encoder

Table 1: We choose the number of layers such that the
corresponding ED and EO models have comparable
numbers of parameters.

arXiv and Wikipedia articles. To generate pairs
of correctly and misspelled sequences, the authors
inject OCR and spelling errors artificially into the
paragraphs using error models derived from text
corpora, typo collections, and random character
transformations. Additionally, we inject space er-
rors into the paragraphs:
• In 10% of the paragraphs we remove all spaces.
• In 10% of the paragraphs we have a space be-
tween each pair of adjacent characters.
• In the remaining 80% of the paragraphs we insert
a space between two adjacent non-space characters
with probability 10% and delete an existing space
with probability 20%.

The EO approach naturally suffers from an un-
balanced class distribution, causing our models
to reach a plateau during early stages of training
where they predict K for all characters. To counter-
act that, we use a focal loss (Lin et al., 2017) with
γ = 2. This causes our models to overcome the
plateau by decreasing the influence of the dominant
and (mostly) easy-to-predict K class. We also tried
using a regular cross-entropy loss and weighing
classes I and D higher, but found it to perform
worse while also having one more hyperparameter.
For the full training details see Appendix A.

4 Experiments

4.1 Benchmarks
We evaluate on a total of eight benchmarks (see
Table 2 for an overview), with the first six coming
from Bast et al. (2021):
• Three benchmarks with text from Wikipedia, one

with whitespace errors only, one with whitespace
and spelling errors, and one without spaces but
with spelling errors. These benchmarks are called
Wiki, Wiki+, and Wiki+ no respectively.
• Two benchmarks based on text from arXiv with
OCR errors and errors from PDF extraction, called
arXiv OCR and arXiv pdftotext.

Benchmark #Sequences File size

Wiki 10,000 916 kB
Wiki+ 10,000 916 kB
Wiki+no 10,000 778 kB
arXiv OCR 10,000 1.4 MB
arXiv pdftotext 10,000 1.4 MB
ACL 500 83 kB
Doval 1000 82 kB
Runtime 3,500 396 kB

Table 2: A benchmark simply consists of two text files.
The first file contains the corrupted input text where
each line corresponds to a sequence with whitespace
and spelling errors. Its size is shown in the file size col-
umn. The second text file then specifies the groundtruth
sequences without whitespace errors accordingly.

• One benchmark based on sequences from the
ACL anthology dataset containing OCR errors.
This benchmark is called ACL.
• The word segmentation benchmark Doval from
Doval and Gómez-Rodríguez (2019), with 1,000
sequences without any whitespace.
• A Runtime benchmark for measuring the infer-
ence runtimes of our models and baselines, built
by randomly sampling 500 sequences from each of
the seven benchmarks above.

4.2 Baselines
We reuse the following four baselines and their
predictions from Bast et al. (2021):
• Do nothing This baseline keeps the input se-
quence unchanged. It is an interesting reference
point for benchmarks with very few errors, like
arXiv pdftotext.
• Google The authors copied erroneous se-
quences into a Google document7 and applied all
suggested space edits.
• Wordsegment Wordsegment is a Python
package for word segmentation.8 Before apply-
ing it to the text, all whitespaces are removed.
• BID+ The best whitespace correction pro-
cedure from Bast et al. (2021), with the overall
best hyperparameters (called The One in that pa-
per). They perform a beam search with a combi-
nation of a unidirectional character-level LSTM
language model and a bidirectional LSTM classi-
fication model to score whitespace insertions or
deletions.

7At https://docs.google.com
8At https://github.com/grantjenks/python-wordsegment
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In addition, we introduce an EO-like baseline
called ByT5. Xue et al. (2022) released ByT5,
a family of encoder-decoder Transformer models
that input and output sequences of bytes and were
pretrained on a masked token prediction task. We
take the encoder of their smallest model (~217M
parameters), add our byte-to-character aggregation
scheme (see Section 3.1) and a linear output layer,
and finetune it on 50M sequences from our training
data for one epoch.

To our knowledge, the ByT5 models by Xue
et al. (2022) are currently the only publicly avail-
able general purpose language models that work
on character or byte level. Other openly accessible
pretrained Transformer language models like the
BERT (Devlin et al., 2019), T5 (Raffel et al., 2020),
or OPT (Zhang et al., 2022) families are unsuitable
for whitespace correction, because they all work
with subword tokenization. Also, some of these
are simply too large to permit a reasonable runtime
and memory consumption.

4.3 Metric
Given two strings a and b that only differ in whites-
paces, we define a function correction-ops(a, b)
that gives us the set of correction operations that
we need to apply to turn a into b. A correction
operation is a tuple ⟨r, i⟩ consisting of an insert or
delete operation r ∈ {I,D} and the character posi-
tion i, 1 ≤ i ≤ |a| at which the operation has to be
applied. Given a benchmark sample ⟨s, g, p⟩ as a
tuple of an input sequence s, ground truth sequence
g, and predicted sequence p, we define a F1-score
as follows:

G = correction-ops(s, g)

P = correction-ops(s, p)

TP = |G ∩ P|
FP = |P \ G|
FN = |G \ P|

F1 =

{
1 if |G| = |P| = 0

2·TP
2·TP+FP+FN else

For our evaluation metric we calculate the average
F1-score over all benchmark samples. With this
metric the Do nothing baseline gives the percentage
of benchmark samples without space errors.

4.4 Results
Quality Table 3 shows the sequence-averaged
F1-scores achieved by the baselines and our mod-

els on the 7 whitespace correction benchmarks.9

Compared to the neural models, Google and Word-
segment perform poorly, sometimes even worse
than the Do nothing baseline.10 Our best mod-
els, EDlarge and EOlarge, perform on par with the
best-so-far model BID+. In general, all four of
our models achieve a high quality both in absolute
terms as well as compared to the other baselines.
We note, that EOlarge performs slightly better than
EDlarge on 6 out of 7 benchmarks. A similar picture
holds for the medium-sized variants. Comparing
BID+ and EOlarge, we see that the differences in
F1-score between them are rather small (≤ 0.6%)
across all benchmarks. ByT5 achieves good qual-
ity overall, but falls behind both of our large and
on some benchmarks even medium-sized models.
We hypothesize that this is mainly due to it being
pretrained on text without spelling and whitespace
errors, which makes it hard to transfer its language
modeling capabilities to this vastly different input
distribution. Increasing the model size consistently
leads to F1-score improvements across all bench-
marks, both for the EO and the ED approach. See
Appendix C for a showcase of some of the pre-
dictions and failure cases of our models on the
benchmarks, and Appendix D for a visualization of
attention maps.

Runtimes Table 4 shows runtime and GPU mem-
ory consumption on our Runtime benchmark (see
Section 4.1). Wordsegment and BID+ use a batch
size of 1 and cannot be easily modified to support
larger batch sizes11. We also show the performance
of all other models for batch size 1. That way, we
can see which improvements come from the ap-
proach, and which from an increased batch size.
Appendix B provides results for more batch sizes
for ByT5, ED, and EO.

As expected, the encoder-only models EO and
ByT5 outperform BID+ and ED by a large margin,

9We additionally evaluated ChatGPT (gpt-3.5-turbo, avail-
able at https://chat.openai.com) on 100 random sequences
from our benchmarks via the OpenAI API. ChatGPT usually
changed more about the sequence than just the whitespace
errors. Apart from that, we found the corrections to be of high
quality, but the runtime to be very slow. ChatGPT took 668
seconds to correct the 100 sequences, which equals a through-
put of 0.015 kB/s and is over 1,000 times slower than EOlarge
with batch size 1.

10For example, arXiv pdftotext contains only few errors,
and it is hard to make few fixes at the right places and not
introduce new errors.

11In particular, BID+’s complicated decoding scheme in-
cluding beam search caused its authors to implement inference
only in an unbatched fashion.
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Model ACL
Wiki+

no
Wiki+ Wiki

arXiv
OCR

arXiv
pdftotext

Doval

Do nothing 62.0 4.1 86.9 35.0 62.0 64.3 0.8
Google 75.6 16.7 91.9 76.0 83.9 86.1 -
Wordsegment 47.4 85.9 35.9 63.8 66.8 62.5 -
ByT5 87.1 98.7 95.7 98.2 96.5 94.8 99.4
BID+ 87.8 99.0 98.0 98.8 97.6 95.5 99.9

EDmedium 86.0 98.9 96.5 98.5 96.7 95.4 99.5
EDlarge 87.8 99.1 97.2 98.9 97.1 95.9 99.8
EOmedium 86.6 99.2 96.9 98.8 97.2 95.8 99.7
EOlarge 87.5 99.3 97.6 99.0 97.3 96.1 99.9

Table 3: Sequence-averaged F1-scores for our models and baselines on the whitespace correction benchmarks from
Section 4.1. We show the best result for each benchmark in bold.

due to being able to correct each character in the
input text simultaneously instead of one after an-
other. They are even significantly faster than the
(non-neural) Wordsegment baseline. Even with a
batch size of 1, EOlarge is over 75 times faster than
the previous best model BID+. With a batch size of
128, EOlarge achieves 213 kB/s, which is over 900
times faster than BID+.

Memory All of our models require relatively
little memory and can easily be run on a stan-
dard GPU with reasonable batch sizes. We carried
out additional tests with our EOlarge model on a
NVIDIA GeForce GTX 1080 Ti GPU, where we
reached batch sizes of 305 and 399 for full preci-
sion and mixed precision inference, respectively,
before getting OOM errors. We also determine a
rough estimate of the amount of GPU memory re-
quired per sequence/batch element in Table 4. One
can use these values to approximate the amount of
GPU memory required for running a model with a
certain batch size.

To investigate how performance scales with model
size, we additionally trained another EO model
called EOlarger, which has 18 layers and ~3.3 times
more parameters than EOlarge. EOlarger improves
upon EOlarge on every benchmark, but only by
small margins with an average gain of 0.15 percent-
age points in sequence-averaged F1-score. Com-
pared with EOlarge, it also requires about three
times more memory and runs only at 60% of its
speed. Here, the tradeoff between quality improve-
ment, speed loss, and increase in memory consump-
tion seems less favorable than the one between
EOlarge and EOmedium. We leave it for future work

to investigate how much performance can improve
further by using even larger models.

5 Demo

We provide open access to all of the EO and ED
models in form of a Python package which can be
installed via pip12 or from source. The package
comes with a command line tool and a Python API
both of which enable the user to correct whitespace
errors in arbitrary text. Additionally, the command
line tool provides an option for running a whites-
pace correction JSON API and thereby enables
access to our models not only from Python code
but also from other programming and development
environments.

In addition to the Python package, we also
provide a web interface at https://whitespace-
correction.cs.uni-freiburg.de that allows users to
correct whitespaces in arbitrary text; see Figure 1.
In particular, the web app allows to evaluate the
output against an error-free ground truth and pro-
vides quick access to all of the used benchmarks.
Therefore, the easiest way to reproduce the results
of our models on all benchmarks as presented in
this paper is through the web interface.

For more information visit our GitHub reposito-
ries at https://github.com/ad-freiburg/whitespace-
correction and https://github.com/ad-freiburg/text-
correction-benchmarks.

6 Conclusion

We have shown that carefully trained encoder-only
Transformers perform whitespace correction with

12At https://pypi.org/project/whitespace-correction
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Model Batch
size

Runtime
seconds

Throughput
sequences / sec

Throughput
kB / sec

GPU memory
MiB

GPU memory
MiB / sequence

Wordsegment 1 246.1 14.22 1.6 - -
ByT5 1 31.9 109.6 12.7 974 ~51
BID+ 1 1,725 2.0 0.2 - -

EDmedium 1 1,402 2.5 0.3 144 ~36
EDlarge 1 2,432 1.4 0.2 234 ~36
EOmedium 1 13.8 253.9 29.4 118 ~28
EOlarge 1 22.5 155.4 18.0 184 ~28

ByT5 128 4.2 833.6 96.4 7,402 ~51
EDlarge 128 151.8 23.1 2.7 4,832 ~36
EOlarge 128 1.9 1,842 213.0 3,704 ~28

Table 4: Inference runtimes on our Runtime benchmark (see Section 4.1) on a NVIDIA A100 GPU and an Intel
Xeon Platinum 8358 CPU with mixed precision enabled. Wordsegment and BID+ only support a batch size of 1.
Results for more batch sizes for ByT5, ED, and EO can be found in Appendix B.

the same high quality as the best previous work, but
over 900 times faster. A classical encoder-decoder
Transformer can achieve the same quality, but with
little to no gains in runtime speed. Our software is
open source and accessible as a Python package as
well as via a dedicated website.

A logical next step in this line of work is to
combine whitespace correction with spelling cor-
rection. Recent large language models like GPT-3
(Brown et al., 2020) can solve both tasks at once
with high quality, but they are slow and expensive
to run due to their size and autoregressive decoder
architecture. By separating the tasks, as advocated
by Bast et al. (2021), each can be solved efficiently
with specialized models, like our EO models for
whitespace correction. It remains an interesting
open question whether a single model can achieve
both high quality and reasonably cheap inference.

Due to working directly with bytes, our EO mod-
els could be trained and applied across multiple
languages. However, because datasets and bench-
marks for whitespace correction in non-English
languages are yet to be created, we leave the devel-
opment of multilingual models for future work.
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A Training setup

We train all our medium and large sized models for three epochs over the full training data with a maximum
sequence length of 512 and up to 65,536 tokens per batch. This amounts to about 1.2M training steps. We
warmup the learning rate linearly to 10−4 over the first percent of training steps and decay it afterwards
towards zero using a cosine schedule. We use AdamW (Loshchilov and Hutter, 2019) with β1 = 0.9,
β2 = 0.999, a weight decay of 0.01, and clip gradients to a norm of 1. We also use a dropout rate of 0.1
throughout our models. Finally, we keep the model checkpoint corresponding to the lowest validation loss
as our final model. Training takes about 4-5 days for all of our models on a single NVIDIA V100/A100
GPU.

B Batched runtimes

Model Batch
size

Runtime
seconds

Throughput
sequences / sec

Throughput
kB / sec

GPU memory
MiB

GPU memory
MiB / sequence

ByT5
16

128
5.0
4.2

696.2
833.6

80.5
96.4

1,732
7,402

~51

EDmedium
16

128
174.4
106.9

20.1
32.7

2.3
3.8

686
4,744

~36

EDlarge
16

128
264.03
151.8

13.2
23.1

1.5
2.7

774
4,832

~36

EOmedium
16

128
2.2
1.6

1,596
2,143

184.5
247.7

550
3,618

~28

EOlarge
16

128
2.7
1.9

1,277
1,842

147.7
213.0

620
3,704

~28

The table above shows runtimes using batched inference on our Runtime benchmark (see Section 4.1) on
a NVIDIA A100 GPU and an Intel Xeon Platinum 8358 CPU with mixed precision enabled. For each
model we report both batch size 16 and 128. We only show the models from Table 4 that support batched
inference in their implementation. The EO models reach a throughput of well over 200 kB/s with a batch
size of 128 while requiring less than 4GB of GPU memory. We consider them to be fast and memory
efficient enough to be used in practical applications, even on less powerful end-user devices like laptops.
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C Sample predictions and failure cases

We present some predictions and failure cases of our EOlarge model on selected benchmark sequences in
the following. In accordance with our website at https://whitespace-correction.cs.uni-freiburg.de we mark
correct changes (true positives) in the input text with green, incorrect changes (false positives) with red,
and missing changes (false negatives) orange. See our website if you want to evaluate and visualize our
models’ predictions on your own texts. Marked whitespaces are shown as # for visualization purposes.

Input Prediction Comment

UnlikeinCanada,theAmericanStatesareresp
onsiblfortheorganisationoffederalelectio
nsintheUnitedStates.

Unlike#in#Canada,#the#American#States#
are#responsible#for#the#organisation#of#
federal#elections#in#the#United#States.

For sentences that contain no spelling
errors and no exotic words, our
model is almost always able to
perfectly correct the sequence, even
if it contains no whitespaces at all.

The Exit Players have trained with men-
bers of Improvised Shakespeare, Paralel-
logramophonograph, andi Baby Wants
Candy, os well as instructors from the
Groundlings, the PIT, iO, and Coldtowne
Theater.

The Exit Players have trained with men-
bers of Improvised Shakespeare, Paralel-
logramo#phonograph, andi Baby Wants
Candy, os well as instructors from the
Groundlings, the PIT, iO, and Coldtowne
Theater.

Complex composite words or proper
names are sometimes split or merged
by our model. To correctly iden-
tify them one requires either domain
knowledge or very good language un-
derstanding.

He has also played league chess in the Chess
Bundesliga, for Porz an Werder Bremen.

He has also played league chess in the Chess
Bundesliga, for Porzan Werder Bremen.

Similar to the sample above. Our
model predicts that Porzan Werder
Bremen is what the chess club is
called, but actually this should have
been Porz and Werder Bremen, where
Porz is a German city near Cologne.

Brian Catling (born 1948 in London) is an
English sculptor, poet, novelist, film maker
and perofmrance artist.

Brian Catling (born 1948 in London) is an
English sculptor, poet, novelist, filmmaker
and perofmrance artist.

Here our model merges the words film
and maker, which according to the
Cambridge dictionary is also a valid
English word. A reminder that not all
benchmark ground truths are unam-
biguous.

X stems from Y X eases Y *Y results in X Y
is related to X *X is result of Y X is linked
to Y

X stems from Y X eases Y *Y results in X Y
is related to X *X is result of Y X is linked
to Y

Here we would expect our model to
either insert a whitespace before both
Y and X, or remove the whitespace
before * in both cases. Instead it
keeps the sequence unchanged.

Ju ly 1 ducat ion Programs Beginning after J
a n ~ a r y 1, 1976 Roger R o s e ~ b l a t t ,
Divi-sion Director -202-382-5891 Procjrhm
grants for c r i t i c a l re-examination of
t h e content, o r g a h i z a t i o n , and
method of presenta t ion of a group of related
courses or an ordered program of study in
the humanities. The central topic can be a
region, culture, era, etc.; o r a program can
be defined by a cur r -i cu la r level. L i m i t ,
$ 1 8 0 , 0 0 0 i n three years.

July 1 ducation Programs Beginning
after Ja#n#~#a#ry 1, 1976 Roger
Rose#~#b#l#a#t#t, Divi-sion Director -
202-382-5891 Procjrhm grants for critical
re-examination of the content, orgahization,
and method of presentation of a group of
related courses or an ordered program of
study in the humanities. The central topic
can be a region, culture, era, etc.; or a
program can be defined by a curr-icular level.
Limit, $180,000 in three years.

Exotic characters within words which
are not often seen during training can
cause or model to not be able to cor-
rectly merge the full word. Here the
model missed to correctly predict the
words Jan~ary and Rose~blatt.
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D Attention visualization

We look at the self-attention maps produced during the forward pass of our EO models. In earlier layers
we mostly find local or character-specific attention patterns, while in the middle and later layers our
models ultimately seem to learn to identify word boundaries.
All of the following self-attention maps are normalized row-wise, meaning each row displays the attention
distribution for the input character on its left over all input characters, which we call context in the figures.

(a) Attention head in layer 2/12 looking at the following non-
whitespace character.
Input text is Whe re tosp li t?.

(b) Attention head in layer 2/12 looking at the previous non-
whitespace character.
Input text is Whe re tosp li t?.

(c) Attention head in layer 7/12 identifying the individual
words in the input text (indicated by the vertical bars).
Input text is Wheretosplit?.

(d) Attention head in layer 12/12 marking where whitespaces
should be inserted into the input text.
Input text is Wheretosplit?.

Exemplary attention maps of selected heads produced in early, middle, and late layers while running our EOlarge
model. Input texts are deliberately chosen make the attention patterns as clear as possible.
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