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Abstract

The scale of large pre-trained models (PTMs)
poses significant challenges in adapting to
downstream tasks due to the high optimization
overhead and storage costs associated with full-
parameter fine-tuning. To address this, many
studies explore parameter-efficient tuning meth-
ods, also framed as “delta tuning” in Ding
et al. (2022), which updates only a small sub-
set of parameters, known as “delta modules”,
while keeping the backbone model’s parame-
ters fixed. However, the practicality and flex-
ibility of delta tuning have been limited due
to existing implementations that directly mod-
ify the code of the backbone PTMs and hard-
code specific delta tuning methods for each
PTM. In this paper, we present OpenDelta 1,
an open-source library that overcomes these
limitations by providing a plug-and-play imple-
mentation of various delta tuning methods. Our
novel techniques eliminate the need to modify
the backbone PTMs’ code, making OpenDelta
compatible with different, even novel PTMs.
OpenDelta is designed to be simple, modular,
and extensible, providing a comprehensive plat-
form for researchers and practitioners to adapt
large PTMs efficiently.

1 Introduction

With the rapid development of self-supervised
learning methods in the realm of deep learning,
especially pre-training techniques (Peters et al.,
2018; Devlin et al., 2018; Radford et al., 2018),
foundational pre-trained models (Bommasani et al.,
2021) (PTMs) have become a common cornerstone
for numerous downstream tasks. And as a result,
research into large-scale PTMs has flourished.

Nevertheless, the ever-expanding scale of PTMs
also poses substantial obstacles in practical use.
In traditional model adaptation, all the parameters

∗ corresponding author liuzy@tsinghua.edu.cn
1GitHub Repo https://github.com/thunlp/

OpenDelta, Demo Video https://rb.gy/qjvpav.

of the PTMs are optimized for each downstream
task, which becomes increasingly impractical as
the model scales. Firstly, optimizing all the param-
eters incurs prohibitive computing and memory
consumption; secondly, storing a fine-tuned model
instance for each task or experiment significantly
amplifies the storage cost.

To address these challenges, researchers have
developed parameter-efficient methods for model
adaptation. Such methods keep the parameters of
the main model fixed and update only a small sub-
set of parameters during adaptation. This approach,
known as “delta tuning”, is described and surveyed
in Ding et al. (2022). Different delta tuning
methods have been proposed, with varying types
and positions of “delta modules”. For example,
Adapter module (Houlsby et al., 2019) is composed
of two low-dimensional linear projection layers
with an activation function, while LoRA (Hu et al.,
2021) module introduces a low-rank decomposi-
tion for the weight matrix. BitFit (Zaken et al.,
2021), on the other hand, specifies the bias vector
in PTMs as the delta modules. The delta module
can be applied to different positions (Rücklé et al.,
2020; He et al., 2022; Hu et al., 2022) to achieve
either better performance or efficiency.

Theoretically, incorporating most delta tuning
methods would necessitate restructuring the
backbone model, a requirement conventionally
achieved through direct code manipulation. While
this method may seem simple, it carries several
disadvantages. Primarily, it lacks flexibility, as
delta modules can theoretically be implemented in
various positions, making modifications to each po-
sition in the backbone model code a cumbersome
task. Additionally, this method is not scalable, as
accommodating delta tuning for newly introduced
PTMs requires fresh code modifications, posing
a challenge for researchers and engineers.

In this paper, we present a novel approach to
implement delta tuning methods. Our approach
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modifies the backbone model’s architecture after it
is loaded into the memory. We propose four essen-
tial techniques, namely named-based addressing,
dynamic tensor re-routing, runtime initialization,
and a visualization system. Using these key
techniques, we build OpenDelta, an open-source
toolkit for delta tuning without modifying the
backbone model code. OpenDelta has several key
features. Firstly, it is simple to use. Migrating
from existing full-parameter training to delta
tuning requires as few as three lines of code. For
beginners or engineers, we also support automatic
delta model construction. Secondly, it is modular,
with delta modules implemented as independent
sub-modules that can be attached to or detached
from the backbone models. This feature allows
different delta modules to coexist and cooperate in
the same backbone model and serves multiple tasks
flexibly. Thirdly, OpenDelta is highly extensible,
supporting pre-trained models in a wide range of
frameworks, including both official implementa-
tions from the Huggingface Library (Wolf et al.,
2019) and customized PTMs. It can potentially
be used with newly emerged PTMs and integrated
with other PTMs’ frameworks for efficient training,
such as the parallel training framework.

2 Related Work

Our work is related to delta tuning, more specif-
ically, the implementation of delta tuning methods.

Delta Tuning. Delta tuning refers to the
parameter-efficient method for tuning a large PTM.
Different delta tuning methods (Houlsby et al.,
2019; Zaken et al., 2021; Li and Liang, 2021; Hu
et al., 2021; Mahabadi et al., 2021; Sung et al.,
2022) differ in both the architecture of the delta
module and the positions that the delta modules are
integrated into the backbone model. Various works
have attempted to connect these disparate delta
tuning approaches under a unified perspective (He
et al., 2022; Ding et al., 2022; Hu et al., 2022). In
our work, we draw inspiration from this unified
viewpoint and aim to devise a framework that
can support different delta tuning methods within
the same pipeline. Our library includes the most
popular delta tuning methods and is amenable to
new methods as they emerge.

Implementation of Delta tuning. Previous im-
plementation frameworks for delta tuning relied
on the code modification approach. For example,
AdapterHub (Pfeiffer et al., 2020) copies a specific

version of Huggingface transformers Library (Wolf
et al., 2019) and implement several popular delta
tuning methods for a set of pre-defined PTMs.
LoRA (Hu et al., 2021) implements a limited li-
brary of LoRA linear layers. These methods are
model-specific and involve hard-coded implemen-
tations, which restrict their usability across various
PTMs. In contrast, OpenDelta represents a signif-
icant advancement as it requires no code changes
to the backbone model, making it highly versatile
and broadly applicable.

3 Motivation

In this section, we begin by presenting the unified
formulation of delta tuning. Then we underscore
a set of crucial characteristics of delta tuning,
focusing on the implementation aspect, which
emphasizes the pressing need for a novel toolkit
to aid in the research and advancement of delta
tuning approaches.

3.1 Unified Formulation of Delta Tuning
Although delta tuning is principally not limited to
a specific type of neural networks, currently al-
most all the delta tuning methods are applied to
PTMs (Devlin et al., 2019; Liu et al., 2019; Raffel
et al., 2019; Brown et al., 2020) with the Transform-
ers architecture (Vaswani et al., 2017). A PTMM
parameterized by Θ is composed of multiple sub-
modules m, where the hidden representations h
are passed through the sub-module to produce new
hidden representation h′, i.e., h′ = m(h).

The adaptation of a PTM M to downstream
tasks is to update the original parameters Θ into
Θ′. In full-parameter fine-tuning, all parameters
can be updated, i.e., potentially, |∆Θ| = |Θ|. In
contrast, delta tuning only updates a small fraction
of parameters, i.e., |∆Θ| ≪ |Θ|.

Despite the drastic difference in the specific form
of the delta tuning methods, He et al. (2022) unify
them into special forms of modifications ∆h to the
hidden representation h. The ∆h is generated by
passing a hidden state hδ to a delta module mδ.
Formally,

h← h+∆h = h+mδ(hδ), (1)

where← denotes a replacement of the original h,
and hδ can be the same as or different to h.

3.2 Key Features for Delta Tuning
Several key features of delta tuning methods can
be observed from Eq.(1).
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Figure 1: The overall framework of OpenDelta. The construction of delta object happens after the backbone model
is loaded.

Tensor Re-routing. The first feature of delta
tuning is the ability to redirect the flow of hidden
states. In a pre-trained model, the flow of hidden
states forms a static graph, with the hidden states
serving as nodes and sub-modules acting as trans-
formations on the edges As shown in Eq.(1), the
introduction of the edge transformation mδ redi-
rects node hδ and injects it into another node h,
creating a new flow of hidden states that is not
present in the original model architecture. The im-
plementation of OpenDelta should achieve such
tensor re-routing without hard-coding them.

Flexibility. Eq.(1) allows for the input hidden
states and output hidden states to be located at any
position in the backbone modelM. For example,
AdapterDrop (Rücklé et al., 2021) observes that
only applying delta modules to the upper half of
Transformer layers yields better results than the
lower half. The flexibility of applied positions pro-
vides remarkable opportunities to explore the po-
tential structure of delta modules (Hu et al., 2022).
However, it also presents a challenge for the im-
plementation to be able to achieve flexibility in
practice that matches the theoretical framework.

Compositionality. Different delta tuning meth-
ods can co-exist or even be combined in the same
backbone model (Hu et al., 2022), potentially boost-
ing performance or supporting multitask learn-
ing (Pfeiffer et al., 2021). Thus, it is crucial to
enable easy and independent implementation of
each delta tuning method, while also allowing for
the flexible composition of multiple modules.

Dynamism. It is common for the backbone PTM
to serve as a central model for multiple tasks in
delta tuning. To serve a specific task, delta mod-
ules are attached to the backbone model, creating a

task-specific expert. When the delta modules are
detached, the backbone models revert back to their
original function as general language models. This
dynamic nature of delta tuning-based task adapta-
tion should be incorporated into OpenDelta.

4 OpenDelta

In light of the aforementioned key features of delta
tuning, we present OpenDelta. We will begin by
presenting an overview of OpenDelta. Following
that, we will delve into the key implementations
of this framework.

4.1 Framework

To perform delta tuning, two prerequisites are
required: a pre-trained language model M and
the “modified modules”, which are a user-specified
list of sub-modules mi to which the delta modules
should be applied. Our target is to construct a delta
object. Our objective is to create a delta object,
which is a collection of delta modules typically
located at various positions withinM and serves
as a whole to adapt the PTM to downstream
tasks. We follow three steps to create a delta
object. Firstly, we use name-based addressing
to obtain the pointers to the modified modules.
Secondly, we construct a delta object comprising
uninitialized delta modules. Thirdly, we modify
the route of tensors in the modified modules
into the delta modules using a dynamic tensor
re-routing technique. After the updated route of
the hidden state is established, we perform runtime
initialization to initialize the delta object.

After the delta object is constructed, we attach
it to the backbone model. Then, we provide a
simple functional interface to turn off the gradient
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Method Formulation Default Positions Route Runtime Initialization

LoRA mδ(hin) = hinAB Query, Value Eq.(4) N
Adapter mδ(hout) = σ(houtW1)W2 ATTN, FFN Eq.(3) Y

Bitfit mδ(hout) = b ATTN, FFN, LayerNorm Eq.(3) N
Prefix Tuning mδ(hout) = [MLP(p);hout] Key, Value Eq.(3) Y

Table 1: Delta tuning methods and their characteristics. Default positions refer to the positions that the delta modules
are attached to when no specific sub-modules are designated. A,B,W1,W2 are weight matrices, b is the bias
vector. MLP(·) is a multi-layer perception network. [·; ·] denotes the concatenation of tensors. σ is the activation
function. Runtime Initialization shows whether the implementation uses this technique in OpenDelta.

computation in the backbone models and only
compute the gradient of parameters in the delta
object. After the training is complete, we provide
a simple interface for saving only the delta
objects, which significantly reduces the storage
requirements for the backbone model.

The overall framework of OpenDelta is shown in
Figure 1. Next, we introduce the key implementa-
tions that support the construction of delta objects.

4.2 Key Implementations

The above framework is achieved by four key im-
plementations, i.e., name-based addressing, dy-
namic tensor re-routing, runtime initialization, and
visualization system.

Name-based Addressing. Firstly, we need to
obtain a pointer to the desired sub-modules which
are applied with the delta modules. In practice,
we can effectively retrieve the pointer by using the
name of the sub-module. Since the sub-modules
are organized in a tree structure, we perform a
depth-first search to find the sub-modules that
match the provided name. This search results in a
full path consisting of all the names from the root
to the matched sub-module, accurately matching
the sub-module. However, directly writing the full
path to the sub-modules can be impractical, so we
design several simplifications to make addressing
easier and more human-readable 2. One such sim-
plification involves taking advantage of the repet-
itiveness of transformer layers, which many delta
tuning methods address by adding delta modules
to the same type of sub-modules in each layer. For
example, when users specify attention, they
likely intend to apply delta modules to the attention
sub-modules in all transformer layers. To address
this need, we provide a tail-matching mechanism
that automatically matches the sub-modules based
on their names. For more complex configurations

2https://opendelta.readthedocs.io/en/
latest/notes/namebasedaddr.html

of positions, we allow matching based on regu-
lar expressions and web-based selection using our
custom-designed web interface.

Dynamic Tensor Re-routing. A fundamental
distinction that sets OpenDelta apart from other
implementations is its ability to add delta modules
without requiring any modifications to the code of
the backbone modules. This feature necessitates a
dynamic rerouting of tensors through the delta mod-
ules and back into the backbone model. To achieve
this rerouting, we wrap the original forward func-
tion of a sub-module with a wrapper function and
replace the original forward function with the wrap-
per function. To ensure seamless replacement, we
utilize a decorator to inherit the original function’s
attributes, including the I/O, doc string, etc. Within
the wrapped function, we implement three distinct
routes of the hidden states, taking into account the
order of the original sub-module and the delta mod-
ule. The first route utilizes the input hidden state
hin of mi as both the modification target and the
input to the delta module. We pass it through the
delta module to get the output mδ(hin), and merge
it to hin. Formally,

hin ← hin +mδ(hin). (2)

The second route employs the output hidden state
hout of mi as the modification target:

hout ← hout +mδ(hout). (3)

The third route leverages the input hidden state hin
as the input to the delta module, and sets the output
hidden state hout as the modification target:

hout ← hout +mδ(hin). (4)

While these three routes do not necessarily
encompass all possible relationships between the
delta module and the backbone model, they are
sufficient to support most popular delta tuning
methods (as illustrated in Table 1). However, we
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1 model = AutoModel.from_pretrained("bert-base-cased")
2

3 + from bigmodelvis import Visualization
4 + Visualization(model).structure_graph()
5 + from opendelta import LoraModel
6 + delta_model = LoraModel(backbone_model=model, modified_modules=["output.dense"

, "query"])
7 + delta_model.freeze_module(exclude=["deltas", "pooler"], set_state_dict=True)
8 + Visualization(model).structure_graph()
9

10 trainer.train()

Figure 2: An example of basic usage of OpenDelta. ‘+’ sign indicates the additional code needed to enable delta
tuning. Note that the visualization can be optional if you are familiar with the backbone model.

remain open to the possibility of incorporating
additional routes as needed.

Runtime Initialization. To ensure that weight
matrices in the delta module match the hidden
states in terms of shape and dimension, we must
account for hidden states whose shapes are not
specified in the model configuration. In traditional
implementations, this requires manually examining
the code of the backbone model. However,
OpenDelta automates this process by passing
a pseudo input through the backbone model,
allowing the shapes of the hidden states to be
automatically determined as they propagate from
the input to the output.

Visualization System. As delta tuning provides
flexibility and dynamism, it is essential to ensure
the correct construction of delta objects by
verifying that delta modules are added as specified.
However, direct printing of large pre-trained
models results in massive outputs. To address this,
we provide a visualization system that leverages
repetition in transformer architecture. Specifically,
we collapse the repetitive layers and neatly print
the parameters’ information. With the addition
of delta modules to the backbone model, users
can easily observe the changes made in the model
through visualization. An example of visualization
can be seen in Figure 3. As the visualization
system is useful beyond delta tuning, it has been
separated into an independent package named
“bigmodelvis” 3.

a

5 Usage

In this section, we provide the use cases of Open-
Delta which demonstrate the three characteristics
of OpenDelta, i.e., simplicity, modularity, and ex-
tensibility.

3https://pypi.org/project/bigmodelvis/

Figure 3: The visualization of the backbone model’s
status after the LoRA modules are attached.

5.1 Simplicity

Migrating from Fine-tuning. To facilitate the mi-
gration from existing full-parameter fine-tuning to
delta tuning, only a few lines of code modifications
are required, as exemplified in Figure 2. Initially, in
the traditional full-parameter fine-tuning, the PTM
is loaded from external libraries, such as Hugging-
face Transformers (Line 1), and train the model
(Line 10). To introduce delta tuning, line 3-8 are
added and executed. To begin with, an optional
step is to visualize the backbone model to iden-
tify the target “modified_modules”. Then,
a delta object, such as LoRA, is created and at-
tached to the backbone model. Subsequently, the
model parameters, excluding the delta modules
and the randomly initialized classification head,
are frozen. The “set_state_dict=True” pa-
rameter is employed to remove the non-trainable
parameters from the model checkpoint. Lastly, the
sub-modules of the backbone are visualized to ver-
ify the successful creation and attachment of the
delta modules. An example of the visualization
results is depicted in Figure 3.

AutoDelta Mechanism. The implementation
of OpenDelta supports highly intricate designs of
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1 def multi_task(delta_model, input_text):
2 global model # We use the same backbone model across tasks.
3 delta_model.attach()
4 print(tokenizer.decode(model.generate(input_ids=tokenize(input_text))))
5 delta_model.detach()
6 multi_task("What the commmon career of Newton ad einstein?", spelling_delta)
7 # >>> "What was the common career of Newton and Einstein?"
8 multi_task("What was the common career of Newton and Einstein?", topic_delta)
9 # >>> "The question’s topic is science."

10 multi_task("What was the common career of Newton and Einstein?", question_delta
)

11 # >>> "Physicists."

Figure 4: Multitask learning via OpenDelta. Due to space limitations, we retain only the core code. For detailed
code, please refer to the OpenDelta documentation. Strings after “> > >” demonstrate the output of the model.

delta modules, catering to diverse experimental re-
quirements. Nonetheless, it is desirable to provide
a default configuration of delta modules for practi-
tioners who may not be well-versed in the mecha-
nism of delta tuning. However, the naming conven-
tions of sub-modules differ significantly among var-
ious backbone models, despite their shared trans-
former architecture. To tackle this issue, we es-
tablish a common name convention and employ
a mapping technique to map the model-specific
name convention to the common one 4. This en-
ables the AutoDelta mechanism to be supported
seamlessly. Figure 5 exemplifies that, once the
type of the delta tuning method is specified, the
delta modules will be attached to the backbone
model in default positions and with appropriate
hyper-parameters. We have listed the default con-
figurations of each delta tuning method in Table 1.
Furthermore, the AutoDelta mechanism facilitates
the loading of fine-tuned checkpoints of delta mod-
ules, without explicit knowledge of the type and
hyper-parameters of the delta modules.

1 from opendelta import AutoDeltaModel,
AutoDeltaConfig

2 # construct a new delta using the
default configuration.

3 delta_config = AutoDeltaConfig.
from_dict({"delta_type":"lora"})

4 delta_model = AutoDeltaModel.
from_config(delta_config,
backbone_model)

5 # load the delta checkpoint.
6 delta = AutoDeltaModel.from_finetuned(

"save_dir", backbone_model)

Figure 5: An example of using AutoDelta mechanism.

5.2 Modularity

The second notable attribute of OpenDelta is mod-
ularity. It affords the capacity to independently

4https://opendelta.readthedocs.io/en/
latest/notes/unifyname.html

attach and detach each delta object from the back-
bone model, thereby providing the possibility of
multi-task serving with a single backbone model.
Specifically, suppose data pertaining to various
tasks are presented sequentially, wherein each data
triggers the attachment of a corresponding delta
object to the backbone model for processing, and
once completed, the delta object is detached. A
case that illustrates this functionality is illustrated
in Figure 4, where three tasks are process sequen-
tially using a single backbone model.

5.3 Extensibility
Delta tuning is one of the important techniques that
enables the use of large PTMs, and as such, we
make efforts to ensure its compatibility with other
techniques such as model acceleration and multi-
GPU training. Specifically, we currently provide
support for the BMTrain framework 5 with ZeRO-3
optimization enabled (Rajbhandari et al., 2020). It
is also worth noting that we plan to expand our sup-
port for additional model-acceleration frameworks
in the future.

6 Conclusion

In summary, OpenDelta is a plug-and-play library
for delta tuning, offering an intuitive and modular
solution to adapt large PTMs using delta tuning
without the need for code modifications. The li-
brary’s user-friendliness, flexibility, and extensi-
bility make it accessible and useful for both re-
searchers and engineers. In the future, we plan to
continuously update the library with new delta tun-
ing methods and ensure its compatibility with the
latest versions of other major PTMs libraries.

5https://github.com/OpenBMB/BMTrain
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Limitations

Although we believe that OpenDelta is simple, easy
to use, flexible, and extensible since it does not re-
quire code modification, it is still limited by many
implementation details. For example, some delta
tuning methods, such as Prefix Tuning, are limited
by theory and can only be used in Attention lay-
ers, making them unable to be arbitrarily specified.
This is also why we did not use it as an exam-
ple in this paper. On the other hand, some base
models differ significantly from mainstream imple-
mentations, making it difficult to use the AutoDelta
mechanism. Therefore, we maintain a list of tested
models that can use AutoDelta, while other models
may still use OpenDelta in a customized manner.
Thirdly, while theoretically compatible with accel-
eration frameworks other than BMTrain, such as
Deepspeed, there are some implementation details
that currently limit the compatibility of some func-
tions. We will do our best to communicate with the
maintainer of those packages to increase compati-
bility.

Ethical Consideration

In the writing process of this paper, ChatGPT (Ope-
nAI, 2022) was utilized for revision and refinement.
However, the authors can guarantee that each sen-
tence in this paper has been thoroughly reviewed
and checked to accurately convey the authors’ in-
tended meaning.
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