Craft an Iron Sword: Dynamically Generating Interactive Game Characters
by Prompting Large Language Models Tuned on Code

Ryan Volum Sudha Rao Michael Xu Gabriel DesGarennes Chris Brockett
Benjamin Van Durme Olivia Deng Akanksha Malhotra Bill Dolan
Microsoft Corporation

sudhra@microsoft.com

Abstract

Non-Player Characters (NPCs) significantly en-
hance the player experience in many games.
Historically, players’ interactions with NPCs
have tended to be highly scripted, to be limited
to natural language responses to be selected by
the player, and to not involve dynamic change
in game state. In this work, we demonstrate that
use of a few example conversational prompts
can power a conversational agent to generate
both natural language and novel code. This ap-
proach can permit development of NPCs with
which players can have grounded conversa-
tions that are free-form and less repetitive. We
demonstrate our approach using OpenAl Codex
(GPT-3 finetuned on GitHub), with Minecraft
game development as our test bed. We show
that with a few example prompts', a Codex-
based agent can generate novel code, hold
multi-turn conversations and answer questions
about structured data. We evaluate this applica-
tion using experienced gamers in a Minecraft
realm and provide analysis of failure cases and
suggest possible directions for solutions.

1 Introduction

The recent advent of large pre-trained language
models such as GPT-2 (Radford et al., 2019) and
GPT-3 (Brown et al., 2020) has fostered spectacular
advances in text-generation. In this work, we focus
on the potential application of these large language
models in video games. In games, Non-Player
Characters (NPCs) enhance the player experience
by providing interaction, often involving conversa-
tion. Currently players’ conversations with NPCs
are highly scripted: in a typical scenario players
must select from a set of preset responses that they
can give to the NPC. Moreover, this interaction
is limited to natural language responses, and does
not directly involve dynamic game state change as

'We release the prompt and the wrapper code in
this repository https://github.com/microsoft/
interactive-minecraft-npcs

what is a pumpkin pie? _

Figure 1: A Minecraft player interacting with a Codex-
powered NPC in in two scenarios: question answering
(top) and task completion (bottom).

part of the interaction. Below, we explore some
first steps towards creating functionally agentive
NPCs with which players can hold free-form con-
versations that are grounded in the game and which
players can instruct to perform actions that change
the game state by having the NPC adaptively gener-
ate code that calls functions exposed by the game
API. This is done by a single language model that
generates both natural language and code. To this
end, we use OpenAl Codex (Chen et al., 2021)
(a GPT-3 model finetuned on GitHub data). We
demonstrate that by simply including examples of
both natural language conversations and code in the
prompt, Codex can generalize to interesting new
settings, opening up intriguing possibilities for en-
hanced player experiences and game development.

We employ Minecraft as our test bed. First, this

Proceedings of the 3rd Wordplay: When Language Meets Games Workshop (Wordplay 2022), pages 25 - 43
July 14, 2022 ©2022 Association for Computational Linguistics


https://github.com/microsoft/interactive-minecraft-npcs
https://github.com/microsoft/interactive-minecraft-npcs

= setInterv

> goToPlayer(bot, 3,

username),

hest is not

, 'Craft a furnace'))

couldn't make the furna

Figure 2: Sample prompt given to the Codex model to power an NPC in Minecraft.

is an open-world game where players creatively
build artifacts in the environment. This makes
Minecraft a good use case for providing NPCs
that can converse and perform tasks for the player,
something that Minecraft currently does not do.
Second, Minecraft has rich game APIs in scripting
languages,” that permit models to write function
calls that allow the NPC perform in-game actions.

We investigate these Codex-powered NPCs
through an exploratory user study. We ask ex-
perienced gamers to interact with the NPC to ac-
complish tasks in a Minecraft realm: obtain craft-
ing recipes, mine resources, craft items and, lastly,
break out of two escape rooms. Figure 1 shows
two sample interactions. We analyze these interac-
tions, and discuss fail cases and what modifications
might be needed to handle them. We also present
discussion of some interesting avenues of future re-
search in the gaming space that might be achieved
by fine-tuning on game APIs.

>We use the open-source Mineflayer API. Microsoft re-
cently released a first-party API with similar functionality in
its GameTest Framework SimulatedPlayer class. This is still
under development and was not available for us at the time we
conducted our experiments.

26

2 Related Work

The Minecraft gaming environment is increasingly
widely used as a platform for researching agents
and machine-human collaboration. MALMO
(Johnson et al., 2016) is a test-bed for machine
learning architectures trained on reinforcement
learning. (Rose, 2014) showcases dialog in which
players provide NPCs with information and the
NPCs retain episodic memory and identify player’s
sentiments. (Szlam et al., 2019) lays out the moti-
vation for building assistants in Minecraft. (Gray
et al., 2019) describes a framework for dialog-
enabled interactive agents using high-level, hand-
written composable actions. (Jayannavar et al.,
2020) study collaborative conversation between
a builder and an architect about structure building.
IGLU: Interactive Grounded Language Understand-
ing in a Collaborative Environment has emerged a
competition to explore interactions in a Minecraft
environment. (Kiseleva et al., 2021).

The model we explore here is distinct from the
previous Minecraft-related work in that it generates
novel code that allows the NPC 1) to perform con-
textually viable actions (moving around, mining,
crafting, etc), 2) to answer questions about struc-
tured Minecraft data (such as crafting recipes) and


https://mineflayer.prismarine.js.org/
https://docs.microsoft.com/en-us/minecraft/creator/scriptapi/mojang-gametest/simulatedplayer

3) to engage in multi-turn conversations.

This richness does not emerge in a vacuum:
it draws on several convergent lines of research.
Large pre-trained language models (PLMs) such
as GPT-2 (Radford et al., 2019), GPT-3 (Brown
et al., 2020) and GPT-J have become the predom-
inant paradigm for text generation. Research in
neural modelling of dialog has focused on pow-
erful new models derived from these, such as Di-
aloGPT(Zhang et al., 2020), Meena (Adiwardana
et al., 2020), PLATO-XL(Bao et al., 2021), and
LaMDA (Thoppilan et al., 2022) that offer rich po-
tential for open-ended conversational applications.

The application of new prompting functions to
large PLMs enables them to perform few-shot or
zero-shot learning to adapt to new scenarios with lit-
tle or no data (Liu et al., 2021). This approach, too,
is rapidly being mainstreamed in dialog generation.
(Madotto et al., 2021) employ prompting to select
different dialogue skills, access multiple knowl-
edge sources, generate human-like responses, and
track user preferences. (Zheng and Huang, 2021)
use prompt-based few-shot learning for grounded
dialog generation, in an approach similar to ours.

PLMs that have been tuned on code reposito-
ries, typically GitHub, are have begun to be used
to automate coding processes and generate code
according to programmer’s textual specifications,
e.g., (Chen et al., 2021) and PaLm-Coder (Chowd-
hery et al., 2022). (Shin and Durme, 2021) suggest
that models pre-trained on code may also benefit
semantic parsing for natural language understand-
ing. (Nijkamp et al., 2022) explore conversational
program synthesis within this framework, and is
close in spirit to the current work by virtue of its
focus on emergent conversational properties.

3 Methodology

Our model is based on few-shot prompting of a
large language model, in which a small number
of sample instances in the prompt generalize to
new unseen input (Brown et al., 2020). We use
Codex (the code-davinci-002 model) and the Mine-
flayer API, together with MineCraft (Java Edition
v.1.17.1). Our goal is to have the NPC respond
to the player’s input appropriately according to
whether the input requires a purely natural lan-
guage response or a call to a function to perform
some action. Figure 2 shows a section of the
prompt we provide to the model. The prompt
begins with the following statement: “This file

27

contains Minecraft bot commands and the code
needed to accomplish them using the Mineflayer
JavaScript library. If asked something conversa-
tional, the bot should use bot.chat() to answer."
This tells the model that the prompt includes nat-
ural language commands and the code needed to
accomplish them. We include in the prompt the nat-
ural language commands and the code that need to
be generated to enable basic NPC functionalities®.

A new command from the player is appended
to this seed prompt and sent to the Codex model.
In the abstracted code, we evaluate the generated
completion. When the completion includes a func-
tion call to the game API, the corresponding action
is performed by the NPC inside the game. When
it includes a call to the bot.chat() function, (dis-
cussed below) the response string is displayed on
the chat interface. For each subsequent input, the
prompt includes the seed prompt plus the previous
player commands and model completions. When
the prompt exceeds the allowed token limit (2048
tokens), we revert to the seed prompt and report to
the player that the context has been reset.

We further refine this prompting approach using
the following strategies:

Using a stop sequence: Since we want only to
generate NPC responses (and not an entire conver-
sation), we use a stop sequence (comment operator).
Player input always starts with the stop sequence.

Syntactic sugaring: The Mineflayer API con-
tains lower-level functions that might be hard to
map to a natural language command. We therefore
wrap it in more abstract code* to be handled by
the Codex model, e.g., the functions locateBlock,
openChest and listitemsInChest in Figure 2.

Using the bot.chat() function: We use the chat
interface within the Minecraft game for interac-
tion between player and NPC. The model calls the
bot.chat() function whenever the NPC needs to re-
spond using natural language.

Function chaining: Player instructions may re-
quire the NPC to perform multiple actions, in par-
ticular, map to multiple function calls where sub-
sequent calls depend on the success or failure of
previous calls. In Figure 2, the instruction “open
the chest" triggers a chain of functions where the
bot first locates the chest, opens it, then finally
responds with the result.

3 A full list of these functions is provided in Appendix A

*We release the wrapper code in this GitHub
repository https://github.com/microsoft/
interactive-minecraft-npcs


https://mineflayer.prismarine.js.org/
https://mineflayer.prismarine.js.org/
https://github.com/microsoft/interactive-minecraft-npcs
https://github.com/microsoft/interactive-minecraft-npcs

Autoregressive prompting: Also known as
Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020). For prompts that require knowledge
of game state, e.g., inventory/crafting queries, we
create a call through Codex that first gathers the
requisite information and then self-generates a call
to itself with the needed information.The last com-
mand shown in Figure 2 responds to crafting ques-
tions by first obtaining an ingredient list, then calls
createQueryPrompt to generate a secondary com-
pletion on a sub-prompt (Figure 3) using the data.

4 User Study

We conduct a user study to evaluate our NPC.
We invite eight participants who have previously
played Minecraft. Each participant had an hour to
complete the study and to answer the post study
survey questions. The study consists of five parts:

4.1 Get Crafting Recipe

Participants interacted with the NPC to determine
the ingredients and their count necessary to craft 5
items: wooden pickaxe, furnace, clock, pumpkin
pie, and any resource of their choice.

Table 4 shows sample player inputs and gener-
ated code. We find that participants used different
phrases (see table 1) to frame their questions and
the NPC was usually able to correctly map these
to the right function call. It was able handle mi-
nor variation in the resource name (‘wood pick-
axe’ instead of ‘wooden pickaxe’), misspellings
(‘fornace’), contextual phrasing (‘what goes into
a pumpkin pie’ since its a food item), and non-
question phrasing (‘recipe for clock’). Some partic-
ipants held extensive conversations with the NPC

28

ure that all items

Destroy the tree
Hold down Left Button

what is a pumpkin pie? _

Figure 4: Participant interacting with the NPC to get the
crafting recipes of different resources

where they asked additional questions about the
resource or its ingredients”.

Overall, across all participants, excluding cases
where the resource did not have a crafting recipe,
the success rate for the 4 specified resources was
85%, whereas that for the ‘any resource’ category
was 75%. The fail cases split into two categories:
those where resources had a crafting recipe and
those where resources did not. When a resource
had a crafting recipe, all fail cases belonged to
the ‘natural language response instead of function
call’ category. This happened primarily when the
query was preceded by a lengthy language-only
conversation without calls to code. Table 2 includes
fail cases for resources without a crafting recipe. In
the first two cases, the NPC’s response (“could not
find recipe”) seems appropriate but uninformative.
In the third case the NPC hallucinates a recipe:
nether portal is not an object that can be crafted.

5 Analysis included in the Appendix.



Resource User query

NPC Response

Wooden pickaxe

Furnace how can I build a fornace?

Pumpkin pie what goes into a pumpkin pie?

Clock what items are needed to build a clock, yo?
Clock recipe for clock

Beacon what do I need for a beacon?

what do I need to create a wood pickaxe?

You need 3 oak planks and 2 sticks to make

a wooden pickaxe.

You need 8 cobblestones to make a furnace.

You need 1 pumpkin, 1 egg and 1 sugar to make

a pumpkin pie.

You need 4 gold ingots and 1 redstone to make a clock.
You need 4 gold ingots and 1 redstone to make a clock.
You need 5 glass, 1 nether star, and 3 obsidian to make
a beacon.

Table 1: Different participant queries and NPC responses to get ingredients and count required to create resource

User utterance | NPC Response

| Reason for failure

How do I make a sword?

how to craft saddle

how to build nether portal
build a nether portal

Could not find recipe for sword
Could not find recipe for saddle
You need 3 dark oak planks to

There are multiple types of sword.
You can’t craft a saddle.
Nether portal is not something you can craft.

Table 2: Participant queries that failed to generate the expected response from the NPC.

4.2 Mine Resource

Participants asked the NPC to mine 1 dirt and 4
oak logs. Table 3 shows sample interactions. The
last column shows the code generated with each
NPC response. In the first case, in response to
the player command ““can you get me 1 dirt?", the
NPC checked whether it had dirt in its inventory.
Since it didn’t, it responded “I don’t have any dirt
in my inventory" and then mined the dirt for the
player. However, after mining the dirt, it failed to
give it to the player by dropping it near them. In
the second case, when the user said “go cut down
an oak log", the model called the function cutTree
that did not exist. When the user followed up by
being more Minecraft-specific (“mine the tree"),
the model was able to generalize tree to “oak log".
Additional example interactions and their analysis
may be found in the appendix.

4.3 Craft Item

Participants asked the NPC to craft an oak plank,
a crafting table and a chest. The third example in
table 3 shows an interaction involving crafting an
oak plank. When the player asked if the NPC can
craft an oak plank, the NPC generated a chain of
functions where it first obtained the ingredients of
an oak plank and then created a query for the ques-
tion answering prompt where it checked whether
it had those ingredients in its inventory. Since it
did not have them, it threw an error message indi-
cating that it couldn’t make the plank. The player
followed up by asking what is needed to make the
plank and the NPC responded with the recipe for
making oak plank. The player then asked the NPC
to get the oak log and make the plank. The NPC

29

give it to me_

Figure 5: Player instructing the NPC to craft items

then mined the oak log and crafted the oak plank.
See the appendix for further examples.

4.4 Gather Minecraft knowledge

To get an idea what kinds of questions a typical
Minecraft player might want to ask an NPC, we
had participants ask freeform general knowledge
questions of the NPC. Figure 6 shows a sample in-
teraction. Participants tested the NPC’s knowledge
of of the game. They were interested in whether
the NPC can get numerical facts correct, how much
it knows about where to mine or find resources,
whether can it answer comparative questions, does
it know the purpose of different things in Minecraft,
and does it have a personality of its own. More ex-
ample queries are found in the appendix.

4.5 Escape from Two Rooms

Participants collaborated with the NPC to success-
fully escape from two rooms. In the first, both
player and NPC had to stand on two separate pres-
sure plates simultaneously to release a diamond
pickaxe that the player could use to break out. Dif-



Player Utterance NPC Response

Generated Code

can you get me 1 dirt? No, I don’t have any
dirt in my inventory;

I got your dirt

if(isInlnventory(bot, ‘dirt’)) {
goToPlayer(bot, username)
.then(() => dropltem(bot, ‘dirt’))
.then(() => bot.chat(“I got your dirt"))
}else {
bot.chat(“No, I don’t have any dirt in my inventory;’)
.then(() => mineBlock(bot, ‘dirt’))
.then(() => goToPlayer(bot, username))
.then(() => bot.chat(“I got your dirt"))
}

go cut down an oak log

mine the tree Here you go!

give me the oak log Here you go!

cutTree is not defined

mineBlock(bot, ‘oak_log’)

.then(() => goToPlayer(bot, username))
.then(() => bot.chat(‘“Here you go!"))
dropltem(bot, ‘oak_log’)

.then(() => goToPlayer(bot, username))
.then(() => bot.chat(“Here you go!"))

can you craft an oak plank? | I'll craft you an oak plank!

can you get an oak log and
then make the oak plank?

Here you go!
I made an oak plank

I couldn’t make the oak plank.

getIngredients(bot, *oak_planks’)

.then(ingredients => createQueryPrompt(bot, ingredients,
‘Can you craft an oak plank’))

.then(queryPrompt => model.getCompletion(queryPrompt))

.then(completion => evaluateCode(completion, true))

.then(() => craftltem(bot, ’oak_planks’, 1))

.then(() => equipltem(bot, *oak_planks’))

.then(success => success ? bot.chat("I made an oak plank!") :
_throw("I couldn’t make the oak plank"));

getIngredients(bot, *oak_planks’)

.then(ingredients => createQueryPrompt(bot, ingredients,
’Can you get an oak log and then make the oak plank’))

.then(queryPrompt => model.getCompletion(queryPrompt))

.then(completion => evaluateCode(completion, true))

.then(() => mineBlock(bot, *oak_log’, 1))

.then(() => craftltem(bot, ’oak_planks’, 1))

.then(() => equipItem(bot, "oak_planks’))

.then(success => success ? bot.chat("I made an oak plank!") :
_throw("I couldn’t make the oak plank"));

Table 3: Player and NPC interaction for mining 1 dirt, mining 4 oak logs and crafting an oak plank.

how do 1 b:
2ed 1 pumpl

doineed a fu
- don

Figure 6: Player asking NPC questions about Minecraft

30

ferent participants used different strategies to get
the NPC to stand on the plate. In most cases, par-
ticipants used the phrase “stand on the pressure
plate”. In a few cases, they used phrases such as
“stand on this square” and ‘“stand on that purple
tile” which failed because the NPC lacks the ability
to map square or purple tile to the pressure plate.
Similarly, the phrase “stand where I am looking”
also failed because NPC lacks visual capabilities.
All participants were able to escape the room, with
the average time being 2 mins 30 secs.

In the second room, the player was trapped in
a cobweb. A chest placed at a distance held the
ingredients necessary to make an iron sword. To
escape, participants needed to get the NPC to make
the sword and give it to them. Table 4 shows a
sample interaction between participant and NPC
in this room. We found that the NPC is able to
generate complex code (with novel function chains)
during these interactions. Of the 8 participants, 7
successfully escaped with the help of the NPC,



Post Study Survey Responses

Interaction was fun

Interaction was helpful
Interaction hurt experience
Responses were fluent
Responses were relevant
Responses were informative

NPC had consistent persona

Yes Somewhat No

Figure 7: Participant responses for different questions
in post study survey.

taking an average 4 mins 40 secs.
Upon finishing, if time permitted, participants
were allowed to interact freely with the NPC.

4.6 Post Study Survey

Participants filled out a survey where they rated
their overall experience interacting with the NPC.
They were asked to judged the fluency, relevancy
and informativeness of the NPC responses, com-
pare this NPC experience with other in-game NPC
experiences, and finally provide feedback on how
this experience could be improved.®

Figure 7 shows the results of the survey. 6 out
of the 7 participants’ found the interaction with the
NPC fun and said they would interact with it if it ex-
isted in a game, thus showing value in pursuing this
direction further. Some thought the NPC was help-
ful and its responses were fluent and informative.
Most thought the responses were only somewhat
relevant and also often hurt the game experience.
This suggests the need for further improving the
proposed model and working on the shortcomings
of prompt-based approach.

5 NPC Capabilities

On analyzing interactions in the user study, we find
that the NPC exhibits the following capabilities:

Parse unseen commands: The NPC can under-
stand player commands that are not in the prompt
but correspond to an existing functionality. It can
map the command ‘make me a chest’ (not in the
prompt) to the right function calls and create the
chest or explain why it can’t.

Generalize to new functionality: For some low-
level functionality, the NPC can generalize to un-

® Appendix B contains the full list of questions.
"Only 7 of the 8 participants filled the survey.

31

seen functions. For example, since the command
‘move forward’ is included in the prompt, the NPC
knows how to call the right functions to move in
other directions (backward, right and left).

Hold multi-turn conversation: The NPC can
retain the context (both code and language) and
maintain a multi-turn conversation in which the
NPC both responds using natural language and
takes actions within the game.

Generate language about code: The NPC can
remember multi-turn context and answering ques-
tions about the code (and the language) generated
in previous contexts. It can answer questions such
as “What did you just do?” and “What directions
have you moved?” .

Switch between code & language generation:
Depending on the player command and the pre-
vious context, the NPC is able to automatically
decide when to respond using natural language and
when to generate a function call.

Question answering: The NPC is able to an-
swer questions about its inventory (e.g. “what do u
have in your inventory?”, “do you have X?”, “how
many of X do you have” etc), about crafting recipes
(e.g. “how can I make a chest?”, “how many cob-
blestones do I need to make a furnace”) and answer
questions that require both inventory and crafting
recipe information (e.g. “how many more cobble-
stones do I need to make a furnace?”). It can also
answer questions generally about Minecraft. (The
training data for GPT-3 includes Minecraft infor-
mation available on the web.).

Generate novel function chains: Depending on
the player command, the NPC is able to generate
novel function chains by combining functions in
an order unseen in the prompt. Table 3 includes
multiple examples of such novel function chains.

6 Issues with Prompting

We also observed issues in our prompt-based ap-
proach. Many of are known issues in large lan-
guage models, and more specifically in prompt
engineering (Reynolds and McDonell, 2021; Liu
et al., 2022) and longer conversations with agents
in general (Xu et al., 2021). Principled solutions
pose interesting avenues for future investigation.
Calling non-existent functions: In response to
command, the NPC may attempt to call a function
that does not exist in the API. For example, when
the user asks the NPC to put a block down, the
NPC calls the placeBlock function which is not in



Player Utterance NPC Response

Generated Code

get what is on the chest | Looks like 64 iron ingot

and 64 stick

take everything
take the 64 iron ingots
and the 64 sticks

I got your iron ingots and sticks!

craft an iron sword OK I'll craft you an iron sword!

I made an iron sword!.

give me the iron sword | Here you go!

locateBlock(bot, *chest’, 1)

.then(chestBlock => listItemsInChest(bot, chestBlock))

.then(response => bot.chat(’Looks like ’ + response))

take AllltemsFromChest is not defined

locateBlock(bot, *chest’, 1)

.then(chestBlock => getltemFromChest(bot, chestBlock,
’iron_ingot’, 64))

.then(chestBlock => getltemFromChest(bot, chestBlock,
“stick’, 64))

.then(success => success ?
bot.chat("I got your iron ingots and sticks!") :

_throw("I couldn’t get your iron ingots and sticks!"))

getIngredients(bot, ’iron_sword’)

.then(ingredients => createQueryPrompt(bot, ingredients,
‘craft an iron sword’))

.then(queryPrompt => model.getCompletion(queryPrompt))

.then(completion => evaluateCode(completion, true))

.then(() => craftltem(bot, ’iron_sword’, 1))

.then(() => equipltem(bot, *iron_sword’))

.then(success => success ? bot.chat("I made an iron sword!") :
_throw("I couldn’t make the iron sword"));

goToPlayer(bot, username)

.then(() => dropItem(bot, ‘iron_sword’, 4) )

.then(() => bot.chat(“Here you go!"))

Table 4: Player utterance, NPC response and the code generated during the second escape room interaction.

the codebase. This might solved by providing the
model with a list of existing functions (perhaps in
the prompt), but a more principled solution may lie
in fine-tuning the model on the game API itself.

Context exceeding prompt token limit: When
the conversation exceeds the prompt’s token limit,
the prompt needs to be reset. This makes the NPC
lose the context of the conversation. Instead of eras-
ing the conversational history, it may be possible to
prune irrelevant parts of the context to keep within
the token limit. Some form of multi-stage prompt-
ing (Liu et al., 2022) may provide a solution.

Conversational response instead of function
call: The NPC sometimes responds conversation-
ally when the correct behavior would be to call a
function. We observe that this happens when the
player’s command is preceded by a long language-
only conversation thus priming the model for a
language only response. On the other hand, if the
preceding context includes function calls, then the
same user command triggers the right function call.
It may be difficult to fix this issue purely by prompt
engineering. A better solution may be to fine-tune
the Codex model on curated player NPC conversa-
tions that include by function calls.

Factual Inaccuracies: When the player asks
general questions about Minecraft, the NPC gets
the answer wrong. Table 11 includes instances of
factual inaccuracies. A potential fix could be to
incorporate a mechanism whereby the NPC can

refer to an external knowledge source, e.g., as in
retrieval-augmented methods (Lewis et al., 2020).

Inconsistencies: The NPC does not always have
a consistent persona. In a few cases, it responds
with a different answer for the same user query
depending on the context, even when the question
pertains to something that shouldn’t change with
the context. This could be addressed by enforcing
a strategy wherein the NPC maintains its persona
throughout the conversation; Again, multi-stage
prompting (Liu et al., 2022) may help.

Repetition: The NPC starts repeating itself.
This is especially likely when player and NPC en-
gage in a long conversation that doesn’t involve
calls to code. In table 11, the player queries “what
have you built?” and “have you built a house?”,
receive the same response: “I have built a lot of
things”. This may be addressable by metaprompt
programming (Reynolds and McDonell, 2021) or
multi-stage prompting (Liu et al., 2022).

Recency bias: The NPC can be biased by the
most recent context and answers questions incor-
rectly. For example, if player has been convers-
ing about things found in an ocean, and then asks
“where is the best place to look for diamonds?”, the
NPC responds incorrectly “The best place to look
for diamonds is in the ocean”. Retrieval-augmented
methods, e.g., (Lewis et al., 2020; Xu et al., 2021),
may provide the needed factual grounding.

32



7 Conclusion

Codex-powered NPCs can integrate both conver-
sational and task-oriented language interactions al-
most seamlessly with code generation in asset-rich
contexts, and suggest huge potential for new kinds
of gaming experience, including the generation of
side quests (Appendix F). Gaming, moreover, is a
rich sandbox-like environment for exploring com-
plex agent interactions with code and addressing
issues faced by large language models. The behav-
ior of NPCs shed light many of the challenges en-
countered by large pretrained models of language
and code in sustaining persona, goals, and intents
over the course of interactions. It remains to be
seen whether solutions can be found within exist-
ing training and tuning strategies or whether they
must be sought outside these models. These are im-
portant, ongoing research questions, as are the huge
challenges remaining in mapping these interactions
to image recognition and to game state.

Ethical Considerations

The use of very large language models runs the risk
of exposing users to offensive or sensitive language
that might be contained in training data. Poten-
tial harms include, but are not limited to, offensive
references to classes of people and beliefs, encour-
agement of violence outside the game, and socially
inappropriate sexual references. Any implemen-
tation outside a sandboxed research environment
will need to build guardrails appropriate to the au-
dience and game environment, and especially to
provide protections for minors. In addition, im-
plementations must be able to handle adversarial
probes designed to elicit offensive language.

A further concern is that this technology may
make it easier for users to manipulate NPCs to per-
form in socially inappropriate ways or to construct
socially inappropriate objects. Longer-term, the
ability to enable users themselves to generate code
that can affect game state may pose security threats.

Acknowledgments

We would like to thank the eight participants from
the XBOX team at Microsoft who volunteered
to the user study. Their insights and feedback
helped us shape our analysis. We would also like
to thank Ali Kazim-Zaidi, Vlad Naoumoff, Paige
North, Richard Shin, Georgia Clarke, Karan Gulati
and Haiyan Zhang who were the participants of a

33

Hackathon at Microsoft that generated many of the
ideas in this project. We also thank Nebojsa Jojic,
Jorge Leandro, Brannon Zhand, Karmel Allison,
Steve Latta and Mike Ammerlaan for all the useful
discussions. We would also like to thank the two
anonymous reviewers for their useful comments
and suggestions.

References

Daniel Adiwardana, Minh-Thang Luong, David R. So,
Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu,
and Quoc V. Le. 2020. Towards a human-like open-
domain chatbot. CoRR, abs/2001.09977.

Siqi Bao, Huang He, Fan Wang, Hua Wu, Haifeng
Wang, Wenquan Wu, Zhihua Wu, Zhen Guo, Hua Lu,
Xinxian Huang, Xin Tian, Xinchao Xu, Yingzhan
Lin, and Zhengyu Niu. 2021. PLATO-XL.: exploring
the large-scale pre-training of dialogue generation.
CoRR, abs/2109.09519.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,


http://arxiv.org/abs/2001.09977
http://arxiv.org/abs/2001.09977
http://arxiv.org/abs/2109.09519
http://arxiv.org/abs/2109.09519
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374

Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Jonathan Gray, Kavya Srinet, Yacine Jernite, Hao-
nan Yu, Zhuoyuan Chen, Demi Guo, Siddharth
Goyal, C Lawrence Zitnick, and Arthur Szlam. 2019.
Craftassist: A framework for dialogue-enabled inter-
active agents. arXiv preprint arXiv:1907.08584.

Prashant Jayannavar, Anjali Narayan-Chen, and Julia
Hockenmaier. 2020. Learning to execute instructions
in a Minecraft dialogue. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2589-2602, Online. Association
for Computational Linguistics.

Matthew Johnson, Katja Hofmann, Tim Hutton, and
David Bignell. 2016. The malmo platform for artifi-
cial intelligence experimentation. In IJCAL

Julia Kiseleva, Ziming Li, Mohammad Aliannejadi,
Shrestha Mohanty, Maartje ter Hoeve, Mikhail Burt-
sev, Alexey Skrynnik, Artem Zholus, Aleksandr
Panov, Kavya Srinet, Arthur Szlam, Yuxuan Sun,
Katja Hofmann, Michel Galley, and Ahmed Awadal-
lah. 2021. Neurips 2021 competition iglu: Interactive
grounded language understanding in a collaborative
environment.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459—
9474. Curran Associates, Inc.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
CoRR, abs/2107.13586.

Zihan Liu, Mostofa Patwary, Ryan Prenger, Shrimai
Prabhumoye, Wei Ping, Mohammad Shoeybi, and
Bryan Catanzaro. 2022. Multi-stage prompting for
knowledgeable dialogue generation.

Andrea Madotto, Zhaojiang Lin, Genta Indra Winata,
and Pascale Fung. 2021. Few-shot bot: Prompt-
based learning for dialogue systems. arXiv preprint
arXiv:2110.08118.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. A conversational paradigm for program
synthesis. arXiv preprint.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

34

Laria Reynolds and Kyle McDonell. 2021. Prompt
programming for large language models: Beyond the
few-shot paradigm. In CHI '21: CHI Conference
on Human Factors in Computing Systems, Virtual
Event / Yokohama Japan, May 8-13, 2021, Extended
Abstracts, pages 314:1-314:7. ACM.

Caroline M. Rose. 2014. Realistic dialogue engine for
video games. Electronic Thesis and Dissertation
Repository, 2652.

Richard Shin and Benjamin Van Durme. 2021. Few-
shot semantic parsing with language models trained
on code. CoRR, abs/2112.08696.

Arthur Szlam, Jonathan Gray, Kavya Srinet, Yacine
Jernite, Armand Joulin, Gabriel Synnaeve, Douwe
Kiela, Haonan Yu, Zhuoyuan Chen, Siddharth Goyal,
et al. 2019. Why build an assistant in minecraft?
arXiv preprint arXiv:1907.09273.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Yanqi Zhou, Chung-Ching Chang,
Igor Krivokon, Will Rusch, Marc Pickett, Kathleen S.
Meier-Hellstern, Meredith Ringel Morris, Tulsee
Doshi, Renelito Delos Santos, Toju Duke, Johnny So-
raker, Ben Zevenbergen, Vinodkumar Prabhakaran,
Mark Diaz, Ben Hutchinson, Kristen Olson, Ale-
jandra Molina, Erin Hoffman-John, Josh Lee, Lora
Aroyo, Ravi Rajakumar, Alena Butryna, Matthew
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Co-
hen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-
Arcas, Claire Cui, Marian Croak, Ed H. Chi, and
Quoc Le. 2022. Lamda: Language models for dialog
applications. CoRR, abs/2201.08239.

Jing Xu, Arthur Szlam, and Jason Weston. 2021. Be-
yond goldfish memory: Long-term open-domain con-
versation.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2020. DIALOGPT : Large-scale
generative pre-training for conversational response
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 270-278, Online. As-
sociation for Computational Linguistics.

Chujie Zheng and Minlie Huang. 2021. Exploring
prompt-based few-shot learning for grounded dialog
generation. arXiv preprint arXiv:2109.06513.

A NPC functionalities

We include in the prompt the natural language com-
mands and the code that should be generated to
enable the following basic NPC functionalities:


https://doi.org/10.18653/v1/2020.acl-main.232
https://doi.org/10.18653/v1/2020.acl-main.232
https://doi.org/10.48550/ARXIV.2110.06536
https://doi.org/10.48550/ARXIV.2110.06536
https://doi.org/10.48550/ARXIV.2110.06536
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://doi.org/10.48550/ARXIV.2203.08745
https://doi.org/10.48550/ARXIV.2203.08745
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://ir.lib.uwo.ca/etd/2652/
https://ir.lib.uwo.ca/etd/2652/
http://arxiv.org/abs/2112.08696
http://arxiv.org/abs/2112.08696
http://arxiv.org/abs/2112.08696
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
https://doi.org/10.48550/ARXIV.2107.07567
https://doi.org/10.48550/ARXIV.2107.07567
https://doi.org/10.48550/ARXIV.2107.07567
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30

* Move forward

e Jump

* Look at the player
* Come to the player

Follow the player

Locate a block
Mine a block

Get the crafting recipe of an item

Craft an item

Open a chest

Take items from chest
¢ Put items into the chest
¢ Close the chest

List all items in inventory
* Check if item is in the inventory

Get count of item in inventory

Give item to player

B Post user study survey questions

Following the study, the participants filled out a
survey that had the following questions:
(a) How would you rate your skill in Minecraft?

(b) How would you rate your skill as a gamer in
general?

(c) Did you have fun while interacting with the
NPC in this study?

(d) How did you find this NPC interaction in com-
parison to the interactions you might have had
with dialog-capable NPCs in other games (e.g,
Skyrim)?

(e) How fluent were the NPC’s responses?
(f) How relevant were the NPC’s responses?
(g) How informative were the NPC’s responses?

(h) Did you feel like you were interacting with an
NPC with a consistent persona?

(i) When the NCP’s response was incorrect, how
much did that hurt your game experience?

(j) How magical did the experience of interacting
with an NPC feel? If it didn’t, can you explain
why not?

(k) What could be done to improve the experience
of interacting with the NPC?

35

(1) How useful were your interactions with this
NPC in helping you better understand how to
play Minecraft?

(m) More generally, would you prefer interacting
with such an NPC to learn a new game, as
opposed to a tutorial or an FAQ?

(n) Would you ever want to interact with an NPC
like this generally in any game?

(0) What are some useful applications of this kind
of NPC to enrich game experiences (in gen-
eral, not only in Minecraft)?

(p) If this technology could reach the level of a
companion (like an Al-gamer friend) that you
could take to any game, would you want to
use it?

C User study analysis
C.1 Get Crafting Recipe

In this part of the user study, some participants had
a longer conversation with the NPC around the re-
source. Table 5 includes such an interaction around
wooden pickaxe. The NPC is able to effectively
switch between code calling and natural language
response. In this particular example, the partici-
pant asked “can I only use oak to make a wooden
pickaxe, why not pine?” to understand if the NPC
knows that wooden pickaxes can be of various dif-
ferent types. Interestingly, the NPC first called the
recipe function to respond that you need sticks in
addition to oak planks to make the pickaxe. And
then it generated a natural language response where
it said you can use any wood to make the pickaxe.
This shows the kind of complex behavior that can
be generated by the codex model.

Table 6 is an example of a fail case for question
answering. Although the initial query ‘how do
I make a furnace’ correctly mapped to a recipe
function call, the later query ‘How do I make a
clock’ failed to do so since it was preceded with a
length language-only conversation. The participant,
however, was able to recover by asking a more
specific question ‘in terms of raw materials, what
do I need to make a clock?’.

C.2 Mine Resource

Table 7 shows sample interactions for mining task.
In the first case, the user’s query was similar to
that in table 3, however this time the NPC only
checked for dirt in its inventory and when it didn’t
find any dirt, it said “I have no dirt". But it did not



Player utterance

NPC response

I want a wooden pickaxe
how do I make a wooden pickaxe
where do I get planks?

how many logs do I need for 3 planks?
does it have to be oak?

can I only use oak to make a wooden pickaxe, why not pine?

I don’t have the ingredients needed for a wooden pickaxe!
I couldn’t make the wooden pickaxe

You need 3 oak planks and 2 sticks to make

a wooden pickaxe.

You need to craft oak planks from oak logs.

You need to chop down some oak trees.

You need 3 logs to make 3 planks

Yes, you will need 1 oak log to make 4 oak planks.

Yes, you will need to use oak logs to make oak planks.
No, you can’t make a wooden pickaxe with only oak planks,
you need to use oak planks and sticks.

You can use any wood to make a wooden pickaxe.

Table 5: Interaction between a participant and NPC around creation of a wooden pickaxe

Player utterance

NPC response

how do I make a furnace

where do I find cobblestone?

does depth matter?

do I need anything to collect cobblestone?
how do I pick up cobblestone?

how do you mine cobblestone?

How do I make a clock?

is there a way to make a clock

in terms of raw materials, what do I need to make a clock?

You need 8 cobblestones to make a furnace.

You can find cobblestone in the ground

No, depth does not matter.

You need a shovel to collect cobblestone

You need to mine cobblestone

You need a pickaxe to mine cobblestone

You need a clock to tell the time.

I think you can make a clock by combining a clock
and a compass

You need 4 gold ingots and 1 redstone to make a clock.

Table 6: Sample interaction where the NPC failed to map user query to recipe function for a resource that has a
crafting recipe. The user query preceded with lengthy context that required purely natural language response.

follow it with mining the dirt as it did in the first
case. When the user explicitly used the term ‘mine’
in their next utterance, the NPC mined the dirt for
them. This suggests that the model is not able to
always generalize “bring me" to the mine action.
In the second case, the player was more direct and
said “mine dirt" and in response the NPC mined
the dirt. Next the player said “drop dirt" and the
NPC went to the player and dropped the dirt close
to the player.

The third case is similar to the first. The notable
difference is that the model is able to understand
the compound instruction “can you mine some dirt
and give it to me" and correctly generates the code
to first mine and then drop the item near the user.
The fourth case depicts an instance of fail case be-
longing to the ‘natural language response instead of
function call’ category. Although this player used
the same utterance as in the first case, the NPC’s
response was purely natural language. When the
player followed this with “get me one dirt" and “i
want one dirt", both times, the model tried to call a
function getltem() that did not exist. After doing a
reset of the prompt, however, the user was able to
get the NPC to mine them the dirt.

The fifth case is a successful interaction around
mining of oak logs. In additon to generating the

36

correct code, the NPC’s responses (“I’'m chopping
the oak logs" and ““I dropped the oak logs") were
customized to the player’s phrasing (“please chop
oak logs" and “drop oak logs"). The sixth case de-
picts a success case for mining of 4 oak logs. The
last case depicts a failure case. when the user says
“bring me some oak logs please"”, they were expect-
ing the NPC to mine the logs and then give them
to the user. However, the model only generated
the code for mining the oak logs. When the user
followed it up with a verbose utterance (“you are
holding the logs, please throw them at my feed"),
the model was not able to map this to dropping of
the oak logs. Likewise, the phrase “pass me the
logs" also did not map to dropping of the oak logs.
Instead, in both these cases it generated a purely
natural language response (“I am holding the oak
logs").

C.3 Gather Minecraft Knowledge

Table 11 contains example queries where par-
ticipants tested NPC’s general knowledge about
Minecraft. We group them by different aspects.
In the first four aspects, the models gets several
questions wrong, suggesting the need for the inte-
gration of Minecraft specific knowledge base into
the model. The last aspect (personality of the NPC)



Figure 8: Clues for the first escape room: ‘I wonder
what these pressure plates do?’, ‘I think we need to
stand on both at the same time’.

Figure 9: Clues for the second escape room: ‘Maybe
that chest has what I need to get out’, ‘I think I can get
out if I get my hands on an Iron Sword’

suggests that users would like the NPC to have a
persona and a history of its previous game experi-
ence.

D Details of Escape Rooms

Both rooms had clues written on the wall or on
boards that helped users figure out the path to es-
cape. Figures 8 and 9 shows the clues written on
the wall/boards in the two rooms.

E Need for Visual Capabilities

During the user study, we found multiple instances
where participants were expecting the NPC to be
able to see the things in the games, just like a player
does. Figure 10 shows one such instance where
player pointed at a crafting table and asked the
NPC “what is this”. The NPC responded “this is a
chat” since it had only textual context. Figure 11
shows another instance where participant pointed at
alocation and told the NPC “place the crafting table
here”. Lastly, during the escape room interaction,
one participant looked at the pressure plate and
told the NPC “stand where I am looking”. These
cases strongly suggest the need for the NPC to have
visual capabilities.

37

Figure 10: Player pointing at an object and asking NPC
‘what is this?’

Figure 11: Player pointing at a location and asking the
NPC to place a block there.

Figure 12: Player asking the NPC to stand where they
are looking.



F Side Quest Generation

We also experiment with the idea of side quest gen-
eration. Side quests represent a large amount of
content that players engage with, they spend hours
wandering worlds based on instructions given by
NPCs. The more quests we can create automat-
ically, the longer the player can spend exploring
their favorite world. This technology is meant for
open-world games like in Fallout, the OuterWorlds,
or Skyrim. We design a separate prompt with few
sample quests. When the player asks for a quest,
the NPC generates a new quest where it requests
one or more items from the player and devises a
relevant backstory as to why the requested items
are needed.The NPC then checks whether or not
the player has completed the quest, and provides
a reward if so. The necessary code to execute this
logic is generated by the Codex model.

1. For example, if the player asks, "Do you have
a quest for me?". User (U) says hello to Quest-
Giver (Q), which is a prompt-based model
that is given some summary of the state of the
game (including items that exist in the game).

2. Q specifies in response: (a) backstory; (b)
reward; (c) quests; and (d) code logic that
checks for quest completion. Quests are items
to retrieve. An example of a quest backstory
would be: "The recent festival was wonderful,
but I fear my children were just a bit too ram-
bunctious. I hear there is a new potion for sale
that would slow down anyone who drinks it. I
would like to try it out on my kids. Please get
me some", in reference to a slowness potion.

3. U gets an item X

4. U says to Q some paraphrase of "I got the
X that you asked for", this triggers code that
results in U /give X to Q, followed by Q in-
specting inventory to verify it was given X
and that it previously asked for X

5. If all quests completed, Q says "here is your
reward", with an associated /give to U

38



Player Utterance

NPC Response

Generated Code

Please bring me 1 dirt

please mine 1 dirt for me

I have no dirt

Here you go!

if(isInInventory(bot, ‘dirt’)) {
goToPlayer(bot, username)
.then(() => dropltem(bot, ‘dirt’))
.then(() => bot.chat(“Here you go!"))
} else {
bot.chat(“I have no dirt");

mineBlock(bot, ‘dirt”)
.then(() => goToPlayer(bot, username))
.then(() => bot.chat(‘“Here you go!"))

mine dirt

drop dirt

I mined the dirt!

I dropped the dirt!

mineBlock(bot, ‘dirt”)

.then(() => goToPlayer(bot, username))
.then(() => bot.chat(“I mined the dirt"))
goToPlayer(bot, username)

.then(() => dropltem(bot, ‘dirt’))

.then(() => bot.chat(“I dropped the dirt!"))

can you get me a piece of dirt

can you mine some dirt and
give it to me

I have no dirt

Here you go!

if(isInlnventory(bot, ‘dirt’)) {
goToPlayer(bot, username)
.then(() => dropltem(bot, ‘dirt’))
.then(() => bot.chat(‘“Here you go!"))
} else {
bot.chat(“I have no dirt");

mineBlock(bot, ‘dirt’)

.then(() => goToPlayer(bot, username))
.then(() => dropltem(bot, ‘dirt’))
.then(() => bot.chat(‘“Here you go!"))

can you get me one dirt?
get me one dirt

i want one dirt

reset

bring me one dirt

mine one dirt

I can get you some dirt!

I have no dirt

I got your dirt

getltem is not defined
getltem is not defined

if(isInlnventory(bot, ‘dirt’)) {
goToPlayer(bot, username)
.then(() => dropltem(bot, ‘dirt’))
.then(() => bot.chat(“Here you go!"))
} else {
bot.chat(“I have no dirt");

mineBlock(bot, ‘dirt”)
.then(() => goToPlayer(bot, username))
.then(() => bot.chat(“I got your dirt"))

please chop oak logs

drop oak logs

I’'m chopping the oak logs

I dropped the oak logs

mineBlock(bot, ‘oak_log”)

.then(() => bot.chat(“I’'m chopping the oak logs"))

dropltem(bot, ‘oak_log’)
.then(() => goToPlayer(bot, username))

.then(() => bot.chat(“I dropped the oak logs"))

I need 4 oak logs. Can you help?

please give me the oak logs

Here you go!

Here you go!

mineBlock(bot, ‘oak_log’, 4)

.then(() => goToPlayer(bot, username))
.then(() => bot.chat(“Here you go!"))
dropltem(bot, ‘oak_log’, 4)

.then(() => goToPlayer(bot, username))
.then(() => bot.chat(‘“Here you go!"))

bring me some oak logs please

you are holding the logs,
please throw them at my feet
I am holding the oak logs

I got your oak logs

I am holding the oak logs

mineBlock(bot, ‘oak_log”)
.then(() => goToPlayer(bot, username))
.then(() => bot.chat(“I got your oak logs"))

pass me the logs

Table 7: Player utterance, NPC response and generated code during mining interaction.

39



Player Utterance

NPC Response

Generated Code

craft an oak plank

give me the oak plank

OK, I'll craft you an oak plank!
I made an oak plank

Here you go!

getIngredients(bot, *oak_planks’)
.then(ingredients => createQueryPrompt(bot,
ingredients, *Craft an oak plank’))
.then(queryPrompt =>
model.getCompletion(queryPrompt))
.then(completion =>
evaluateCode(completion, true))
.then(() => craftltem(bot, ’oak_planks’, 1))
.then(() => equipltem(bot, *oak_planks’))
.then(success => success ?
bot.chat("I made an oak plank!") :
_throw("I couldn’t make the oak plank"));
goToPlayer(bot, 3, username)
.then(success => success ?
dropltem(bot, *oak_planks’, 1) :
_throw("I couldn’t drop the oak plank"))
.then(success => success
&& bot.chat("Here you go!"));

how do you make an oak plank?

You need 1 oak log to make 1 oak
plank. I made an oak plank!

getIngredients(bot, *oak_planks’)
.then(ingredients =>
createQueryPrompt(bot, ingredients,
"How do you make an oak plank’))
.then(queryPrompt =>
model.getCompletion(queryPrompt))
.then(completion =>
evaluateCode(completion, true))
.then(() => craftltem(bot, ’oak_planks’, 1))
.then(() => equipltem(bot, *oak_planks’))
.then(success => success ?
bot.chat("I made oak planks!") :
_throw("I couldn’t make the oak plank"));

make me an oak plank

<user dropped 1 oak log>
make me an oak plank

I’ll make some oak planks!
I couldn’t make the oak plank

<NPC picked it up the oak log>
OK, I'll make you an oak plank.
I made oak planks!

getIngredients(bot, *oak_planks’)
.then(ingredients =>
createQueryPrompt(bot, ingredients,
’Make an oak plank’))
.then(queryPrompt =>
model.getCompletion(queryPrompt))
.then(completion =>
evaluateCode(completion, true))
.then(() => craftltem(bot, ’oak_planks’, 1))
.then(() => equipltem(bot, "oak_planks’))
.then(success => success ?
bot.chat("I made oak planks!") :
_throw("I couldn’t make the oak plank"));

getIngredients(bot, ’oak_planks’)
.then(ingredients =>
createQueryPrompt(bot, ingredients,
’Make an oak plank’))
.then(queryPrompt =>
model.getCompletion(queryPrompt))

.then(completion =>

evaluateCode(completion, true))

.then(() => craftltem(bot, ’oak_planks’, 1))
.then(() => equipltem(bot, *oak_planks’))
.then(success => success ?

bot.chat("I made oak planks!") :

_throw("I couldn’t make the oak plank"));

Table 8: Player utterance, NPC response and generated code for interaction around crafting an oak plank.

40



User Utterance

NPC Response

Generated Code

build a crafting table

I’1l build you a crafting table.
I built a crafting table

getIngredients(bot, *crafting_table’)
.then(ingredients =>
createQueryPrompt(bot, ingredients,
’Build a crafting table’))
.then(queryPrompt =>
model.getCompletion(queryPrompt))
.then(completion =>
evaluateCode(completion, true))
.then(() => craftltem(bot, ’crafting_table’, 1))
.then(() => equipltem(bot, ’crafting_table’))
.then(success => success ?
bot.chat("I built a crafting table!") :
_throw("I couldn’t build a crafting table"))

please make a crafting tabel

what do you need to make
a crafting table?

make me 4 oak planks please

what resources do you have now?

please craft a crafting table

OK, I'll make you a crafting table.

I couldn’t make the crafting table.

You need 4 oak planks to make
a crafting table.

OK, I’ll make you 4 oak planks!
I made 4 oak planks.

I have 16 oak planks in
my inventory

OK, I'll craft you a crafting table!
I made a crafting table.

getIngredients(bot, *crafting_table’)
.then(ingredients =>
createQueryPrompt(bot, ingredients,
’Please make a crafting table’))
.then(queryPrompt =>
model.getCompletion(queryPrompt))
.then(completion =>
evaluateCode(completion, true))
.then(() => craftltem(bot, ’crafting_table’, 1))
.then(() => equipltem(bot, ’crafting_table’))
.then(success => success ?
bot.chat("I built a crafting table!") :
_throw("I couldn’t build a crafting table"))
getIngredients(bot, *crafting_table’)
.then(ingredients =>
createQueryPrompt(bot, ingredients,
’What do you need to make a crafting table’))
.then(queryPrompt =>
model.getCompletion(queryPrompt))
.then(completion =>
evaluateCode(completion, true))
getIngredients(bot, oak_planks’)
.then(ingredients =>
createQueryPrompt(bot, ingredients,
’Make me 4 oak planks’))
.then(queryPrompt =>
model.getCompletion(queryPrompt))
.then(completion =>
evaluateCode(completion, true))
.then(() => craftltem(bot, "oak_planks’, 4))
.then(() => equipltem(bot, oak_planks’))
.then(success => success ?
bot.chat("I made 4 oak planks!") :
_throw("I couldn’t make the 4 oak planks"))
createQueryPrompt(bot, ,
’What resources do you have now’)
.then(queryPrompt =>
model.getCompletion(queryPrompt))
.then(completion =>
evaluateCode(completion, true))
getIngredients(bot, *crafting_table’)
.then(ingredients =>
createQueryPrompt(bot, ingredients,
’Craft a crafting table’))
.then(queryPrompt =>
model.getCompletion(queryPrompt))
.then(completion =>
evaluateCode(completion, true))
.then(() => craftltem(bot, ’crafting_table’, 1))
.then(() => equipltem(bot, ’crafting_table’))
.then(success => success ?
bot.chat("] made a crafting table!") :
_throw("I couldn’t make the crafting table"));

Table 9: Player utterance, NPC response and generated code for interaction around crafting a crafting table.

41



User Utterance

NPC Response

Generated Code

how do you make a chest?

make oak planks

chop oak

make oak planks

how many oak planks

do you have?

make a chest

place chest

You need 8 oak planks to make a chest.
I couldn’t make the chest.

OK, I'll make you some oak planks!
I couldn’t make the oak planks

I chopped 4 oak logs!

I made oak planks!

I have 12 oak planks in my inventory

I made a chest!

placeBlock is not a function

getlngredients(bot, ’chest’)
.then(ingredients =>
createQueryPrompt(bot, ingredients,

’How do you make a chest’))
.then(queryPrompt =>

model.getCompletion(queryPrompt))
.then(completion =>

evaluateCode(completion, true))
getlngredients(bot, ’oak_planks’)
.then(ingredients =>

createQueryPrompt(bot, ingredients,

’Make oak planks’))
.then(queryPrompt =>

model.getCompletion(queryPrompt))
.then(completion =>

evaluateCode(completion, true))
.then(() => craftltem(bot, *oak_planks’, 8))
.then(() => equipltem(bot, oak_planks’))
.then(success => success ?

bot.chat("I made oak planks!") :

_throw("I couldn’t make the oak planks"))
locateBlock(bot, "oak_log’, 0)
.then(success => success ?

chopTree(bot, oak_log’, 4) :

_throw("I couldn’t find any oak logs!"))
.then(success => success

&& bot.chat("I chopped 4 oak logs!"));
getIngredients(bot, oak_planks’)
.then(ingredients =>

createQueryPrompt(bot, ingredients,

’Make oak planks’))
.then(queryPrompt =>

model.getCompletion(queryPrompt))
.then(completion =>

evaluateCode(completion, true))
.then(() => craftltem(bot, "oak_planks’, 8))
.then(() => equipltem(bot, "oak_planks’))
.then(success => success ?

bot.chat("I made oak planks!") :

_throw("I couldn’t make the oak planks"))
createQueryPrompt(bot, ,

’How many oak planks do you have’)
.then(queryPrompt =>

model.getCompletion(queryPrompt))
.then(completion =>

evaluateCode(completion, true))
getIngredients(bot, *chest’)
.then(ingredients =>

createQueryPrompt(bot, ingredients,

’Make a chest’))

.then(queryPrompt =>
model.getCompletion(queryPrompt))
.then(completion =>
evaluateCode(completion, true))
.then(() => craftltem(bot, *chest’, 1))
.then(() => equipltem(bot, "chest’))
.then(success => success ?

bot.chat("I made a chest!") :

_throw("I couldn’t make the chest"))
locateBlock(bot, *chest’, 1)
.then(chestBlock =>

placeBlock(bot, chestBlock))
.then(success => success ?

bot.chat("I placed the chest!") :

_throw("I couldn’t place the chest")) height

Table 10: Player utterance, NPC response and generated code for interaction around crafting a chest.

42



User utterance

| NPC response

Numerical facts

how much hunger does steak restore
how much damage does a creeper do?
how many mobs spawn in a raid?
what is the build limit?

how long is a Minecraft day?

how many different potions are there?

Steak restores 4 hunger

A creeper does 5 damage

There are about 20 mobs that spawn in a raid!
The build limit is 256 blocks!

A day in Minecraft is 20 minutes.

There are currently 16 different potions.

Location of things

where can I find sponges?

where is the best place to look for diamonds?
where is the best place to look for coal?
where do I find a nether star?

You can find sponges in the ocean!

The best place to look for diamonds is in the ocean
The best place to look for diamonds is in the ocean
A nether star is dropped by the Wither.

Where do I find zombies? Zombies are in the nether!

Where can I find diamond Diamond can be found in the ground
Where do I find pigs? Pigs are in the forest!

Comparisons

what has longer pulse, a stone or a wooden button?
which is worse, a creeper or a the dragon?
who would win between a skeleton and a zombie?

A stone has a longer pulse!
The dragon is worse than the creeper
The zombie would win!

Purpose of things

What is redstone used for?
What does an oven do?

what does a tree drop

what does the ground drop?
what is a nether star used for?

Redstone is used to power things like furnaces and redstone torches
An oven is uded to cook things like bread and cake

A tree drops oak logs!

The ground drops dirt!

A nether star is used to cure a zombie villager.

Personality of the NPC

are you an NPC?

what do you like to do?

what have you built?

have you built a house?

where did you get your name?

What do you like to do in Minecraft?
What kinds of things do you like to make?

I’m not an NPC, I’'m a bot!

I like to build things!

I have built a lot of things

I have built a lot of things

I was named after the bot in the movie *Ace Ventura: Pet Detective
I like to make things in Minecraft!

I like to make things like furnaces, pickaxes, and crafting tables!

s

Table 11: Users testing NPC’s general knowledge about Minecraft.

43



