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Abstract
Warning: This paper contains examples of lan-
guage that some people may find offensive.

Online hate speech is a dangerous phenomenon
that can (and should) be promptly counteracted
properly. While Natural Language Process-
ing has been successfully used for the purpose,
many of the research efforts are directed toward
the English language. This choice severely lim-
its the classification power in non-English lan-
guages. In this paper, we test several learning
frameworks for identifying hate speech in Ital-
ian text. We release HATE-ITA, a set of multi-
language models trained on a large set of En-
glish data and available Italian datasets. HATE-
ITA performs better than mono-lingual mod-
els and seems to adapt well also on language-
specific slurs. We believe our findings will en-
courage research in other mid-to-low resource
communities and provide a valuable bench-
marking tool for the Italian community.

1 Introduction

Online hate speech is a dangerous phenomenon that
can (and should) be promptly counteracted prop-
erly. While Natural Language Processing supplies
algorithms to achieve that, most research efforts are
directed toward the English language. Indeed, there
is now a plethora of approaches and corpora (In-
durthi et al., 2019; Kennedy et al., 2020b; D’Sa
et al., 2020; Mollas et al., 2022; Kiela et al., 2021,
inter alia), that can be adopted for addressing En-
glish hate speech detection.

However, this choice strongly limits the clas-
sification power in other languages where fewer
resources are available, like Italian. Researchers
have put a great effort into improving Italian mod-
els (Fersini et al., 2018; Bosco et al., 2018; San-
guinetti et al., 2018, 2020). However, previous
work does not address the task systematically, re-
sulting in no clear evidence of the performance
of these models. Consider also that a competi-
tive baseline for hate speech detection in Italian

does not yet exist. Current datasets are not broad
enough to cover all the protected categories and are
generally based on a few thousand samples. Data
annotation is a costly process, and annotating hate
speech requires tremendous care.

Multi-lingual models give a possible way out
of this issue. Nozza (2021) shows that combining
multiple languages in training can help overcome
the apparent limitations of hate speech detection
models. We start from those conclusions to build
up our work by collecting a large dataset of En-
glish hate speech data that we combine with some
data in Italian. We use this new collection to train
multi-lingual models and show the performance
and examples across different Italian datasets.

The contribution of this short workshop paper is
thus straightforward: we thoroughly evaluate and
release to the community a set of models for Italian
hate speech detection obtained through fine-tuning
of multi-lingual models (HATE-ITA).1 These mod-
els are wrapped in high-level API that will allow
the community to access and use these models for
future research easily. These models set a new base-
line on two state-of-the-art hate speech detection
datasets in Italian. To the best of our knowledge,
this is the first paper that showcases the use of a
large English dataset in combination with a small
portion of Italian to create a robust resource for
hate speech detection in Italian.

Contribution 1) our experiments show that
multi-lingual models can effectively be used to
cover missing ground in some mid-to-low resource
languages; 2) while providing researchers with
strong baselines, our models can also be used to
study which areas and targets are still not yet cov-
ered, thus guiding directions for future research
(see Section 4.4). We release HATE-ITA as an
open-source Python library2.

1https://huggingface.co/MilaNLProc
2https://github.com/MilaNLProc/

hate-ita
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2 Datasets

2.1 Background

In this work, we consider the task of hate speech
as binary (hate/non-hate). To control the number
of samples for each protected group in the training
data, we consider the target of the hateful messages.
We select six target attributes based on the type of
discrimination, namely origin, gender identity, sex-
ual orientation, religious affiliation, and disability.
We consider these targets as the superset of classes
able to cover the majority of dataset-specific labels.
We discarded the other and none class from all the
datasets because they might represent other classes.

2.2 State-of-the-art Corpora

We describe the datasets we included in the training
set in this work. The English corpora have been
selected by filtering the ones covering our desired
targets from a public list3.

Italian For Italian, we consider two different cor-
pora proposed for Evalita shared tasks (Caselli
et al., 2018): the automatic misogyny identifica-
tion challenge (AMI18) (Fersini et al., 2018) for
hate speech towards women and the hate speech
detection shared task (HaSpeeDe18) (Bosco et al.,
2018) for the part related to hate speech towards
immigrants proposed in (Sanguinetti et al., 2018).
Both datasets comprise 2,500 instances for training,
500 for validation, and 1,000 for testing.

English Ousidhoum et al. (2019) present MlMa,
a multi-lingual multi-aspect hate speech analysis
dataset in Arabic, English, and French. The dataset
consists of tweets collected by querying language-
specific keywords.

Mollas et al. (2022) propose ETHOS, a multi-
label English hate speech detection dataset of Red-
dit posts. They employ an automatic pre-annotation
process where the posts are first labeled with a ma-
chine learning classifier. Only the uncertain ones
(within the [.4, .6] probability range) are manually
labeled using a crowdsourcing platform. Following
the authors, we binarise the values of each label
(if value ≥ 0.5 → 1 else value → 0). The targets
are identified only when the post is hateful, so we
discard the non-hateful ones. Here, we map the
targets national_origin and race to origin.

Kennedy et al. (2020c) collected a large set
of comments from different social media sources

3https://hatespeechdata.com/

(YouTube, Twitter, and Reddit). The annotation
process has been performed via a crowdsourcing
platform where each comment receives four ratings.
The authors further ensured that every annotator
received comments across all the hate speech scale.
Since the dataset is annotated with a continuous
hate score, we used a threshold set to binarise the
problem: if value < -1 → 0 and if value > 0.5 → 1.
We merged origin and race classes into the origin
class.

Mathew et al. (2021) collected English posts
from the social media platforms Twitter and Gab.
Then, they used a crowdsourcing platform for an-
notating each post as hate, offensive, or normal
speech; annotators also have to select the target
communities mentioned in the posts. Labels are
aggregated, and the final one is obtained through
majority voting. We discard the instance when
there is no majority (i.e., the three annotators have
assigned a different label). Here, we binarise the
targets as suggested by the authors into toxic (hate-
speech or offensive) and non-toxic (normal). We
also map the targets based on the grouping made
in the paper (see Table 3 in (Mathew et al., 2021)),
with the only exception of Indigenous and Refugee
that we assign to origin class.

Kennedy et al. (2020a) presented the Gab Hate
Corpus (GHC), a multi-label English corpus of
posts from the social network gab.com. Com-
ments were annotated by at least three trained an-
notators with the following classes: Call for Vio-
lence, Assault on Human Dignity, or Not Hateful.
Following Kennedy et al. (2020b), we aggregate
the first two for obtaining the hateful class. We se-
lected only the targets used in our study (removing
political) and merged nationality/regionalism and
race or ethnicity classes into the origin class.

Kiela et al. (2021) introduced a novel framework
for dynamically creating benchmark corpora. The
annotators are asked to find adversarial examples,
i.e., hard examples that a target model would mis-
classify. The obtained dataset also provides the
target group.4 Here, we mapped their targets to
ours, removing the ones not covered.

Table 1 shows the size of the dataset created
by combining all the afore-mentioned English cor-
pora.

4https://github.com/bvidgen/
Dynamically-Generated-Hate-Speech-Dataset

253

https://hatespeechdata.com/
https://github.com/bvidgen/Dynamically-Generated-Hate-Speech-Dataset
https://github.com/bvidgen/Dynamically-Generated-Hate-Speech-Dataset


Hate Non-hate Total

Disability 3,128 1,488 4,526
Gender 22,655 24,182 46,829
Origin 44,047 31,211 75,327
Religion 17,010 10,840 27,864
Sex. Orientation 9,980 12,312 22,313
Total 97,014 80,729 177,749

Table 1: Statistics of the English dataset.

3 Experimental Methodology

Our experimental setup illustrates three aspects: 1)
the performance of the different models on a train,
validation, and test setup that we construct on our
data, 2) the performance on different datasets (also
considering two new additional datasets that we
take as out-of-domain) and 3) a qualitative evalua-
tion section in which we use explainability methods
to assess which words are contributing more to the
prediction.

3.1 Models

In this paper, we tested different pretrained lan-
guage models. As multi-lingual models: the XLM
Roberta base and large models from (Conneau
et al., 2020) (XLM-Base, XLM-Large), multilin-
gualBERT5 (mBERT), and a model pre-trained on
multi-lingual twitter data (XLM-Twitter) (Barbieri
et al., 2021). As mono-lingual models for Ital-
ian: dbmdz/bert-base-italian-xxl-cased (ITA-Base-
XXL) and dbmdz/bert-base-italian-cased (ITA-
Base).6 In addition, we used DeHateBert (Aluru
et al., 2020), a fine-tuned mBERT model trained
on (Sanguinetti et al., 2018).

For the models we train, we run three differ-
ent experimental frameworks: 1) mono-lingual
(MONO), in which we train our models only on
Italian data; 2) multi-lingual (MULTI), in which we
combine the Italian and the English data for train-
ing; 3) zero shot, cross-lingual (ZERO), in which
we train a model only with English data. All the
models are tested on the Italian test data (Fersini
et al., 2018; Sanguinetti et al., 2018).

3.2 Data Setup

We used the splits provided by the associated
shared tasks for the Italian dataset. This setup en-

5https://github.com/google-research/
bert/blob/master/multilingual.md

6https://huggingface.co/dbmdz

Model MONO MULTI ZERO

XLM-Large 59.25 81.23 57.27
XLM-Base 52.36 80.74 54.47
XLM-Twitter 63.52 83.34 56.45
mBERT 66.93 80.48 51.87
ITA-Base-XXL 61.20 - -
ITA-Base 40.45 - -

Table 2: Macro-F1 results. The most frequent class
classifier has a Macro-F1 of 36.85.

sures performance comparability. For Sanguinetti
et al. (2018), we isolated 500 instances from the
training to be used as the validation set. For the
combined English data, we isolate 20% with strati-
fied sampling to be used as the validation set. The
details of the parameters used to fine-tune the mod-
els can be found in the Appendix A. Models are
trained for 5 epochs and evaluated every 50 steps,
and we select the best checkpoint considering the
validation loss.

4 Results

4.1 Overall Results

Table 2 shows the results only for the models that
we trained by testing on the official splits of each
Italian dataset (see Section 2.2). We have found
two crucial takeaways. First, the best multi-lingual
model (XLM-Large) performs sensibly better than
the best model trained only on mono-lingual data
(mBERT). Second, models subject to multi-lingual
training always outperforms mono-lingual ones.
Recent research (Nozza et al., 2020) has shown that
language-specific datasets are more effective when
used to fine-tune language-specific models; this
research suggests that training only on the small
set of Italian data is not enough even when using
a language-specific model: joint fine-tuning with
larger datasets is an effective way of obtaining more
accurate hate speech classifiers. This is a very in-
teresting result: considering the small amount of
Italian data used by the multi-lingual model, this
opens future applications of multi-lingual pipelines
to low-resource languages. Finally, the increase in
performance of the multi-lingual framework comes
directly from the Italian data we added to the train-
ing since the performance of the purely zero-shot
cross-lingual models is much worse than the mono-
lingual one.
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Model AMI18 AMI20 Sanguinetti et al. (2018) HaSpeeDe18 HaSpeeDe20

XLM-Twitter 82.10 72.73 78.53 74.59 72.68
XLM-Base 79.88 66.47 79.64 76.40 72.57
XLM-Large 80.37 73.75 79.96 78.13 75.86
DeHateBert 42.66 53.97 - - 70.79

Table 3: Results on different benchmark datasets for the multi-lingual models.

4.2 Results by Dataset

This section shows the results split by datasets
for our multi-lingual best models and for DeHate-
Bert. We show the results on the test sets of San-
guinetti et al. (2018) and AMI18 (Fersini et al.,
2018). Moreover, we also test on the complete test
set of HaSpeeDe18, Bosco et al. (2018) and the
shared task re-runs HaSpeeDe20 (Sanguinetti et al.,
2020) and AMI20 (Fersini et al., 2020b). Unfortu-
nately, DeHateBert was not fine-tuned following
the guidelines described in (Bosco et al., 2018) as
the authors used different splits. For this reason, we
cannot evaluate the performance of this model on
HaSpeeDe18 and (Sanguinetti et al., 2018) (some
examples of the examples in the test sets are used
for training).

Table 3 shows the results for each dataset. We
do not show results for Italian models as they per-
form much worse (see Table 2). These results show
that our models have consistent performance over
most categories. Indeed, XLM-Twitter, beats De-
HateBert by 39 and 19 points in F1 on AMI18 and
AMI20 respectively. This outcome further demon-
strates the need for protected group coverage in the
training set.

4.3 Results on Multi-Lingual HateCheck

We also use the recently introduced Multi-Lingual
HateCheck (MHC) (Röttger et al., 2022). MHC
is a suite of functional tests for multi-lingual hate
speech detection models that extend the original En-
glish HateCheck (Röttger et al., 2021). MHC tests
several functionalities that can affect hate predic-
tion (e.g., counterspeech, spelling variations, use of
slurs). Here, we used only the Italian subset. MHC
should serve as an external testbed to validate our
models.

Results in Table 4 show the consistent perfor-
mance of our models. XLM-Twitter and XLM-
Large strongly outperform the results of the origi-
nal baseline proposed by Röttger et al. (2022).

Model F1-h F1-nh Macro-F1

XLM-Twitter 84.74 61.17 72.96
XLM-Base 82.71 55.10 68.90
XLM-Large 88.63 65.88 77.26
Röttger et al. 81.50 57.80 69.60

Table 4: Results on different MULTILINGUAL HATE-
CHECK. We report F1 score the for hateful and non-
hateful cases, and the overall macro-F1 score.

P(hate) / True Class

0.002 / 0

0.925 / 1

come si fa a rompere la lavatrice p*rca p*ttana

sei una p*rca e p*ttana 

0.960 / 1 sono arrivati i finocchi

0.080 / 0 è arrivata l'insalata di finocchi

Figure 1: Examples of predictions with SHAP (Lund-
berg and Lee, 2017) contributions on a color scale; color
scale: blue (not-hate), red (hate). Translation available
in Appendix B.

4.4 Qualitative Evaluation

Figure 1 reports token contribution explanations
of four correct predictions from our multi-lingual
XLM-Large. The texts are complex examples
in Italian, as standard models usually misclassify
them (Nozza, 2021). We extracted token contri-
butions using the interpretability suite provided in
Attanasio et al. (2022b). The first two examples
regard the taboo Italian expression p*rca p*ttana
(literally p*rca (pig) + p*ttana (sl*t)). When used
separately (porca e puttana (pig and slut)), they
should be considered literally; when used together,
the two words form taboo expressions that do not
have a misogynistic connotation. The latter two ex-
amples regard the ambiguous Italian term finocchi.
The word means fennels in a food-related context,
but can also be translated to f*ggots when refereed
to individuals.
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5 Related Work

National evaluation campaigns and shared tasks
played a significant role in releasing non-English
corpora for hate speech detection (Wiegand et al.,
2018; Mulki and Ghanem, 2021; Basile et al., 2019;
Ptaszynski et al., 2019). Indeed, the research of
hate speech detection in Italian in mono-lingual set-
tings mainly revolves around the datasets (Fersini
et al., 2018; Bosco et al., 2018; Sanguinetti et al.,
2020; Fersini et al., 2020b) released for shared
tasks (Bakarov, 2018; Cimino et al., 2018; Attana-
sio and Pastor, 2020; Lees et al., 2020; Lavergne
et al., 2020; Fersini et al., 2020a; Attanasio et al.,
2022a, inter alia).

In NLP, the scarcity of data in languages beyond
English has generated an interest in zero-shot learn-
ing (Srivastava et al., 2018; Ponti et al., 2019; Pfeif-
fer et al., 2020; Wu et al., 2020; Bianchi et al., 2021,
2022, inter alia) and the application of this to hate
speech detection methods (Corazza et al., 2020;
Stappen et al., 2020; Aluru et al., 2020; Leite et al.,
2020; Rodríguez et al., 2021; Feng et al., 2020;
Pelicon et al., 2021). In particular, Aluru et al.
(2020) exploited several deep learning models and
multi-lingual embeddings for performing an exten-
sive analysis on 16 datasets in 9 different languages
in few- and zero-shot learning settings. Rodríguez
et al. (2021) use the pre-trained Language Agnos-
tic BERT Sentence Embeddings (Feng et al., 2020)
obtaining good results. Other research efforts fo-
cused on translating English data to enrich data
availability in other languages with mixed results:
Ibrohim and Budi (2019) shows that translations
do not bring good results using traditional machine
learning classifiers. However, more sophisticated
pipelines of translation and pre-training can indeed
provide some improvement over standard bench-
marks (Pamungkas et al., 2021; Wang and Banko,
2021).

6 Conclusion

This paper presents a novel resource for Italian
hate speech detection on social media text, HATE-
ITA. Researchers can use this new set of models
to assess the quality of new systems by providing a
more reliable benchmark. However, this is just the
first step. Indeed, we do not claim to have released
the final model for Italian hate speech detection;
HATE-ITA requires careful benchmarking to un-
derstand if it can accurately capture hate speech on
other targets.
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A Model Training

All the models are trained with the same pipeline.
We report the shared parameters in Table 5. As
mentioned in the table we fix the maximum num-
ber of epochs, but we evaluate the models during
training and eventually select the model with the
best validation loss. All the experiments are run 5
times and we take the average of the results.

Param Value

Batch Size 64
Warm Up Steps 50
Learning Rate 1e-3
Learning Epochs* 5
Optimizer AdamW
Betas 0.9 and 0.999
Max Length 100

Table 5: The main parameters we used to run the models.
*While epochs are 5, we remark that we are running a
step-wise evaluation.

B Examples Translation

We provide as literal as possible translations.

• IT: Sei una p*rca e p*ttana

• EN: you are pig and sl*t
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• IT: Come si fa a rompere la lavatrice p*rca
p*ttana

• EN: How the hell can you break the washing
machine

• IT: Sono arrivati i finocchi

• EN: Here come the f*ggots

• IT: È arrivata l’insalata di finocchi

• EN: Here it comes the fennel salad
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