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Abstract

On social media, additional context is often
present in the form of annotations and meta-
data such as the post’s author, mentions, Hash-
tags, and hyperlinks. We refer to these an-
notations as Non-Textual Units (NTUs). We
posit that NTUs provide social context beyond
their textual semantics and leveraging these
units can enrich social media text represen-
tations. In this work we construct an NTU-
centric social heterogeneous network to co-
embed NTUs. We then principally integrate
these NTU embeddings into a large pretrained
language model by fine-tuning with these addi-
tional units. This adds context to noisy short-
text social media. Experiments show that utiliz-
ing NTU-augmented text representations signif-
icantly outperforms existing text-only baselines
by 2-5% relative points on many downstream
tasks highlighting the importance of context to
social media NLP. We also highlight that in-
cluding NTU context into the initial layers of
language model alongside text is better than us-
ing it after the text embedding is generated. Our
work leads to the generation of holistic general
purpose social media content embedding.

1 Introduction

Understanding the social context is crucial to
the semantic understanding of a social media
post (Nguyen et al., 2016; Kulkarni et al., 2021;
Mishra and Diesner, 2018; Hovy, 2015). This is
especially true for short-text social media such as
Twitter where the textual content available for se-
mantic understanding is inherently limited. As
such, pretrained language models that ignore non-
textual context can demonstrate sub-optimal per-
formance when utilized for social-media NLP.
Fortunately, on social media, there are many
available non-textual units (NTUs), which provide
social contexts for any written text. For example,

$Equal Contribution.
smishra@twitter.com

Corresponding Author:

snehamehta,

69

vkulkarni}@twitter.com

the author of a post provides a social prior as to the
content written by that author. Additionally, the
author may annotate their post with meta-data such
as Hashtags, user mentions, or URLs and other me-
dia. These units can frame the content of a post
by providing social context, a stance, or additional
supporting material.

Previous research has investigated augmenting
pretrained language model representations with ad-
ditional signals. These include enrichments by
incorporating image features (Sun et al., 2020),
better-segmented Hashtags (Maddela et al., 2019),
URL understanding (Yasunaga et al., 2022), or
temporal-spatial contexts (Kulkarni et al., 2021).

However, these existing works are type-specific
and require a specialized technique to integrate
just one type of non-textual signal (e.g., requiring
an image encoder to extract image features). We
claim that this added complexity makes it difficult
to incorporate different non-textual signals and ef-
fectively train a joint model.

In this paper, our NTU enriched Language
Model (NTULM) can easily, without loss of gen-
erality, train and integrate graph embeddings (El-
Kishky et al., 2022a) for multiple types of NTUs.
NTULM can do this through the use of heteroge-
neous information network embeddings of NTUs.
This allows us to not only co-embed multiple NTU
types, but also incorporate a variety of interac-
tion types as edges in our network (e.g., author-
ing posts, favoriting Hashtags, and co-mentioning
users). This general embedding framework is sim-
ple and does not require specialized feature en-
coders for different NTU types. After obtaining
the NTU knowledge embeddings, NTULM deeply
integrates them with the language model at the to-
ken level and simply applies the default attention
mechanism used in the BERT encoder. To ensure
our alignment with (Kulkarni et al., 2021) which
allows only inclusion of a single context embed-
ding to BERT, we take the average of NTU embed-
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Figure 1: The framework of NTULM model. In the Knowledge Graph Embedding module, we use the engagement
data to build the heterogeneous graph and train large-scale NTU embeddings. In the NTU enriched LM pre-training,
we incorporate the mean NTU embedding at the end of the sequence. We compute the tweet embedding as the
average of the last hidden states and use it for multiple downstream tasks.

dings and attach the unified embedding at the end
of token embedding sequence. The framework of
NTULM is shown in Figure 1.

To ensure high coverage of the NTU vocabulary
across tweets, we construct a large-scale heteroge-
neous NTU graph ensuring high overlap with all
tweets. With the scalability of our graph embed-
dings, we can rapidly embed NTUs ensuring high
coverage across tweets.

We state and analyze the problem in Section 2,
followed by our proposed solution involving NTU
embedding and BERT integration in Section 3. In
Section 4 we evaluate our proposed solution com-
pared to text-only baselines. We go over related
works in Section 6 and conclude in Section 8.

2 Task Formulation

In this section, we formulate the task of enriching
pretrained language models with additional NTU
embeddings.

2.1 Non-Textual Units (NTUs)

Social media posts are composed of textual con-
tent and non-textual units (NTUs) which provide
additional context to the text. These include: the
author of a post, any mentioned users, annotated
topics via Hashtags, shared URLs, etc. While some
of these units are encoded textually within a post,
their meaning is not fully encapsulated by their
textual semantics. Instead, this meaning can be bet-
ter derived by understanding the social community
that engages with the NTUs. Take for example the
Hashtag n/proc which is used by the Natural Lan-
guage Processing community; this differs from nip
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which is used by the natural language processing
community and the Neuro-linguistic programming
community. While both Hashtags contain the sub-
word nlp, the real meaning is dependent on the
social context they occur (e.g., from the author and
social Hashtag embedding). This problem is more
difficult with user mentions which convey no lin-
guistic information in their textual form but can be
more informative if mentions are considered by the
social graph context of the user mentioned. We rep-
resent these NTUs using the heterogeneous social
graph where each NTU is a node, and multi-typed
edges represent their relation to other NTUs.

2.2 Integrating NTUs in Language Models

We extend the work introduced by LMSOC (Kulka-
rni et al., 2021), which demonstrates that the in-
tegration of temporal and geographical context in
Tweet texts leads to better performance on cloze
tasks. Similar to LMSOC, we take a base language
model and integrate the NTU information in this
model as additional context. Our goal is that each
token in the text should not just be contextualized
by other tokens in the text but also by the NTUs as-
sociated with the text. This approach is generic and
we describe the exact choice of language model
and NTU integration in detail later.

We improve on LMSOC by: (i) learning richer
representations for NTUs using Heterogeneous In-
formation Network embedding approaches (El-K-
ishky et al., 2022c), (ii) usage of social engagement
signals, (iii) utilizing multiple tweet contexts via
multiple NTU embeddings, (iv) assessing the per-
formance of these models on a wide variety of



downstream Tweet classification tasks.
Finally, we propose a holistic and end-to-end
pipeline for training models with NTUs.

3 NTU enriched Language Model

The framework of NTULM is shown in Figure 1.
In this section, We first introduce how we learn
high-quality NTU embeddings by embedding an
NTU-centric heterogenous social graph. We then
describe how we principally integrate these NTU
embeddings in a standard BERT-style language
model yielding Tweet embeddings that utilize both
text and NTU information.

We will use the Tweet in Table 1 as an example
for the following sections.

Author: userl

Tweet: Our paper was accepted at QW NUT'
with Quser2 Quser3 #nlproc #socialmedia
Favorited by: userd, userd

Table 1: Example tweet with engagement data of author,
mentions, Hashtags, and favorites

3.1 NTU Graph Construction and Embedding

We seek to understand NTUs based on the social
context in which they’re engaged and construct a
dense NTU representation such that similar NTUs
are close in this dense embedding space.

Constructing Heterogeneous Network: We
start by constructing a large-scale heterogeneous
graph G which models engagement between users
and a set of NTU-observed Tweets (any language
from 2018 till 2022). This heterogeneous graph
consists of nodes and edges where multiple edges
of different types can exist between a pair of nodes.
For this work, we focus on users and Hashtags
as NTUs, because they are the most accessible
NTUs and are available or retrievable on most
datasets. We construct the graph by taking a sample
of Tweets, extracting the mention users, Hashtags,
and the Tweet author. We also include a list of
users who have favorited the Tweet. This leads to a
graph where the nodes are either users or Hashtags.
We include an edge between a user and a Hashtag
if the user has either favorited a Tweet with the
Hashtag, authored a Tweet with the Hashtag, or is
co-mentioned with a Hashtag. One example of con-
structed graph is provided in Figure 2. Our choice
of edges is based on the easy availability of the user
Hashtag data via the Twitter APL.
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Figure 2: Graph construction with the example data in
Table 1 for training NTULM user-Hashtag embeddings.
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We construct this graph using data from January
Ist, 2018 to July 1st, 2022. This leads to a graph
with 60M Hashtags, 255M users, 5B authorship
edges, 3B favorite edges, and 0.9B co-mention
edges. We then learn heterogeneous graph em-
beddings by following the approach outlined in
TwHIN (El-Kishky et al., 2022c). This gives us a
set of embeddings for Users and Hashtags which
exist in the same embedding space.

Heterogeneous Graph Embedding: We learn
embedding vectors by applying a similar scheme
to TransE (Bordes et al., 2013). For a pair of nodes
in the graph (u;), (v;), we denote their embeddings
as u; and v;j respectively. We denote an edge as a
triplet e = (u;, 7, vj) which consists of head and
tail nodes (u;, v;) connected by a specific relation
(). We score these triplets with a scoring function
of the form f(u;, rk, vj) where ry is the relation
embedding. Our training objective seeks to learn
e parameters that maximize a log-likelihood con-
structed from the scoring function for e € G and
minimize for e ¢ G.

For simplicity, we apply a simple dot product
comparison between node representations. For an
edge e = (u;, %, v;), this operation is defined by:

fle) = flui,rp,vj) = ui"(vj +rx) (1)

As seen in Equation 1, we co-embed all nodes
in G by translating the tail node by the specific
relation vector and scoring their respective embed-
ded representations via dot product. The task is
then formulated as an edge (or link) prediction task.
We consume the input graph G as a set of (node,
relation, node) triplets of the form (u, r, v) which
represent a link between nodes in the graph. The
embedding training objective is to find node and re-
lation representations that are useful for predicting
which nodes are linked via that specific relation.
While a softmax is a natural formulation to edge



prediction, it is impractical due to the cost of com-
puting the normalization over a large vocabulary
of nodes. Following previous methods (Mikolov
et al., 2013; Goldberg and Levy, 2014), negative
sampling, a simplification of noise-contrastive es-
timation, can be used to learn the parameters. We
therefore maximize the following negative sam-
pling objective,

argmax Y [logo(f(e))+ . logo(—/(e))]

WEY - eeg e’€N(e)
(2)

where: N(u,r,v) = {(u,r,v") : v/ € T} U
{(,r,v) : v € U}. Equation 2 represents the
log-likelihood of predicting a binary “real" or “fake”
label for the set of edges in the network (real) along
with a set of the “fake” negatively sampled edges.
To maximize the objective, we learn u, r, and
v parameters to differentiate positive edges from
negative, unobserved edges. Negative edges are
sampled by corrupting positive edges via replac-
ing either the user or item in an edge pair with a
negatively sampled user or item. As user-item inter-
action graphs are very sparse, randomly corrupting
an edge in the graph is very likely to be a ‘negative’
edge absent from the graph.

3.2 Enriching Language Model with NTU
Embeddings

In this section, we explain how we integrate these
embeddings into a language model. We build on
the LMSOC framework (Kulkarni et al., 2021) to
append NTU embeddings into the MLM model.
However, unlike LMSOC, which has only one
context embedding, we now may have multiple
NTU embeddings for a given Tweet. Taking the
example above, the NTUs for the Tweet are userl,
WNUT, user2, user3, userd, userd, #nlproc,
#socialmedia. For our experiments we only limit
ourselves to author and hashtag NTUs, i.e. userl,
#nlproc, #socialmedia. This leads to a choice
we have to make for integrating these NTU embed-
dings into the Tweet text. For this work we simply
utilize the average of the NTU embeddings to keep
it aligned with the LMSOC framework. In future
we also plan to experiment with the social contexts
used in LMSOC.

Our final NTU embedding for the Tweet be-
comes the average embeddings of all NTUs in the
Tweet. Let us denote it by e,s,,. We concatenate
this embedding to the BERT’s subword embedding.
For NTUs not present in our NTU embeddings
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we use the average embedding of all the NTUs
in our embedding table as a placeholder embed-
ding. We found using the average as opposed to
a zero embedding was much more beneficial for
downstream task improvements. Furthermore, for
Tweets which have no NTUs we also use the aver-
age NTU embedding as a placeholder embedding.
Given a Tweet text, we tokenize it using the lan-
guage model tokenizer into a list of subwords, we
extract the subword embeddings from the model to
get a list of subword embeddings. Lets call these
subword embeddings [sg, s1, S2, ..., Sp]-

Since, ey, and s; are of different embedding
sizes, we use a linear layer to project ey, in the
space of s; and get s,4,. This linear layer is jointly
trained during MLM fine-tuning. We do not add
a position embedding to the NTU and we do not
add a type embedding to the NTU. Finally, we
get a new list of embeddings of the Tweet i.e.
S =[50, 1,52, -+ Sn, Sntu). We feed these embed-
ding to the next layers of a pre-trained Language
model. We call this model a NTU enriched Lan-
guage Model (NTULM).

The above model is then trained using the
Masked Language Modeling (MLM) task similar
to BERT model (Devlin et al., 2018). We use the
same setup for training via the MLM objective by
masking 15% of the tokens. This translates to the
model learning to predict the missing words by
using the NTU’s context.

While our approach is agnostic to the choice of
encoder, for all our experiments we train based on
a bert-base-uncased model using the Hug-
gingFace Transformers library.! We train the mod-
els till convergence for a max of 15 epochs on a
dataset of 1M English Tweets (see appendix B).

3.3 NTU-enriched Text Embeddings

Once the above model is trained, we use it in down-
stream tasks. Traditionally pre-trained language
models are utilized in downstream tasks is by fine-
tuning. However, this setup is not suitable for low-
cost inference where multiple downstream models
utilize the Tweet features, as doing inference on
the full large-scale language model is expensive
and doing inference of multiple BERT models is
prohibitive. Furthermore, having a single Tweet
embedding for all downstream tasks trades off ac-
curacy for computing cost and allows the usage of

"https://huggingface.co/
bert-base-uncased
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caching of these Tweet embeddings for multiple
downstream tasks. Motivated by this we gener-
ate fixed-size Tweet embedding which integrates
Text and NTU information. We compare it with
a text-only Tweet embedding. We refer to these
embeddings as embed,,s,, embeddings. Given
input embeddings S = [sg, S1, 52, .-+, Sn, Sptu] WE
pass it through a language model which outputs
Z = l20,21,22, - Zn, Zntu) embeddings. Our
NTULM embedding is the average of z; embeddings,
i.e. embed,iuim = %(ZZZ) We feed these embed-
ding as input to the downstream models and add a
set of MLP layers on top to get the final prediction
for each downstream model discussed in the exper-
iments below. Note, that during downstream task
training the NTULM is frozen and not updated.

4 Experiments

We conduct experiments on a variety of datasets
and downstream tasks to highlight the utility of
NTULM. Additionally, we perform an ablation to
measure the contribution of each type of NTU to
the overall NTULM performance.

4.1 Downstream Datasets

In order to evaluate the performance of our models,
we select the following downstream datasets. We
choose classification datasets for all our evaluations.
The statistics about our datasets can be found in
Table 5 in appendix.

Topic Prediction We use a dataset of Tweets
annotated with Topics as described in (Kulkarni
et al., 2022). This dataset consists of each Tweet
annotated with a set of topics. The task is defined
as: given a topic-based Tweet, retrieve tweets from
the same topic. The final evaluation is based on
Mean Average Precision (MAP).

Hashtag Prediction We use a dataset of 1M
Tweets with Hashtags. The Hashtag prediction
task is formulated as removing a single Hashtag
from the Tweet and trying to predict using the re-
maining information in a multi-class classification
task. For this task, we consider the top 1000 Hash-
tags as prediction classes and remove them from
the Tweets containing these Hashtags. We use an
equal number of Tweets for each Hashtag for our
training and test sets. We evaluate the performance
of NTULM and baselines using Recall @ 10.

SemEval Sentiment We use the SemEval Senti-
ment dataset from 2017. This dataset is released
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in the form of Tweet Ids and labels. We hydrate
the Tweet ids using the public Twitter Academic
API and fetch the author, Hashtags, and Tweet text
from the API response. Because of the deletion
of many Tweet ids we can not compare our results
with previous baselines hence our only compari-
son is with the BERT-based baseline we consider.
We use the macro F1 score as well. The SemEval
dataset consists of three tasks. Task A consists of
multi-class sentiment classification where given a
Tweet we need to predict the label among positive,
negative, and neutral. Task BD consists of topic-
based sentiment prediction using only two classes
positive, and negative. Task CE consists of Tweet
quantification where we need to predict sentiment
across a 5-point scale. For topic-based sentiment,
we concatenate the topic keyword at the end of
the Tweet text to convert it into a text-based clas-
sification problem. SemEval comes in data split
across years from 2013 to 2017. We evaluate our
models on train test splits from each year to as-
sess the temporal stability of our model. We mark
yearly evaluation as SemEval 1 and aggregate task
evaluation as SemEval 2 in our results.

SocialMedialE Social Media IE (Mishra, 2021,
2019, 2020) (SMIE) is a collection of datasets spe-
cific for evaluation of Information Extraction Sys-
tems for Social Media. It consists of datasets of
classification and sequence tagging tasks (Mishra,
2019). We utilize the classification tasks from So-
cial Media IE and use them for our evaluation. We
use the macro-F1 score for each task. Similar to
SemEval this dataset is also released as a set of
Tweet IDs and labels, hence we hydrate it using the
same approach as SemEval dataset.

TweetEval TweetEval (Barbieri et al., 2020) was
released as a benchmark of classification tasks for
Tweets. It consists of anonymized Tweet texts with-
out Tweet Ids. The Tweet text has been anonymized
by removing user mentions. This limits us to only
use Hashtag-based NTUs for this dataset but we
include this dataset to highlight the utility of our
approach on this standard benchmark.

4.2 MLM Fine-tuning

We start by fine-tuning the BERT and NTULM mod-
els on 1M Tweet data randomly sampled from lat-
est English tweets posted between 2022-06-01 and
2022-06-15. We experiment with training using
different contexts. We only consider the inclusion



Model NTUs Perplexity Topic TweetEval SemEval 1 SemEval 2 Hashtag SMIE
bits MAP meanF1 mean F1 meanF1 Recall@10 mean F1
BERT - 4425 0.327 0.577 0.527 0.515 0.689 0.548
NTULM author 4412 0325 0.579 0.527  0.548 0.693 0.548
NTULM Hashtag 4391 0.339 0.586 0.534 0.545 0.711 0.539
NTULM author+Hashtag 4.344 0.343 0.590 0.534 0.545 0.720 0.549

Table 2: NTULM compared with BERT (MLM fine-tuned, section 4.2). We report the perplexity, mean average
precision (MAP) in Topic, Recall@10 in Hashtag Prediction, and mean F1 score in the rest.

of author and Hashtag contexts as they are the high-
est coverage contexts across all the datasets. User
mentions are few and, in most datasets, they are
anonymized. In MLM fine-tuning, we keep all the
hyperparameters of NTULM model the same as the
BERT baselines.

4.3 Downstream Task Evaluation

For each task we feed the unified NTULM embed-
ding embedyryy into a 2-layer perceptron (MLP)
with the final layer being a softmax over possible la-
bels. For topic classification, we use a sigmoid acti-
vation for multiple labels. We use the task-specific
evaluation to compare the model. We report ag-
gregate improvement on each dataset using the av-
erage of metrics for each task in the dataset. Of-
ten we report the percentage gains over the BERT
model, i.e. SCOT@N;E;?@;;"T;BERT % 100, this is posi-
tive when NTULM is better than BERT. It denotes
the percentage NTULM is better or worse than the
BERT model. Absolute scores are in table 3. In the
experiments of downstream tasks, we keep MLP
architectures and hyper-parameters the same for
NTULM and baselines.

5 Evaluation Results

5.1 Perplexity Experiments

As highlighted in Table 2 we find that the MLM per-
plexity (lower is better) of all the NTULM models is
much better than the perplexity of the BERT-based
model. In terms of percentage change, NTULM
(author+Hashtag) has about 2% gain in perplexity
than the BERT model. This highlights that using
contextual information helps improve the MLM
task performance. This result is aligned with the
findings of LMSOC (Kulkarni et al., 2021) that
also found that using temporal and geographic con-
text leads to better language modeling. Our work
highlights that the graph context of authors and
Hashtags encodes additional information which
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Figure 3: NTULM versus BERT (MLM fine-tuned see
section 4.2) on Tweets with and without NTU overlap
with NTU embeddings. See Table 4 for details.

can help in better modeling of the text. We also
observe that the Hashtag and author information
alone is helpful in lowering the perplexity of the
model with Hashtags being more effective. This is
also aligned with the usage of Hashtags. Authors
on Twitter often use Hashtags to supply topical or
community information to a Tweet. Hence, using a
Hashtag’s graph information improves the model’s
prediction of the masked words.

5.2 Downstream Classification

Now we look at how the NTULM model performs
across various downstream tasks. As highlighted
in Table 2 (detailed numbers in Table 3), we see
that enriching text with NTU information from au-
thor+Hashtag always leads to significant perfor-
mance improvement over BERT fine-tuned using
MLM pre-training on the same dataset as NTULM
as explained in section 4.2. Specifically, the au-
thor+Hashtag NTULM model is 5% better than
BERT on Topic prediction, 2% better on TweetEval,
6% better on SemEval 1, 4.5% better on SemEval
2, and 0.2% better on SocialMedialE.
Furthermore, we assess how the model’s per-
formance changes compared to BERT for Tweets
which have NTUs overlapping (Overlap) with our
NTU embeddings versus those which do not have



Sub-Dataset NTULM NTULM NTULM BERT

Dataset or Metric BERT user hashtag user+hashtag post-concat Best
Topic topic ‘32.65% 32.49% 33.91% 34.32% 38.76%‘ BERT-post-concat
Hashtag recall@10 | 68.88% 69.26% 71.09% 71.99%  72.23%|  BERT-post-concat
TweetEval emoji 18.02% 18.10% 18.44% 18.55% 19.07 % BERT-post-concat
TweetEval emotion 67.70% 67.65% 66.61% 67.31% 67.60% BERT
TweetEval hate 59.50% 58.59% 56.87% 58.16% 57.83% BERT
TweetEval irony 60.37% 62.03% 66.67 % 66.17% 58.88% NTULM (hashtag)
TweetEval offensive 72.51% 72.73% 73.71% 73.63% 71.52% NTULM (hashtag)
TweetEval sentiment 60.66% 61.40% 60.66% 61.43% 58.65% |[NTULM (user+hashtag)
TweetEval stance 64.88% 65.11% 67.48% 67.56 % 66.89% |NTULM (user+hashtag)
SemEval 1 2013-A 67.75% 67.61% 67.94% 68.38% 67.54% \NTULM (user+hashtag)
SemEval 1 2014-A 26.80% 26.06% 27.96 % 26.91% 27.48% NTULM (hashtag)
SemEval 1 2015-A 53.70% 53.73% 54.63% 54.63% 53.31% NTULM (hashtag)
SemEval 1 2015-BD 41.17% 41.36% 40.45% 41.08% 41.61% BERT-post-concat
SemEval 1 2016-A 51.38% 52.52% 53.01% 53.70% 51.50% |NTULM (user+hashtag)
SemEval 1 2016-BD 92.60% 92.65% 92.71% 92.56% 92.58% NTULM (hashtag)
SemEval 1 2016-CE 35.58% 35.20% 36.86% 36.74% 35.25% NTULM (hashtag)
SemEval 2 task-A 48.02% 47.91% 47.54% 49.72 % 48.71% |NTULM (user+hashtag)
SemEval 2 task-BD 71.56% 71.92% 71.95% 72.59 % 71.33% |NTULM (user+hashtag)
SemEval 2 task-CE 34.83% 34.69% 34.95% 33.92% 34.71% NTULM (hashtag)
SMIE abusive 1 55.84% 56.27% 55.08% 55.69% 54.04% NTULM (user)
SMIE abusive 2 47.36% 47.04% 44.82% 48.00 % 37.01% |[NTULM (user+hashtag)
SMIE sentiment 1 |76.01% 74.52% 74.73% 75.14% 73.93% BERT
SMIE sentiment 2 | 61.86% 62.20% 61.70% 61.92% 61.61% NTULM (user)
SMIE sentiment 3 | 58.69% 58.73% 58.80% 58.43% 58.70% NTULM (hashtag)
SMIE sentiment 4 | 53.78% 54.75% 55.68% 56.48% 57.23% BERT-post-concat
SMIE sentiment 5 |60.22% 59.65% 59.86% 59.77% 57.99% BERT
SMIE sentiment 6 | 59.66% 59.58% 60.15% 59.81% 59.43% NTULM (hashtag)
SMIE uncertainity 1| 55.37% 55.81% 51.52% 56.00% 57.14% BERT-post-concat
SMIE uncertainity 2| 19.03% 19.05% 16.80% 17.63% 19.11% BERT-post-concat
Table 3: Absolute metrics across all tasks and their subtasks. Best score and Second best score.

SMIE=SocialMedialE, BERTC=BERT-post-concat with user+Hashtag NTUs, BERT=BERT (MLM fine-tuned,

section 4.2).

Dataset ‘ Overall Overlap Non-Overlap
INTULM BERTC |[NTULM BERTC|NTULM BERTC
TweetEval 227% -0.80%| 2.73% -3.33%| 0.31% 0.65%
SemEval 1 1.36% 0.08%| 2.59% 0.21%| 0.65% 0.02%
SemEval 2 593% 0.22%(-0.07% 0.58%| 2.62% 0.07%
SocialMedialE| 0.20% -2.12%(-0.27% -4.12%| 1.98% -22.22%
Hashtag 451% 4.87%| 5.61% 7.46%| 1.01% -3.37%
Topic 510% 18.72%| 6.92% 34.72%| 0.71% -4.17%

Table 4: % improvement over BERT (MLM fine-tuned see section 4.2) by using user+Hashtag NTUs in NTULM
versus BERT-post-concat (BERTC) across datasets, and split across overlapping and non-overlapping subsets.
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Topic Task % improvement over baseline BERT model

® user+Hashtag = Hashtag = user

7.50%
L

Overall

5.00%

2.50%

0.00%

-2.50%

Overlap NonOverlap

Figure 4: Performance on Tweets with and without NTU
overlap with NTU embeddings on Topic prediction task.
BERT is MLM fine-tuned see section 4.2.

Tweets overlapping with the NTU embeddings
(Non-overlap). Our focus here is that for Tweets
with NTU overlap we should see significant im-
provement wherease for Tweets without NTU over-
lap we should not change our performance com-
pared to BERT as we are back to the text-only
setting. As highlighted in Figure 3 and Figure 4 we
see that the improvement over BERT on the over-
lap case is higher than the overall improvement
for the author+Hashtag NTULM across most tasks.
Furthermore, in the no-overlap case, we do not
see any significant loss in performance, in fact au-
thor+Hashtag is slightly better compared to BERT
(0.7%). This highlights that the NTU contexts are
really helping in the downstream tasks whenever
the NTUs are available.

5.3 Case-study: Concatenation vs Attention

Next, we consider the setting of concatenating the
NTU embeddings to BERT embeddings. This is
a simple setting where the language model is not
able to generate a Text specific embedding based
on NTUs. This is a simple baseline which is of-
ten adopted when integrating signals from multiple
sources. We name this model BERT-post-concat
and compare it with our best model NTULM (au-
thor+Hashtag). Here again we compare these mod-
els against the BERT model which only uses text
and was was MLM fine-tuned as explained in sec-
tion 4.2.

Figure 5 (detailed numbers in Table 3) high-
lights that using the NTULM approach is much
better than BERT-post-concat for most tasks, ex-
cept for topic and Hashtag prediction. For Hashtag
dataset NTULM is only 0.34% worse in relative per-
formance compared to BERT-post-concat. How-
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Figure 5: NTULM versus BERT-post-concat as measured
in improvement over BERT (MLM fine-tuned see sec-
tion 4.2) across tasks.

ever, in the topic prediction task NTULM is -11.5%
worse. We hypothesize that the improved perfor-
mance of BERT-post-concat is a result of the direct
relevance of Hashtag embeddings to the dowstream
task of Topic and Hashtag relevance as NTULM’s
frozen embedding dilutes this information. We
confirm this by inspecting the performance (see Ta-
ble 4) of BERT-post-concat on the overlapping and
non-overlapping slices of the data, where BERT
post-concat is better than NTULM on the overlap-
ping slice of the data but is worse than NTULM and
even BERT on the non-overlapping slice. This high-
lights that BERT post-concat is overfitting to the
NTU signal in the data which is not the case with
NTULM. We reason that fine-tuning NTULM for the
downstream task may address this issue and plan
to explore this in a future work given that the focus
of this work is to generate high quality general pur-
pose Tweet embeddings. Furthermore, for TweetE-
val and SocialMedialE BERT post-concat performs
even worse than BERT. This can be attributed to the
indirect relevance of author and Hashtag identity
to the downstream tasks in these datasets which the
BERT-post-concat cannot capture.

6 Related Work

Knowledge Graph and Language Models: Pre-
vious work has investigated language models with
knowledge graphs. KI-BERT (Faldu et al., 2021)
extracts and computes the embedding of concepts
and ambiguous entities from text and appends them
to the end of the sentence to enrich a language



model. K-BERT (Liu et al., 2020) uses an exter-
nal knowledge graph to build a sentence tree and
integrates the knowledge graph before the embed-
ding layer of BERT. KEPLER (Wang et al., 2021)
incorporates knowledge embedding of text enti-
ties as an auxiliary objective alongside the tradi-
tional MLM objective for BERT. While these mod-
els have shown improvements on some domain-
specific tasks, they only consider the textual entities
from the text itself, which limits their performance
in modeling language with rich contextual informa-
tion (e.g. social networks). Different from existing
works, the NTULM framework can incorporate the
contextual information of multi-type non-textual
units and therefore has a better performance in
understanding contexts. There are also some ex-
isting works that use social contexts to enrich the
language model, such as LMSOC (Kulkarni et al.,
2021). However, instead of considering the non-
text units such as author, Hashtag, URL, and men-
tion, LMSOC only considers time and location. In
addition, LMSOC only supports incorporating one
type of social context, which limits its performance
on texts with rich contexts.

Representation Learning of Social Graph:
Learning the representation of social entities such
as tweets and users has been a popular research
topic over the past few years. InfoVGAE (Li et al.,
2022) constructs a bipartite heterogeneous graph
and designs an orthogonal latent space to learn
explainable user and tweet embeddings. In kNN-
Embed (El-Kishky et al., 2022b), a bi-partite Twit-
ter follow graph is embedded for account sugges-
tion. TIMME (Xiao et al., 2020) uses multi-task
learning of link prediction and entity classifica-
tion to jointly learn the representation of tweets.
SEM (Pougué-Biyong et al., 2022) creates a top-
ical Twitter agreement graph and embeds nodes
via a random-walk approach to detect user stances
on given topics. (Zhang et al., 2022) proposes a
second-order continuous GNN to improve the so-
cial network embeddings. Most of these models
do not consider textual information of social graph.
Only the interaction data is applied to learn the
representation of social entities, which limits their
performance on downstream tasks.

Language Model for Social Networks: Many
existing works have explored the training of
language models in the social network domain.
Tweet2vec (Vosoughi et al., 2016) proposes a
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character-level CNN-LSTM encoder-decoder to
improve the tweet embeddings. DICE (Naseem
and Musial, 2019) leverages contextual text to ad-
dress polysemy and improve the tweet embedding
quality. TweeTIME (Tabassum et al., 2016) pro-
poses a minimally supervised method to address
the time recognition problem from Twitter texts.
TweetBERT (Qudar and Mago, 2020) models are
trained on the domain-specific data of tweet texts
and outperform traditional BERT models. How-
ever, most of these language model does not take
NTUs into consideration and cannot benefit from
the interaction and engagement data.

7 Limitations

One major limitation of our work is the averaging
of heterogenous embeddings. This approach works
because the embeddings trained using TransE lie in
the same space but is less expressive as we are not
including explicit information around which type
of NTU an embedding is coming from. In future we
plan to address this by including type specific em-
bedding transformation before doing an averaging.
However, given the results, this naive averaging of
user+Hashtag still works well across tasks it shows
the utility of our approach. Next, our training data
is relatively small and less diverse with only 1M
Tweets as budgetary and computational constraints
influenced our experimental setup. In this paper,
our goal has been to demonstrate the effectiveness
of our approach paving the way for future work
that scales up the training and uses a much larger
and more diverse dataset. Finally, our results are
on English specific datasets and models. While the
utilization of NTU embeddings make our approach
language agnostic, in future we plan to demonstrate
its impact across multiple languages.

8 Conclusion

In this paper we introduced NTU enriched Lan-
guage Model (NTULM), a method of enriching a
pretrained BERT model by adding graph embed-
dings of non-textual units. We experimentally
demonstrate that including NTU representations
alongside text yields superior representations vs
a text-only language model. On several down-
stream tasks, we show significant improvment us-
ing NTULM representations compared to BERT-
based sentence embeddings.



References

Francesco Barbieri, Jose Camacho-Collados, Luis Es-
pinosa Anke, and Leonardo Neves. 2020. TweetEval:
Unified benchmark and comparative evaluation for
tweet classification. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1644—1650, Online. Association for Computational
Linguistics.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ahmed El-Kishky, Michael Bronstein, Ying Xiao, and
Aria Haghighi. 2022a. Graph-based representation
learning for web-scale recommender systems. In
Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages
4784-4785.

Ahmed El-Kishky, Thomas Markovich, Kenny Leung,
Frank Portman, and Aria Haghighi. 2022b. knn-
embed: Locally smoothed embedding mixtures for

multi-interest candidate retrieval. arXiv preprint
arXiv:2205.06205.

Ahmed El-Kishky, Thomas Markovich, Serim Park,
Chetan Verma, Baekjin Kim, Ramy Eskander, Yury
Malkov, Frank Portman, Soffa Samaniego, Ying
Xiao, and Aria Haghighi. 2022c. Twhin: Embed-
ding the twitter heterogeneous information network
for personalized recommendation.

Keyur Faldu, Amit Sheth, Prashant Kikani, and Hemang
Akbari. 2021. Ki-bert: Infusing knowledge context
for better language and domain understanding. arXiv
preprint arXiv:2104.08145.

Yoav Goldberg and Omer Levy. 2014. word2vec ex-
plained: deriving mikolov et al.’s negative-sampling
word-embedding method. CoRR, abs/1402.3722.

Dirk Hovy. 2015. Demographic factors improve clas-
sification performance. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 752-762, Beijing, China. Asso-
ciation for Computational Linguistics.

Vivek Kulkarni, Kenny Leung, and Aria Haghighi. 2022.
CTM - a model for large-scale multi-view tweet topic
classification. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies: Industry Track, pages 247-258, Hybrid:
Seattle, Washington + Online. Association for Com-
putational Linguistics.

78

Vivek Kulkarni, Shubhanshu Mishra, and Aria Haghighi.
2021. LMSOC: An approach for socially sensitive
pretraining. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 2967—
2975, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Jinning Li, Huajie Shao, Dachun Sun, Ruijie Wang,
Yuchen Yan, Jinyang Li, Shengzhong Liu, Hang-
hang Tong, and Tarek Abdelzaher. 2022. Unsuper-
vised belief representation learning with information-
theoretic variational graph auto-encoders. In Pro-
ceedings of the 45th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, SIGIR ’22, page 1728-1738, New York,
NY, USA. Association for Computing Machinery.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-bert: En-
abling language representation with knowledge graph.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 2901-2908.

Mounica Maddela, Wei Xu, and Daniel Preotiuc-Pietro.
2019. Multi-task pairwise neural ranking for hashtag
segmentation. arXiv preprint arXiv:1906.00790.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Compositional-
ity. In Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc.

Shubhanshu Mishra. 2019. Multi-dataset-multi-task
neural sequence tagging for information extraction
from tweets. In Proceedings of the 30th ACM Con-
ference on Hypertext and Social Media, HT *19, page
283-284, New York, NY, USA. Association for Com-
puting Machinery.

Shubhanshu Mishra. 2020. Information extraction from
digital social trace data with applications to social
media and scholarly communication data. Ph.D. the-
sis, University of Illinois at Urbana-Champaign.

Shubhanshu Mishra. 2021. Information extraction from
digital social trace data with applications to social
media and scholarly communication data. SIGWEB
Newsl., (Spring).

Shubhanshu Mishra and Jana Diesner. 2018. Detecting
the correlation between sentiment and user-level as
well as text-level meta-data from benchmark corpora.
In Proceedings of the 29th on Hypertext and Social
Media, HT ’18, page 2-10, New York, NY, USA.
Association for Computing Machinery.

Usman Naseem and Katarzyna Musial. 2019. Dice:
Deep intelligent contextual embedding for twitter
sentiment analysis. In 2019 International confer-
ence on document analysis and recognition (ICDAR),
pages 953-958. IEEE.

Dong Nguyen, A Seza Dogruoz, Carolyn P Rosé,
and Franciska De Jong. 2016. Computational so-
ciolinguistics: A survey. Computational linguistics,
42(3):537-593.


https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.48550/ARXIV.2202.05387
https://doi.org/10.48550/ARXIV.2202.05387
https://doi.org/10.48550/ARXIV.2202.05387
http://arxiv.org/abs/1402.3722
http://arxiv.org/abs/1402.3722
http://arxiv.org/abs/1402.3722
https://doi.org/10.3115/v1/P15-1073
https://doi.org/10.3115/v1/P15-1073
https://doi.org/10.18653/v1/2022.naacl-industry.28
https://doi.org/10.18653/v1/2022.naacl-industry.28
https://doi.org/10.18653/v1/2021.findings-emnlp.254
https://doi.org/10.18653/v1/2021.findings-emnlp.254
https://doi.org/10.1145/3477495.3532072
https://doi.org/10.1145/3477495.3532072
https://doi.org/10.1145/3477495.3532072
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.1145/3342220.3344929
https://doi.org/10.1145/3342220.3344929
https://doi.org/10.1145/3342220.3344929
https://shubhanshu.com/phd{_}thesis/
https://shubhanshu.com/phd{_}thesis/
https://shubhanshu.com/phd{_}thesis/
https://doi.org/10.1145/3460304.3460307
https://doi.org/10.1145/3460304.3460307
https://doi.org/10.1145/3460304.3460307
https://doi.org/10.1145/3209542.3209562
https://doi.org/10.1145/3209542.3209562
https://doi.org/10.1145/3209542.3209562

John Pougué-Biyong, Akshay Gupta, Aria Haghighi,
and Ahmed El-Kishky. 2022. Learning stance em-
beddings from signed social graphs. arXiv preprint
arXiv:2201.11675.

Mohiuddin Md Abdul Qudar and Vijay Mago. 2020.
Tweetbert: a pretrained language representation
model for twitter text analysis. arXiv preprint
arXiv:2010.11091.

Lin Sun, Jiquan Wang, Yindu Su, Fangsheng Weng,
Yuxuan Sun, Zengwei Zheng, and Yuanyi Chen. 2020.
Riva: a pre-trained tweet multimodal model based
on text-image relation for multimodal ner. In Pro-
ceedings of the 28th International Conference on
Computational Linguistics, pages 1852—-1862.

Jeniya Tabassum, Alan Ritter, and Wei Xu. 2016. Tweet-
ime: A minimally supervised method for recognizing
and normalizing time expressions in twitter. arXiv
preprint arXiv:1608.02904.

Soroush Vosoughi, Prashanth Vijayaraghavan, and Deb
Roy. 2016. Tweet2vec: Learning tweet embeddings
using character-level cnn-lstm encoder-decoder. In
Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Infor-
mation Retrieval, pages 1041-1044.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.
Kepler: A unified model for knowledge embedding
and pre-trained language representation. Transac-
tions of the Association for Computational Linguis-
tics, 9:176-194.

Zhiping Xiao, Weiping Song, Haoyan Xu, Zhicheng
Ren, and Yizhou Sun. 2020. Timme: Twitter
ideology-detection via multi-task multi-relational em-
bedding. In KDD, pages 2258-2268.

Michihiro Yasunaga, Jure Leskovec, and Percy Liang.
2022. Linkbert: Pretraining language models with
document links. arXiv preprint arXiv:2203.15827.

Yanfu Zhang, Shangqgian Gao, Jian Pei, and Heng
Huang. 2022. Improving social network embedding
via new second-order continuous graph neural net-
works. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, KDD ’22, page 2515-2523, New York, NY, USA.
Association for Computing Machinery.

79


https://doi.org/10.1145/3534678.3539415
https://doi.org/10.1145/3534678.3539415
https://doi.org/10.1145/3534678.3539415

A Appendix: Dataset Statistics

Here we provide the statistics of our datasets for downstream evaluation experiments in Table 5.

Hashtag User

dataset task split| Tweets| NTUs > I NTUs >1cE €cE| NTUs >1NTUs >1cE €E
TweetEval emoji train| 45,000 28,251 46.37% 42.82% 92% 0 0.00% 0.00% 0%
TweetEval emoji test| 50,000 30,989 43.10% 39.68% 92% 0 0.00% 0.00% 0%
TweetEval emotion train| 3,257| 1,652 43.94% 43.14% 98% 0 0.00% 0.00% 0%
TweetEval emotion test| 1,421 1,071 47.29% 46.94% 99% 0 0.00% 0.00% 0%
TweetEval hate train| 9,000| 2,375 25.69% 25.10% 98% 0 0.00% 0.00% 0%
TweetEval hate test| 2,970 1,615 50.20% 49.70% 99% 0 0.00% 0.00% 0%
TweetEval irony train| 2,862 2,132 38.36% 36.09% 94% 0 0.00% 0.00% 0%
TweetEval irony test 784 857 72.19% 71.30% 99% 0 0.00% 0.00% 0%
TweetEval offensive train| 11,916 1,937 14.40% 14.10% 98% 0 0.00% 0.00% 0%
TweetEval offensive test 860| 1,276 73.26% 71.28% 97% 0 0.00% 0.00% 0%
TweetEval sentiment train| 45,615 6,956 18.35% 16.63% 91% 0 0.00% 0.00% 0%
TweetEval sentiment test| 12,284 3,933 39.14% 37.63% 96% 0 0.00% 0.00% 0%
TweetEval stance 1 train 587 455 9591% 95.91% 100% 0 0.00% 0.00% 0%
TweetEval stance 1 test 280 277 100.00% 100.00% 100% 0 0.00% 0.00% 0%
TweetEval stance 2 train 461 423 100.00% 100.00% 100% 0 0.00% 0.00% 0%
TweetEval stance 2 test 220 251 100.00% 100.00% 100% 0 0.00% 0.00% 0%
TweetEval stance 3 train 355 416 100.00% 100.00% 100% 0 0.00% 0.00% 0%
TweetEval stance 3 test 169 201 100.00% 100.00% 100% 0 0.00% 0.00% 0%
TweetEval stance 4 train 597 353 100.00% 100.00% 100% 0 0.00% 0.00% 0%
TweetEval stance 4 test 285 198 100.00% 100.00% 100% 0 0.00% 0.00% 0%
TweetEval stance 5 train 620 407 97.10% 97.10% 100% 0 0.00% 0.00% 0%
TweetEval stance 5 test 295 201 100.00% 100.00% 100% 0 0.00% 0.00% 0%
Topic topic train| 100,000 57,873 38.59% 38.25% 99%| 89,091 100.00% 14.05% 14%
Topic topic test| 20,000 17,122 38.26% 37.90% 99%| 19,006 100.00% 14.19% 14%
Hashtag hashtag train|899,606|282,603 70.92% 70.49% 99% 392,751 100.00% 9.76% 10%
Hashtag hashtag test|100,372| 64,939 70.64% 70.23% 99%| 67,903 100.00% 9.65% 10%
SemEval 2013-A train| 7,110 1,599 20.03% 17.86% 89%| 9,069 100.00% 23.52% 24%
SemEval 2013-A test| 2,284 573 20.53% 18.13% 88%| 2,814 100.00% 24.87% 25%
SemEval 2014-A train 30 14 100.00% 96.67% 97% 49 100.00% 16.67% 17%
SemEval 2014-A test| 1,253 254 16.12% 13.89% 86%| 1,563 100.00% 26.18% 26%
SemEval 2015-A train 318 71 22.33% 20.75% 93% 412 100.00% 20.75% 21%
SemEval 2015-A test| 1,461 329 20.88% 19.37% 93%| 1,887 100.00% 21.15% 21%
SemEval 2015-BD train 316 71 2247% 20.89% 93% 408 100.00% 20.57% 21%
SemEval 2015-BD test| 1,454 333 21.05% 19.46% 92%| 1,887 100.00% 21.18% 21%
SemEval 2016-A train| 6,180 1,230 17.52% 15.95% 91%| 7,775 100.00% 21.13% 21%
SemEval 2016-A test| 12,754 1,932 19.53% 17.88% 92%| 14,822 100.00% 20.31% 20%
SemEval 2016-BD train| 4,404 977 1835% 16.53% 90%| 5,586 100.00% 22.48% 22%
SemEval 2016-BD test| 6,494 1,079 19.16% 17.51% 91%| 7,776 100.00% 21.40% 21%
SemEval 2016-CE train| 6,180 1,230 17.52% 1595% 91%| 7,775 100.00% 21.13% 21%
SemEval 2016-CE test| 12,754| 1932 19.53% 17.88% 92%| 14,822 100.00% 20.31% 20%
SemEval task-A train| 31,019| 5,296 19.32% 17.50% 91%| 37,154 100.00% 21.82% 22%
SemEval task-A test| 4,609| 1,483 28.77% 2693% 94%| 5,919 100.00% 17.40% 17%
SemEval task-BD train| 11,675 2,143 19.08% 17.40% 91%| 14,245 100.00% 21.72% 22%
SemEval task-BD test| 2,324 656 26.25% 24.44% 93%| 3,234 100.00% 16.70% 17%
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Table 5 continued from previous page

Hashtag User

dataset task split| Tweets| NTUs > I NTUs >1<cE €cE| NTUs >1NTUs >1cE €E
SemEval task-CE train| 18,887| 3,009 18.88% 17.25% 91%| 22,223 100.00% 20.59% 21%
SemEval task-CE test| 4,606| 1,485 28.90% 27.05% 94%| 5,914 100.00% 17.41% 17%
SMIE abusive 1 train| 32,997| 11,177 30.06% 27.98% 93%| 48,619 100.00% 23.81% 24%
SMIE abusive 1 test| 9,070| 3,619 2949% 27.67% 94%| 14,272 100.00% 23.24% 23%
SMIE abusive 2 train| 8,859| 1,015 36.12% 35.22% 98%| 4,109 100.00% 21.01% 21%
SMIE abusive 2 test| 2,442 377 37.84% 36.45% 96%| 1,602 100.00% 20.64% 21%
SMIE sentiment 1 train| 6,543 999 15.77% 13.48% 85%| 4,269 100.00% 27.31% 27%
SMIE sentiment I test| 1,813 378 15.00% 12.58% 84%| 1,607 100.00% 27.74% 28%
SMIE sentiment 2 train| 20,679| 4,430 18.48% 16.18% 88%| 30,566 100.00% 28.58% 29%
SMIE sentiment2 test| 5,719| 1,398 18.57% 16.49% 89%| 8,566 100.00% 28.66% 29%
SMIE sentiment 3 train| 3,601 775 100.00% 100.00% 100%| 3,829 100.00% 15.16% 15%
SMIE sentiment3 test| 1,007 299  99.90% 99.90% 100%| 1,276 100.00% 14.60% 15%
SMIE sentiment 4 train 558 194 98.75% 98.03% 99% 491 100.00% 21.15% 21%
SMIE sentiment 4 test 557 161 99.64% 99.64% 100% 522 100.00% 15.26% 15%
SMIE sentiment 5 train| 1,575 27 95.11% 95.05% 100% 720 100.00% 23.94% 24%
SMIE sentiment5 test 444 17 97.52% 97.52% 100% 317 100.00% 22.75% 23%
SMIE sentiment 6 train| 9,616] 2,052 19.21% 17.34% 90%| 12,165 100.00% 22.56% 23%
SMIE sentiment 6 test| 17,347| 2,879 19.66% 17.89% 91%| 20,456 100.00% 21.05% 21%
SMIE uncertainity 1 train| 1,058 380 57.84% 56.711% 98%| 1,390 100.00% 30.62% 31%
SMIE uncertainity 1 test 314 128 59.55% 58.28% 98% 402 100.00% 25.80% 26%
SMIE uncertainity 2 train 534 206 44.76% 43.07% 96% 620 100.00% 19.29% 19%
SMIE uncertainity 2 test 145 65 36.55% 36.55% 100% 187 100.00% 15.86% 16%

Table 5: Downstream Data Statistics: NTUs means unique NTUs in the dataset, >1 NTUs means % Tweets with
more than 1 NTU, >1 € E is % Tweets with more than 1 NTU which exist in our Embeddings F, and € E is %
Tweets having an NTU in E only across Tweets with an NTU. SMIE = SocialMedialE.
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B Training Details

All models were trained on NVIDIA A100 GPUs.
Our context embedding size was 200. Models were
trained for maximum of 15 epochs, using eary stop-
ping via the eval dataset. We used the adam_hf
optimizer in HuggingFace library > with default
learning rate of 5e-5.

Downstream models were trained with an 2
layer MLP on top of BERT or NTULM embed-
dings. MLP hidden layer has weight matrix of
size 768 * 768 with a tanh activation. Final layer
has size 768 * num_classes.

NTU embeddings were trained on 8 NVIDIA
A100 GPUs using the following config: dimen-
sion=200, learning rate=0.05, epochs=10, batch
size=100,000, batch negatives=500, uniform nega-
tives=500, num partitions=1.

https://huggingface.co/docs/
transformers/main_classes/trainer#
transformers.TrainingArguments.optim
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