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Abstract

A significant number of studies apply acoustic
and linguistic characteristics of human speech
as prominent markers of dementia and depres-
sion. However, studies on discriminating de-
pression from dementia are rare. Co-morbid de-
pression is frequent in dementia and these clin-
ical conditions share many overlapping symp-
toms, but the ability to distinguish between de-
pression and dementia is essential as depres-
sion is often curable. In this work, we in-
vestigate the ability of clustering approaches
in distinguishing between depression and de-
mentia from human speech. We introduce a
novel aggregated dataset, which combines nar-
rative speech data from multiple conditions,
i.e., Alzheimer’s disease, mild cognitive im-
pairment, healthy control, and depression. We
compare linear and non-linear clustering ap-
proaches and show that non-linear clustering
techniques distinguish better between distinct
disease clusters. Our interpretability analysis
shows that the main differentiating symptoms
between dementia and depression are acoustic
abnormality, repetitiveness (or circularity) of
speech, word finding difficulty, coherence im-
pairment, and differences in lexical complexity
and richness.

1 Introduction

Depressive disorder and dementia are clinical con-
ditions that both impose a substantial cost globally
in terms of mortality and morbidity and have a sig-
nificant negative impact on social and economic
productivity (Jaeschke et al., 2021). Distinguish-
ing between these conditions has proven to be a
challenging task (Murray, 2010) as they frequently
co-occur and have many overlapping symptoms
such as apathy (Lee and Lyketsos, 2003), changes
in sleep patterns (Thorpe, 2009), and concentration
issues (Korczyn and Halperin, 2009). However, de-
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pression is generally curable by either psychother-
apy or medication, while dementia is a neurode-
generative disease, which is caused by irreversible
deterioration of the nervous system. It is hence cru-
cial to differentiate between these two conditions
(Fraser et al., 2016Db).

Previous studies demonstrated that machine
learning methods and speech analysis are useful in
detecting dementia from depression (Fraser et al.,
2016b; Murray, 2010). However, the machine
learning methods used in prior studies suffer from
three main limitations:

Firstly, the datasets applied in prior literature
only comprise Alzheimer’s disease (AD), healthy
control (HC), and depression (Depr) samples of
senior participants with similar demographic distri-
butions and recording environments (Fraser et al.,
2016b; Murray, 2010). In real world settings, the
datasets are very noisy due to variations in the data
collection procedures. Additionally, dementia is
not necessarily of the AD type in all cases, and
other types of dementia like mild cognitive impair-
ment (MCI) can be included.

Secondly, to the best of our knowledge, previous
studies have only used classification approaches
to detect AD from HC (Pulido et al., 2020; Bal-
agopalan et al., 2021; Balagopalan and Novikova,
2021), Depr from HC (Wu et al., 2022), or AD
from Depr (Fraser et al., 2016b) using speech. This
might not be an ideal simulation of the real world
diagnosis procedure. In clinical diagnosis, the first
step is to detect the symptoms and explore the pat-
tern changes in patient records before diagnosing
the disease (Regier et al., 2013), while in classi-
fication, we first map the samples to the disease
labels and then, apply interpretability methods to
explore the differentiating features between the
classes (Gordon, 1999).

Lastly, prior studies demonstrated that acoustic

Proceedings of the 2022 COLING Workshop: The 8th Workshop on Noisy User-generated Text (W-NUT 2022), pages 24-37



and linguistic features extracted from spontaneous
speech provide valuable indicators of both mental
disorders such as depression (Low et al., 2020) and
cognitive impairment like AD or MCI (Fraser et al.,
2016a; Boschi et al., 2017). However, they did
not derive a strong conclusion about the main dis-
tinguishing speech-based symptoms in classifying
dementia from depression (Fraser et al., 2016b).

To address the first limitation, we generate a
novel aggregated dataset, which combines several
speech datasets comprising AD, MCI, HC, and
Depr labels with a variety of data collection pro-
cedures. To address the second and third limita-
tions, we introduce a novel approach, which applies
clustering techniques to inspect what data-driven
feature categories (symptoms) are the main differ-
entiators between AD, MCI, Depr, and HC sam-
ples. We then use the distinguishing symptoms as
a feature selection technique to classify AD, MCI,
and Depr. Our key findings indicate that 1) the
non-linear clustering approaches outperform the
linear techniques in terms of separability level of
distinct disease clusters; 2) acoustic abnormalities,
variations in lexical complexity and richness, repet-
itiveness (or circularity) of speech, word finding
difficulty, and coherence impairment are the main
differentiating symptoms to distinguish between
different types of dementia (e.g., AD and MCI),
and Depr; 3) data-driven differentiators are able to
substantially improve performance of classification
across diseases.

2 Related Work

There has been a substantial number of studies on
detecting either dementia (e.g., MCI or AD) or
depression from spontaneous speech. However,
little has been done to distinguish dementia from
depression using discourse patterns.

To discriminate dementia from depression,
Fraser et al. (2016b) applied speech data from the
Pitt corpus in the DementiaBank database (Becker
et al., 1994), elicited from elderly participants
through picture description task, with ‘Cookie
Theft’ (Goodglass et al., 2001) used as a picture.
The samples were labeled as either AD or HC based
on a personal history and a neuropsychological as-
sessment battery (Iverson et al., 2008). A subset
of the samples were labeled as depressed or non-
depressed based on the established threshold on
Hamilton Depression Rating Scale (HAM-D) test
scores (Bagby et al., 2004). To explore the distin-
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guishing discourse patterns between AD and Depr,
Murray (2010) collected a speech dataset of elderly
participants (with Depr, AD, or HC labels) who
completed a picture description task, with Norman
Rockwell’s painting ‘The Soldier’ used as a picture.
Samples with Depr were diagnosed based on DSM-
IV criteria (Frances et al., 1995) and samples with
AD met NINCDS-ADRDA criteria (Tierney et al.,
1988) for probable AD. The datasets used in these
studies didn’t include other types of dementia such
as MCI, and all of their samples followed the same
data collection procedure, while we create an ag-
gregated dataset, which consists of AD, MCI, HC,
and Depr samples from different speech datasets
with various data collection procedures.

Murray (2010) examined whether elderly indi-
viduals with depression can be distinguished from
those at early stages of AD through distinct patterns
in narrative speech. Based on their findings, indi-
viduals with AD generated less informative speech
compared to the depressed patients in their pic-
ture descriptions, while there were no significant
differences in the informativeness of the narratives
between HC and Depr samples. Furthermore, quan-
titative and syntactic measures of discourse did not
differ across the three groups. However, Murray
(2010) did not attempt to make predictions using
the data.

Fraser et al. (2016b) investigated if the auto-
mated AD screening tools misclassify cognitively
healthy participants with Depr as AD when using
narrative speech. They also used linguistic and
acoustic features to classify non-depressed AD sub-
jects from those with comorbid depression from
speech elicited through picture description task. In
their study, they compared logistic regression (LR)
with support vector machines (SVM) classifica-
tion models. Their performance in distinguishing
between depressed and non-depressed AD sam-
ples was moderate (accuracy = 0.658) due to a
wide range of overlapping symptoms. In addi-
tion, they only applied classification approaches
and they didn’t derive the most informative fea-
tures discriminating between AD patients with and
without depression. In the present work, we apply
clustering approaches to cluster the diseases based
on the similarities in the discourse patterns, and
apply interpretability techniques to explore the dis-
tinguishing feature categories (symptoms) between
distinct diagnosis labels (i.e., HC, AD, MCI, and
Depr). We use the differentiating symptoms as a



feature selection technique to classify the diseases.

3 Methods
3.1 Dataset

In this paper, we generated an aggregated su-
perset of the datasets listed in Table 1 that con-
tains speech recordings of English-speaking par-
ticipants describing pictures. All the audio record-
ings were manually transcribed by trained transcrip-
tionists, using the CHAT protocol and annotations
(MacWhinney, 2014).

Dataset AD MCI Depr HC
DementiaBank (Becker et al., 1994) 178 138 0 229
Healthy Aging 0 214 0 211
ADReSS (Luz et al., 2020) 54 0 0 54
DEPAC+ (Tasnim et al., 2022) 0 0 222 532
AD Clinical Trial 1616 0 0 0
Aggregated dataset 1848 352 222 1026

Table 1: Speech datasets used. For each dataset, the
number of samples with each diagnosis label is reported
in the following columns.

DementiaBank (Becker et al., 1994) and
ADReSS (Luz et al.,, 2020) are the datasets
of pathological speech elicited from participants
through picture description task, with ‘Cookie
Theft’ (Goodglass et al., 2001) used as a picture.
The recordings are labeled as AD, MCI, and HC.

Healthy Aging is the dataset of speech elicited
from community volunteers through picture de-
scription task, with ‘Family in the Kitchen’, ‘Man
in the Living Room’, ‘Food Market’, ‘Picnic’,
‘Grandmother’s Birthday’, and ‘Romantic Dinner’
proprietary images. The recordings are labeled as
possible HC and MCI. Soft labels are based on the
established threshold on Montreal Cognitive As-
sessment (Nasreddine et al., 2005) screening tool.

DEPACH+ is the extended version of the DEPAC
(Tasnim et al., 2022) dataset, with more samples
collected using the same data collection procedure.
This is a dataset of narrative speech elicited from
participants through picture description task, with
‘Family in the Kitchen’ and ‘Man Falling’ images.
The recordings are labeled as HC and Depr. Soft
labels are based on the established threshold on
Patient Health Questionnaire-9 (PHQ-9) (Kroenke
et al., 2001) test scores!.

AD Clinical Trial is a dataset of speech record-
ings from the baseline and screening visits of a clin-

IThe participants with a PHQ-9 score < 9 were labeled as
HC, and the remaining samples with a PHQ-9 score > 10 met
criteria for symptoms of depression.
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ical trial elicited from participants through picture
description task, with ‘Family in the kitchen’, ‘Man
in the Living Room’, ‘Grandmother’s Birthday’,
‘Romantic Dinner’, and ‘Cookie Theft’ (Goodglass
et al., 2001) images. All the recordings are labeled
as AD according to the the National Institute on Ag-
ing/Alzheimer’s Association citeria (Frisoni et al.,
2011).

All images other than ‘Cookie Theft’ (Goodglass
et al., 2001) were designed to match the ‘Cookie
theft’ picture in style and the amount of information
content units according to picture design principles
described by Patel and Connaghan (2014).

3.2 Feature Extraction

We extracted 220 acoustic features from audio, and
325 linguistic features from the associated tran-
scripts. These features were classified into the fol-
lowing categories (the full list is in Appendix A):

Acoustic: This category includes spectral and
voicing-related features (e.g., Mel-Frequency Cep-
stral Coefficients (MFCC) (Rudzicz et al., 2012),
Fundamental frequency (Fy), or statistical func-
tionals of Zero-Crossing Rate (ZCR) (Kulkarni,
2018)) describing the acoustic properties of the
sound wave.

Syntactic Complexity: This category comprises
variables like the frequencies of various production
rules from the constituency parsing tree of the tran-
scripts (Chae and Nenkova, 2009), or Lu’s syntac-
tic complexity features (Lu, 2010) enumerating the
rate of usage of different syntactic structures.

Discourse Mapping: This category consists of
features such as utterance distances, or speech-
graph features (Mota et al., 2012) like graph density
(Mirheidari et al., 2018) to calculate the repetitive-
ness or circularity of speech.

Lexical Complexity and Richness: This cate-
gory accounts for the variables like frequency of
words, or measures of vocabulary diversity such
as type-token ratio (Richards, 1987) describing the
lexical complexity and vocabulary richness of the
transcripts.

Information Content Units: This category in-
cludes variables such as the number of objects,
subjects, locations, and actions used to measure
the number of items correctly named in the picture
description task previously found to be associated
with memory impairment (Croisile et al., 1996).

Sentiment: This category contains features such
as valence, arousal, and dominance scores (War-



riner et al., 2013) for all words and word types
describing the sentiment of the words used.

Word Finding Difficulty: This category con-
sists of features including speech rate, duration of
words, and number of filled (e.g., um, uh) and un-
filled pauses as signs of word finding difficulty,
which result in less fluid or fluent speech.

Coherence (Global and Local): This category
includes variables like average, minimum, and max-
imum cosine distances (Mirheidari et al., 2018) be-
tween subsequent utterances (local coherence) or
between utterances and key words (global coher-
ence) using word2vec (Church, 2017) representa-
tion of the utterances to calculate their semantic
similarity.

4 Proposed Novel Approach: Data-Driven
Approach to Detecting Differentiating
Speech-based Symptoms between
Dementia and Depression

4.1 Dimensionality Reduction and Clustering

We first applied dimensionality reduction tech-
niques to the preprocessed features (see Appendix
B). To explore linear dimension reduction ap-
proaches, we applied Principal Component Anal-
ysis (PCA) (Wold et al., 1987) as well as Lin-
ear Discriminant Analysis (LDA) (Izenman, 2013).
For non-linear dimensionality reduction techniques,
we used Uniform Manifold Approximation and
Projection (UMAP) (Mclnnes et al., 2018) and
T-distributed Stochastic Neighbour Embedding (t-
SNE) (Van der Maaten and Hinton, 2008) (See de-
tails of implementation and hyperparameter setting
in Appendix C).

Next, we clustered the low-dimensional data
points by K-Means clustering (Mysiak, 2020) to
group them in an unsupervised way into distin-
guishable clusters. Clusters were meant to repre-
sent groups associated with data labels - HC, AD,
MCI, and Depr.

4.1.1 Performance Metrics

The performance of the clustering methods was
measured based on the following metrics:

1. Optimal number of disease clusters deter-
mined by the elbow method (Yuan and Yang,
2019)) after training K-Means clustering on
the feature embeddings resulted from dimen-
sion reduction. The ideal case is to derive 4
distinct disease clusters in line with the 4 di-
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agnosis labels in the aggregated dataset (i.e.,
HC, AD, MCI, and Depr).

. Silhouette score (Rousseeuw, 1987) was used
to measure the level of cluster separability. Its
value ranges from -1 to 1. ‘1’ means clus-
ters are well apart from each other and clearly
distinguished. ‘0’ means that the distance be-
tween clusters is not significant. ‘-1’ means
clusters are assigned in the wrong way (Bhard-
waj, 2020). The results were recorded for K=4
(the number of labels in the dataset), where
K is the number of clusters generated by K-
Means clustering.

4.2 Analysis of the Differentiating Feature
Categories between the Disease Clusters

Analysis of the differentiating feature categories
across the disease clusters consists of 3 main steps:
LIME-based explanation of the low-dimentional
embeddings, analysis of feature contributions to
the non-linear components, and feature selection
using the differentiating feature categories in clas-
sification of AD vs MCI vs Depr.

4.2.1 Local Explanation of the Non-linear
Embeddings by LIME

We applied a LIME-for-t-SNE? interpretability
method developed by Bibal et al., 2020 to find
the main differentiating feature categories between
AD, Depr, MCI, and HC diagnosis labels. This ap-
proach adapts Local Interpretable Model-agnostic
Explanations (LIME) (Ribeiro et al., 2016) to lo-
cally explain t-SNE components.

4.2.2 Analysis of Feature Contributions to the
Non-linear Components

In this experiment, we investigated what feature
categories are the main differentiating factors be-
tween the distinguishable disease clusters derived
by K-Means clustering. As the first step, we ran-
domly selected 10 HC samples from each cluster
and applied Lime-for-t-SNE model to explain the
local trends in their neighborhood. We also picked
10 Depr and 10° AD data points from the associated
disease clusters and followed the same procedure
to locally explain the low-dimensional components.

ZPublicly ~available at https://github.com/
vu-minh/mlteam-lime-for-tsne

3We selected 10 samples from each disease cluster, since
each group must contain at least 5 samples for both Kruskal-
Wallis H-Test (Lomuscio, 2021) and Mann-Whitney U-Test
(Bedre, 2021) explained in 4.2.2.
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Dimension reduction

Is the optimal number of

Silhouette score

method clusters (K) equal to 4? (K=4)
PCA (linear) 0.2010
LDA (linear) 0.4125
t-SNE (non-linear) X 0.4723
UMAP (non-linear) X 0.5580

Table 2: Summary of the performance of all dimensionality reduction techniques. The second column checks
if the optimal number of clusters is equal with the total number of labels (e.g., HC, MCI, AD, and Depr) in the
aggregated dataset. ‘K’ refers to the number of clusters in K-Means clustering applied on the embeddings in the

low-dimensional space.

W1 (R2=0.807) W2 (R? =0.852)

pos_VERB
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fundamental_frequency_min
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Lu_MLT
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Figure 1: Explanation of the local trends in the t-SNE
embeddings for a selected Depr instance. The figure at
the top indicates the weights of the highly-contributed
features explaining each local dimension (R? score in-
dicates how well the local trends are linearly explained
per each axis.) The blue transparency in the scatter plot
represents the errors of the linear model applied locally
on the original instance. The figure at the bottom left
is a zoom on the zone of interest for local explanation,
with projected samples in red (Bibal et al., 2020)

Figure 1 depicts an example of the local expla-
nation of t-SNE embeddings for a selected Depr
instance. For each candidate sample, we generated
a vector of length 9 indicating the total number of
highly-contributed features explaining either quasi-
horizontal (e.g., W1 in Figure 1) or quasi-vertical
(e.g., W2 in Figure 1) trends per each feature cate-
gory including acoustic, syntactic complexity, dis-
course mapping, lexical complexity and richness,
information content units, sentiment, word finding
difficulty, coherence (global and local), and utter-
ance cohesion.

Overall Group Comparison (Kruskal-Wallis H-
Test): After calculating the feature frequency vec-
tors of the selected samples, we applied overall
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group comparison per each feature category to test
the overall difference between the feature frequen-
cies across the disease groups. For this purpose,
we used Kruskal-Wallis H-test (Kruskal and Wal-
lis, 1952) using the scipy.stats.kruskal
library in python.

Pairwise Group Comparison (Mann-Whitney
U-Test): As a post-hoc comparison method,
we then applied pairwise Mann-Whitney U-
test (Mann and Whitney, 1947) using the
scipy.stats.mannwhitneyu python li-
brary to determine the distributions of which
feature categories are significantly different
between each pair of the selected disease groups.

4.2.3 Classification of AD vs Depr vs MCI

After analyzing the feature contributions to the non-
linear components, we used the main differentiat-
ing feature categories as a feature selection tech-
nique to investigate whether they improve the clas-
sification performance of AD vs Depr vs MCI. For
this purpose, we separately trained Multi-layer Per-
ceptron classifier (MLPClassifier) on the following
feature sets:

1. F: All the hand-crafted acoustic and linguistic
features

2. Fj: Only the feature categories that are shown
to be the main differentiators between AD and
Depr based on Mann-Whitney test

3. F' — Fy: All the hand-crafted features exclud-
ing the main distinguishing feature categories

We implemented MLPClassifier by
neural_network.MLPClassifier pack-
age of Scikit-learn (Pedregosa et al., 2011) with all
the hyperparameters set to their default parameter
settings. We trained the models using grouped
10-fold cross validation to avoid overlapping
subjects between the train and test folds and
evaluated the performance of the models in terms
of macro average accuracy, precision, recall, and
F1 scores across the 10 folds.
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Figure 2: Pairwise scatter plots of the linear dimensionality reduction techniques (Component-1 vs Component-
2). Left figures: 2-D representation of the samples colored based on their diagnosis labels. Right figures: 2-D
representation of the samples colored based on the data-driven clusters resulted from K-Means clustering for K=4.

5 Results and Discussion

5.1 Comparison of Linear and Non-linear
Dimensionality Reduction Approaches

Table 2 compares how the linear approaches (e.g.,
PCA, and LDA) perform versus the non-linear tech-
niques (e.g., t-SNE, and UMAP) in distinguishing
between distinct diagnosis labels (i.e., AD, MCI,
HC, and Depr). Their performance is compared ac-
cording to their optimal number of K-Means clus-
ters, and Silhouette score. The second column of
Table 2 represents whether the optimal number of
data-driven disease clusters in K-Means clustering
is equal to the total number of diagnosis labels in
the aggregated dataset, which is our ideal case.
Between the linear techniques, the Silhouette
score obtained by LDA is about twice in value com-
pared to PCA. This can be due to the fact that LDA
(Izenman, 2013) is a supervised dimensionality re-
duction technique which focuses on maximizing
the class separability by projecting the data points
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on a new linear axis, while PCA (Wold et al., 1987)
tries to find the directions of maximal variance.
Based on Figure 2c and 2d, the clusters of different
diseases, as well as the K-Means clusters in LDA,
are more visually distinguishable when compared
to PCA (See Figure 2a and 2b). It is also inter-
esting to note how the clusters are placed in LDA
plots. MCI comes between AD and HC samples,
while depressed data points are positioned on the
right end of the figure. This visualization creates a
spectrum from AD to MCI, to healthy samples and
also, well-separated depressed data points from the
rest of the samples.

Interestingly, the optimal number of K-Means
clusters in t-SNE is exactly equal with 4 (the total
number of disease labels in our data set), which
1s our ideal case. In addition, its Silhouette score
is higher than both PCA and LDA methods. Fig-
ure 3a illustrates how well the disease clusters are
separated in this model.

In Table 2, we observe that UM AP demonstrates
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Figure 3: Pairwise scatter plots of the non-linear dimensionality reduction techniques (Component-1 vs Component-
2). Left figures: 2-D representation of the samples colored based on their diagnosis labels. Right figures: 2-D
representation of the samples colored based on the data-driven clusters resulted from K-Means clustering for K=4.

the best performance among all clustering tech-
niques according to its optimal number of K-Means
clusters and Silhouette score. Its optimal number
of clusters determined by elbow method is exactly
the same as the original number of diagnosis la-
bels. In addition, its Silhoutte score is higher than
other approaches meaning that the level of separa-
bility of the data-driven disease clusters is higher
in UMAP. The associated cluster visualizations for
UMAP are also depicted in Figure 3c. We see de-
pressed samples are well-separated from AD, and
MCI, although AD and MCI themselves are not
easily distinguishable.

In summary, linear dimensionality reduction
techniques like PCA and LDA transform the data to
a low-dimensional space as a linear combination of
the original variables, while non-linear techniques
are applied when the original high-dimensional
data contains non-linear relationships (Sumithra
and Surendran, 2015). Consequently, our findings
suggest that the linearity assumption might be in-
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correct for our aggregated dataset and hence, this
can be another reason why the non-linear dimen-
sionality reduction techniques outperformed the
linear ones.

5.2 Analysis of the Differentiating Feature
Categories between the Disease Clusters

As it is illustrated in Figure 3b, K-Means cluster-
ing derived four distinct disease clusters in a data-
driven way using t-SNE embeddings. Cluster 2
corresponds to the right-most cluster in Figure 3a,
which is a mixture of Depr and HC samples. Clus-
ter 3 associates with the AD green clump of points
on the left-most side of Figure 3a and clusters 0
and 1 match with the two zones in the middle com-
prising a combined set of AD, MCI, and HC data
points. We randomly selected 10 HC samples from
three distinct clusters 0, 1, and 2. We also picked
10 random Depr points from cluster 0 and 10 ran-
dom AD points from cluster 3. For each instance,
we applied LIME-for-t-SNE to explain its local



Lexical

Information Word Coherence

Compare Acoustic Syntactl'c DlSCOll.l‘SC Complexity Content Sentiment Finding (Global and Uttera}lce
Complexity Mapping and . . Cohesion
. Units Difficulty Local)
Richness
AD vs HC X X X X X X
Depr vs HC X X X - X
HC Variations X X X - X
AD vs Depr X X X - X X

Table 3: Pairwise Mann-Whitney U-Test on frequency vectors of disease groups. For each pair of disease groups,
the feature categories with p-value < 0.05 are marked as differentiating symptoms.

Feature Set Precision Recall F1 Score Accuracy

F 0.88£0.04 086+0.04 0.87+£0.04 0.90+£0.02
Fy 090 £0.03 0.88+0.03 0.89 +0.03 092+ 0.02
F —Fy 0.74 £0.06 0.694+0.07 0.71 £0.06 0.82 £ 0.03

Table 4: Performance of AD vs MCI vs Depr classi-
fication using different feature sets. Here, F' denotes
all hand-crafted acoustic and linguistic features. Fy de-
notes differentiating feature categories between AD and
Depr. F' — F; denotes all features excluding differenti-
ating feature categories.

neighbourhood and derive its frequency vector of
feature categories (See Section 4.2). Overall group
comparison using Kruskal-Wallis H-Test on the
frequency vectors represents that the feature cate-
gories including acoustic, lexical complexity and
richness, and coherence are significantly different
(with p-value < 0.05) across the disease groups in-
cluding AD, Depr, and different variations of HC.

As post-hoc group comparison, we applied pair-
wise Mann-Whitney U-test on each pair of disease
groups to assess what feature categories are the
main differentiating symptoms across the disease
clusters. As it is shown in Table 3, acoustic, lexical
complexity and richness, sentiment, and coherence
are significantly different across different variations
of HC. These differences show variations within
the group of healthy samples that can root in the
data origin, and data collection procedures.

Our results indicate that some samples labeled
as Depr are similar to HC samples across all the
feature categories. This can be due to the distribu-
tion of PHQ-9 scores in DEPAC+ dataset with the
majority of samples with scores in the range of 5
to 14 from mild to moderate levels of depression
severity. Minor levels of depression does not meet
the full criteria of major depressive disorder and the
symptoms of minor forms of depression are less se-
vere compared to major depressive disorder (Shin
et al., 2021). This increases the risk of confusing
modest rates of depression with control samples
(Cummins et al., 2015).

Acoustic, discourse mapping (repetitiveness or
circularity of speech), lexical complexity and rich-
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ness, word finding difficulty, and coherence are
found to be the main differentiating symptoms be-
tween AD and Depr disease clusters. To investigate
the effectiveness of our results, we used these fea-
ture categories as a feature selection method.

5.3 Change in Classification Performance

We reported the performance of classification of
AD vs MCI vs Depr in Table 4. According to paired
sample t-test, the expected value of the accuracy,
precision, recall, and F1 scores across 10 folds
are significantly different between each pair of F’,
Fy, and F' — Iy feature sets, with p-value < 0.05.
Compared to when using all the features, feature
selection using only the differentiating feature cate-
gories significantly improved the classification per-
formance in terms of all metrics. Also, excluding
the differentiating feature categories significantly
worsened the performance of the model in classify-
ing the diseases. These observations support that
our proposed method shows a promising avenue
toward detecting the data-driven symptoms that can
successfully differentiate between Depr, AD, and
MCI diseases.

6 Conclusion

In this work, we generate a novel aggregated
dataset composed of a number of speech corpora
including a combination of different clinical condi-
tions (e.g., AD, MCI, HC, and Depr). We extract
a hand-crafted set of acoustic and linguistic fea-
tures derived from speech data, which are used as
model predictors for discriminating between the
diagnosis labels and we categorize these features
under data-driven feature categories in line with
the clinical symptoms of these diseases. We cluster
the samples into distinguishable disease clusters
and examine what speech symptoms are the main
differentiating factors between the diseases. Based
on our findings, non-linear clustering approaches
outperform the linear ones in terms of distinguish-
ing between distinct disease clusters. Our results



signify that acoustic abnormality, repetitiveness, or
circularity of speech, word finding difficulty, co-
herence, and differences in lexical complexity and
richness are the main differentiating symptoms be-
tween different types of dementia (e.g., MCI and
AD), and depression.
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A List of the features

Detailed description of the linguistic and acoustic
variables in our conventional feature set is repre-
sented respectively in Table 5 and Table 6.

B Data Preprocessing

B.1 Standardization

In the data preprocessing step, the features with
constant values were removed and then, the feature
values were standardized by removing the mean
and scaling to unit variance. The standard score of
a sample x was calculated as:

T —p
g

y= (D

here i and o are the mean and standard deviation
of the sample z in all training samples.
B.2 Feature selection

To remove multicollinearity, one of each pair of the
features with Pearson correlation higher than 0.9
was removed.

C Implementation and Hyperparameter
Setting of the Dimensionality

Reduction Models
C.1 Linear Approaches
PCA: PCA was implemented by the
sklearn.decomposition.PCA pack-

age in Scikit-learn (Pedregosa et al., 2011) and
its number of components was set to the optimal
number of Principal Components (PCs) calculated
by Horn’s parallel analysis (Dinno, 2009), which
was equal to 46. After sorting the PCs based
on their explained variance ratio, the feature
loadings (Centellegher, 2020) were calculated to
measure the correlation between the features and
the low-dimensional components. According to
the distribution of the feature loadings, features
with absolute value of loadings > 0.4 were
selected as the highly-correlated features in each
PC. The number of components with the largest
values of explained variance ratio and at least
one highly-correlated feature was chosen as the
optimal number of components. As a result, the
tuned number of components was equal with
8. This approach selects the components which
explain the most variance in data and include
features which are highly-correlated with PCs on a
linear scale.
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LDA: LDA was implemented by
LinearDiscriminimumantAnalysis
package of Scikit-learn (Pedregosa et al., 2011)
with its default parameter settings. The number
of components was set equal to 3 (the maximum
allowed value), which is the number of classes-1,
to achieve the highest total explained variance
ratio. The classes represent the diagnosis labels in
our study including HC, AD, Depr, and MCI.

the

C.2 Non-linear Approaches

t-SNE: t-SNE (Van der Maaten and
Hinton, 2008) was implemented by the
sklearn.manifold.TSNE  package of

Scikit-learn (Pedregosa et al., 2011). Perplexity
was tuned by grid search to obtain the highest
Silhouette score (See Section 4.1.1) in K-Means
clustering trained on the t-SNE embeddings. The
rest of the hyper-parameters were left unchanged
with their default values. We used perplexity=30
to preserve both local and global structure of the
given data to an adequate level (Wattenberg et al.,
2016), in line with the recommended range of
perplexity values by Van der Maaten and Hinton
(2008). The number of components in t-SNE
was manually tuned to 2, which was the best
performing one based on the Silhouette score
metric (See Section Section 4.1.1).

UMAP: This algorithm was implemented using
the original UMAP* library. Among different com-
binations of parameter settings, grid search indi-
cated that number of components=2, the number
of neighbours=50, and minimum distance=0.1 ob-
tained the highest Silhouette score (See Section
4.1.1) in K-Means clustering trained on the UMAP
embeddings. The remaining parameters were set
to their default values.

*https://umap-learn.readthedocs.io/en/latest/
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Linguistic Features

| Feature Category

\ #Features

|

Brief Description

Syntactic complexity

143

Constituency-parsing based features: Scores based on the
parse tree (Chae and Nenkova, 2009) (e.g., the height of the
tree, the statistical functions of Yngve depth (a measure of
embeddedness) (Yngve, 1960), and the frequencies of various
production rules(Chae and Nenkova, 2009)).

Lu’s syntactic complexity features: Metrics of syntactic com-
plexity suggested by Lu (2010) such as the length of sentences,
T-units, and clauses, etc.

Utterance length: Statistical functionals of utterance length.

Lexical complexity and
richness

103

Grammatical constituents: The constituents of the parse tree
represented in a collection of context-free grammar variables.
Vocabulary richness: Type-token ratios; brunet (Brunet et al.,
1978); Honore’s statistic (Honoré et al., 1979).

Lexical norm-based: Average norms across all words, verbs
only, and nouns only for imageability, age of acquisition, famil-
iarity (Stadthagen-Gonzalez and Davis, 2006) and frequency
(Brysbaert and New, 2009).

Discourse mapping

18

Utterance distances quantifying the utterance similarity via
distance metrics and speech-graph (Mota et al., 2012) features
based on the graph representation of the transcripts.

Global coherence

15

Statistical functionals of cosine distance between GloVe (Pen-
nington et al., 2014) word embeddings of each utterance and its
nearest content unit centroid utterances.

Local coherence

15

Statistical functionals of the similarity between Word2Vec
(Mikolov et al., 2013) embeddings of the successive utterances.

Word finding difficulty

11

Pauses and fillers: Variables like hesitation, speech rate, word
duration, and number of filled and unfilled pauses as markers of
difficulty in finding words resulting in less fluent speech (Pope
et al., 1970).

Invalid words: The proportion of words not in the English
dictionary (NID).

Information units

10

The number of information content units including objects,
subjects, locations, and actions applied to quantify the number
of items correctly named through the picture description task.

Sentiment

Valence, arousal, and dominance scores for all words and word
types describing the sentiment of the words used (Warriner et al.,
2013).

Utterance cohesion

Proportion of the number of switches in verb tense across utter-
ances.

Table 5: List of all hand-curated linguistic features derived from transcripts. The number of features in each feature
category is indicated in the second column (titled ‘#Features’).
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Spectral and Energy Related Features

Feature #Features Brief Description

Mel-Frequency Cepstral Coefficients|168 Statistical functionals of 42 MFCC coeffi-
(MFCC) 0-12 cients.

Intensity 8 Statistical functionals of the perceived

loudness in dB (auditory model based).

Zero-Crossing Rate (ZCR) 4 Statistical functionals of zero crossing rate
across all the voiced frames.

Voicing Related Features

Harmonic-to-Noise Ratio (HNR) 12 Statistical functionals of the degree of
acoustic periodicity in dB using both auto-
correlation and cross-correlation methods.

Jitter and Shimmer 11 Jitter indicates the variability or perturba-
tion of fundamental frequency, while shim-
mer refers to the same perturbation, but it
is related to the amplitude of sound wave,
or intensity of vocal emission (Wertzner
et al., 2005).

Pauses and Fillers 8 Number and duration of short, medium,
and long pauses, fillers(um,uh), mean
pause duration, and pause-to-speech ratio.

Fundamental Frequency (Fp) 6 Statistical functionals of the fundamental
frequency in Hz.

Durational features 2 Total sample and speech duration in the
audio record.

Phonation Rate 1 Number of voiced samples over the total
number of samples.

Table 6: List of all hand-curated acoustic features derived from audio records. The number of features in each
feature category is indicated in the second column (titled ‘#Features’).
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