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Abstract

Code-switching (CS) is a phenomenon of mix-
ing words and phrases from multiple languages
within a single sentence or conversation. The
ever-growing amount of CS communication
among multilingual speakers in social media
has highlighted the need to adapt existing NLP
products for CS speakers and lead to a rising
interest in solving CS NLP tasks. A large num-
ber of contemporary approaches use synthetic
CS data for training. As previous work has
shown the positive effect of pretraining on high-
quality CS data, the task of evaluating synthetic
CS becomes crucial. In this paper, we address
the task of evaluating synthetic CS in two set-
tings. In supervised setting, we apply Hinglish
finetuned models to solve the quality rating pre-
diction task of HinglishEval competition and
establish a new SOTA. In unsupervised setting,
we employ the method of acceptability mea-
sures with the same models. We find that in
both settings, models finetuned on CS data con-
sistently outperform their original counterparts.

1 Introduction

Code-switching (CS) is a phenomenon of mixing
words and phrases from multiple languages within
a single sentence or conversation1. It is common for
multilingual speakers and happens across various
language pairs across the globe, such as Spanish-
English (Spanglish) and Hindi-English (Hinglish).
Various studies (Baldauf, 2004) have predicted the
high growth in the number of CS speakers, which
would surpass the number of native speakers in
various globally popular languages (e.g., English).

The advent of social media has highlighted the
amount of CS communication and lead to a further
increase of the number of multilingual speakers

1Some works make a distinction and refer to intrasentential
(within a single sentence) code alternation as “code-mixing”
(CM) and intersentential (at or above the sentence level) as
“code-switching” (CS). It is also common, however, to use the
term “CS” for both cases. Intrasentential code alternation is
the focus of this paper and we refer to it as “CS”.

who use this pattern. This availability of CS data
and the understanding that existing NLP products
need to be adapted for the ever-growing number of
CS speakers has resulted into a rising interest in
various CS NLP tasks. Work has been done in such
tasks as LID (Shekhar et al., 2020; Singh et al.,
2018a; Ramanarayanan et al., 2019; Barman et al.,
2014; Gundapu and Mamidi, 2020), POS tagging
(Singh et al., 2018b; Vyas et al., 2014; Pratapa et al.,
2018b), NER (Singh et al., 2018a; Priyadharshini
et al., 2020; Winata et al., 2019a), word normal-
isation (Singh et al., 2018c; Parikh and Solorio,
2021), sentiment analysis (Patwa et al., 2020; Joshi
et al., 2016), NLI (Khanuja et al., 2020a), machine
translation (Srivastava and Singh, 2020; Dhar et al.,
2018) and QA (Chandu et al., 2019; Thara et al.,
2020).

Various studies have shown that CS data may
pose a challenge for contemporary multilingual
models (Birshert and Artemova, 2021). Finetuning
on CS data can alleviate this problem (e.g. Ansari
et al., 2021). As social media can be noisy and
not readily available to build a large scale corpus,
various techniques of generating synthetic CS have
been proposed (see Section 2). However, it was
shown that the performance of the models crucially
depends on the quality of CS text used for pretrain-
ing (Santy et al., 2021). This creates the task of
synthetic CS evaluation which is the main focus of
current paper.

CS evaluation methods range from computing in-
trinsic text metrics to measuring downstream task
performance depending on the CS data used for
pretraining and human evaluation (see Section 2).
Srivastava and Singh (2021a) show that most CS
evaluation metrics fail to capture the linguistic di-
versity which leads to poorly estimating the quality
of CS text. Thus, human evaluation remains as
a reliable method. Srivastava and Singh (2021b)
propose HinGE, a dataset of Hinglish sentences
with human quality ratings and organise HinglishE-
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val shared task based on it (Srivastava and Singh,
2021c). In our paper, we address HinglishEval
quality rating prediction task with Hinglish models
proposed in Nayak and Joshi (2022). Moreover, we
add an unsupervised setting of the task. Our main
contributions are:

• We perform a series of experiments on unsuper-
vised CS evaluation, employing the method of
acceptability measures (Lau et al., 2015). To our
knowledge, this is the first such attempt.

• We perform a series of experiments on super-
vised CS evaluation and establish a new SOTA
for HinglishEval quality rating prediction task.

• We find that models finetuned on CS data consis-
tently outperform their original counterparts.

2 Related works

Generating synthetic CS As large amounts of
real-world CS data may be difficult to extract, vari-
ous generating methods have been proposed. Sim-
plistic methods include re-writing of some words
in the target script (Gautam et al., 2021) and vari-
ous rule-based algorithms used as baselines in the
literature (e.g., Tarunesh et al., 2021; Srivastava
and Singh, 2021b). The vast majority of methods
utilize machine translation engines (Singh et al.,
2019), parallel datasets (Jawahar et al., 2021; Gau-
tam et al., 2021; Gupta et al., 2021; Winata et al.,
2019b) or bilingual lexicons (Tan and Joty, 2021)
to replace the segment of the input text with its
translations. Bilingual lexicons may be induced
from the parallel corpus with the help of soft align-
ment, produced by attention mechanisms (Lee and
Li, 2020; Liu et al., 2020). Pointer networks can
be used to select segments for further replacement
(Gupta et al., 2020; Winata et al., 2019b). If natural
CS data is available, such segments can be identi-
fied with a sequence labeling model (Gupta et al.,
2021). A number of works employ popular archi-
tectures like VAE (Samanta et al., 2019) and GANs
(Garg et al., 2018; Chang et al., 2019). Other meth-
ods produce synthetic CS text that grammatically
adheres to a linguistic theory of code-switching.
Pratapa et al. (2018a) leverage the equivalence con-
straint (EC) theory (Poplack, 1980), while Rizvi
et al. (2021) use EC and Matrix-language (Carol,
1993) theories.

Evaluating synthetic CS Despite the practical
need of synthetic CS datasets, the task of evaluat-
ing synthetic CS remains relatively understudied.

Some evaluation techniques involve estimating in-
trinsic text properties, such as code-switching ratio
and length distribution. One of the most popu-
lar metrics is code-mixing index (CMI) (Das and
Gambäck, 2014; Gambäck and Das, 2016), which
accounts for code-switching ratio and the number
of switches in a sentence. We defer to Srivastava
and Singh (2021a) for a detailed overview of other
metrics used for evaluating CS NLG.

Further, extrinsic measures can be used, like the
perplexity of external language model. For exam-
ple, Nayak and Joshi (2022) propose a finetuned
Hinglish GPT model and suggest using it for eval-
uation. Also, downstream task performance can
be measured, depending on the CS data used for
augmentation (Samanta et al., 2019; Santy et al.,
2021). Downstream tasks are organised into bench-
marks such as GLUECoS (Khanuja et al., 2020b)
and LinCE (Aguilar et al., 2020) which comprise
data for popular language pairs like English-Hindi
and English-Spanish.

Finally, human evaluators can be employed to
assess the quality of the generated CS. There are
examples of such evaluation studies in the literature
which are usually performed to prove the quality
of the proposed CS generation method (Bhat et al.,
2016; Tarunesh et al., 2021). However, these stud-
ies are of low scale and do not result into substantial
datasets which can be used in further research. In
this context, HinGE dataset (Srivastava and Singh,
2021b) is unique being the largest collection of
synthetic CS with human ratings to date. It is de-
scribed in detail in Section 3.1. Based on HinGE,
HinglishEval competition was organised (Srivas-
tava and Singh, 2021c; see Section 3.1.1), where
the task is to model the annotators’ opinion on CS
sentences.

Language models for CS Along with the de-
velopment of language models (LMs), work has
been done to adapt them for CS data. Chan et al.
(2009) compare different n-gram LMs, Vu et al.
(2012) suggest to improve language modeling by
generating artificial CS text. A number of works
propose LMs that incorporate a syntactic constraint
(Li and Fung, 2012, 2014; Pratapa et al., 2018a).
Another line of papers introduce LMs where the
output layer is factorized into languages, and POS
tags are added to the input (Adel et al., 2013a,b,
2014, 2015; Sreeram and Sinha, 2017).

With the advent of Transformers (Vaswani et al.,
2017), work has shifted to applying popular archi-
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tectures to CS data. Pires et al. (2019) show that
m-BERT can achieve promising results in Hinglish
downstream tasks when Hindi parts are written in
Devanagari even in a zero-shot setup. The same,
however, does not apply to romanized Hinglish,
as m-BERT was pretrained on Devanagari Hindi.
Both GLUECoS (Khanuja et al., 2020b) and LinCE
(Aguilar et al., 2020) benchmarks provide m-BERT
baselines for their leaderboards. Ansari et al.
(2021) show that BERT models produce better re-
sults in CS LID when pretrained on CS sentences
rather than on multiple monolingual corpora. Santy
et al. (2021) find that finetuning m-BERT on natural
CS data gives the best performance improvement
compared to any synthetic CS. Nayak and Joshi
(2022) present the first large-scale (52.93M sen-
tences) corpus of real Hinglish CS scraped from
Twitter and a line of Transformer models finetuned
on it. The corpus and the models are described in
detail in Section 4.1.

Acceptability measures Lau et al. (2015)
present the task of unsupervised prediction of
speakers’ acceptability judgements and propose
acceptability measures as a method to translate
LM’s probability into acceptability scores. Accept-
ability measures are variants of the sentence’s log
probability, devised to normalise sentence length
and low frequency words (see Section 4.2 for addi-
tional details and equations). The effectiveness of
an acceptability measure is evaluated by computing
its Pearson correlation with human acceptability
scores. Lau et al. (2020) further experiment with
Transformer LMs and investigate the dependence
of acceptability measures’ scores on whether the
context of the sentence is provided.

3 Data

3.1 HinGE

HinGE is a dataset of synthetic Hinglish sentences
with human quality ratings proposed in Srivastava
and Singh (2021b). The dataset consists of firstly,
parallel English and Hindi sentences. Second, two
synthetic Hinglish sentences are generated from
each pair of parallel sentences by two rule-based
code-mixed text generation (CMTG) algorithms:
• Word-aligned CMTG (WAC): Noun and adjec-

tive tokens are aligned between the parallel sen-
tences. The aligned Hindi token is replaced with
the corresponding English token.

• Phrase-aligned CMTG (PAC): Key-phrases of

Label # sentences Binary
label # sentences

1 0

0 2279

2 9
3 61
4 250
5 394
6 633
7 932
8 960

1 16739 587
10 126

Total # 3952

Table 1: Hinge All classes statistics

length up to three tokens are aligned between the
parallel sentences. The aligned Hindi phrase is
replaced with the corresponding English phrase.

For both algorithms, the Hindi parts are then
transliterated into the Roman script.

Third, an average of two human quality ratings
on a scale of 1-10 is assigned to each synthetic
Hinglish sentence. Refer to Table 1 for class bal-
ance information.

Fourth, annotators’ disagreement is given, which
is calculated as the absolute difference between the
human quality ratings and ranges 0-9. Finally, for
each pair of parallel sentences, at least two human-
generated Hinglish sentences are provided. Figure
1 demonstrates an example of the described fields
of the dataset.

Overall, HinGE contains 1976 parallel Hindi–
English, 3952 synthetic CS and 4803 human-
generated CS sentences. All synthetic CS sentences
have human scores assigned to them, and HinGE
is the largest such dataset to date. We refer to the
synthetic part of the dataset as Hinge All.

3.1.1 HinglishEval competition

The authors also organized HinglishEval shared
task based on the HinGE dataset (Srivastava and
Singh, 2021c), which includes two subtasks: qual-
ity rating prediction and annotators’ disagreement
prediction. Both are classification tasks, but are
evaluated with MSE in addition to weighted F1-
score. Besides, Cohen’s Kappa (CK) is computed
for quality rating prediction. The dataset is split in
the ratio 70:10:20 with 2766, 395 and 791 synthetic
CS sentences in train, validation, and test, respec-
tively. We refer to this dataset as HinglishEval.
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Figure 1: Example pair of parallel sentences with corresponding human-generated and synthetic CS from HinGE
dataset. Picture from Srivastava and Singh (2021b).

For both tasks, the participants can use all the
data in HinGE, including the English, Hindi and
human-generated Hinglish sentences. Participants
are also asked to implicitly answer questions about
the reasons influencing the quality of synthetic CS.
We seek to answer some of these in our work.

3.2 TCS

The dataset we refer to as TCS is a collection of
750 Hinglish sentences with human scores from
Tarunesh et al. (2021). It contains Hinglish sen-
tences from five sources (250 sentences each):
human-generated CS, two rule-based algorithms,
and supervised and unsupervised versions of the
Transformer-based generation method proposed in
Tarunesh et al. (2021). Each Hinglish sentence is
provided with an average of three human scores
on a scale of 1-5 under three heads: “Syntactic
correctness”,“Semantic correctness” and “Natural-
ness”. For our experiments, we also take the aver-
age of these three scores under the name of “Mean
human score”.

The original TCS sentences have their Hindi
parts in Devanagari script, and we refer to
this dataset as TCS Devanagari. We also
transliterate the sentences into Roman script us-
ing indic-transliteration library2 with
ITRANS scheme3 and refer to this dataset as TCS
transliterated.

4 Experimental setup

4.1 Models

This subsection describes the LMs we experiment
with in this work. All of them are taken from the
Hugging Face Hub4. First, we employ a line of

2https://github.com/
indic-transliteration/indic_
transliteration_py

3ITRANS scheme showed the best performance scores
among others in our preliminary experiments. See https:
//www.aczoom.com/itrans/

4https://huggingface.co/models

popular Transformers architectures: BERT (De-
vlin et al., 2018); CoLA BERT, a BERT model
trained on CoLA dataset (Warstadt et al., 2019) and
released by Morris et al. (2020); XLM-RoBERTa
(Conneau et al., 2019); m-BERT (Devlin et al.,
2018); GPT-2 (Radford et al., 2019); and mGPT
(Shliazhko et al., 2022).

Further, we employ Hinglish LMs introduced
in Nayak and Joshi (2022). All of them are
trained on L3Cube-HingCorpus proposed in the
same paper. L3Cube-HingCorpus was collected
as follows. First, CS sentences were filtered
from continuously scraped tweets using a shallow
subword-based LSTM LID classifier which was
iteratively improved as the dataset increased. Then
a BERT LID classifier was finetuned on the re-
sulting 44455 sentences and was further used to
collect the main corpus. The final dataset con-
tains 52.93M sentences (1.04B tokens) of nat-
ural Hinglish CS. A Devanagari version of the
dataset was created using an in-house transliter-
ation model. Here we list the finetuned Hinglilsh
models with their original counterparts in paren-
theses: HingBERT (BERT), HingMBERT (m-
BERT), HingRoBERTa (XLM-RoBERTa), Hing-
GPT (GPT-2). There are also two mixed ver-
sions of the models, which are pretrained on
both Devanagari and roman scripts (HingMBERT-
mixed and HingRoBERTa-mixed), and a model
which is trained completely on Devanagari script
(HingGPT-devanagari).

4.2 Unsupervised approach

We employ the concept of acceptability measures
proposed in Lau et al. (2015) to assess the quality
of CS in both TCS datasets and Hinge All. Ta-
ble 2 presents equations for different acceptability
measures. Of all the methods, we compute only
LP, MeanLP, and PenLP, as NormLP and SLOR
require an additional unigram LM. It should not be
oversignificant, however, because for considered
models (BERT and GPT-2) the best performance

https://github.com/indic-transliteration/indic_transliteration_py
https://github.com/indic-transliteration/indic_transliteration_py
https://github.com/indic-transliteration/indic_transliteration_py
https://www.aczoom.com/itrans/
https://www.aczoom.com/itrans/
https://huggingface.co/models
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Acc. Measure Equation
LP logP (s)

MeanLP
logP (s)

|s|
PenLP

logP (s)

((5 + |s|)/(5 + 1))α

NormLP − logP (s)

logPu(s)

SLOR
logP (s)− logPu(s)

|s|

Table 2: Acceptability measures for predicting the ac-
ceptability of a sentence. P (s) is the sentence probabil-
ity, computed by a LM; Pu(s) is the sentence probability
estimated by a unigram LM; and α = 0.8.

was mostly achieved by PenLP in the original pa-
per (Lau et al., 2020). To compute the acceptability
measures of considered Transformer models, we
rely on the code from Lau et al. (2020). To evalu-
ate the effectiveness of each acceptability measure,
we compute its Pearson correlation with human
acceptability scores in our datasets.

4.3 Supervised approach
We also run our models in a supervised setting on
HinglishEval data, particularly the quality rating
prediction task. As the original 10-way classifi-
cation task has proved to be quite difficult in our
preliminary experiments and the results of the com-
petition, we add two simplified versions of it:
• Binary classification: We binarize the labels

(1-7 are converted to 0 and 8-10 to 15) and
perform binary classification. Classes numbers
are given in Table 1.

• Regression: We perform regression on the orig-
inal labels. MSE is computed with the models’
initial predictions, while the predictions for F1-
score and CK are rounded.
All models are trained for 5 epochs with a learn-

ing rate of 2e−5, batch size of 32. The best model
is then chosen with validation F1-score. For all
models, we repeat training 10 times with 10 differ-
ent seeds (0–9, respectively). We report mean and
standard deviation of all metrics over 10 runs.

5 Results

5.1 Unsupervised approach
Acceptability measures’ performance on TCS De-
vanagari and TCS transliterated is given in Tables

5We choose the boundary so that the classes are of relative
sizes.

3 and 4, respectively. For both versions of TCS,
among the three scales, the highest correlations are
achieved with Mean syntactic correctness score,
which may indicate that syntax structure is the eas-
iest for the models to grasp.

For TCS Devanagari, predictably, a substan-
tial advantage is on the side of the models which
were exposed to Devanagari during pretraining (m-
BERT, mGPT, HingMBERT-mixed, and HingGPT-
devanagari). The best Mean human score corre-
lations are shared by HingMBERT-mixed and no-
tably mGPT which was not pretrained on any CS
data.

For TCS transliterated, multilingual models can-
not rely on their Devanagari knowledge. Hing-
BERT is a clear leader, as it was exposed to ro-
manized Hinglish during pretraining. Overall, the
correlations of Hinglish models are lower than on
TCS Devanagari. A possible explanation could be
that the transliteration scheme we used to translit-
erate TCS differs from the way Hinglish is written
on social media, whose data was used to finetune
Hinglish models.

Acceptability measures’ performance on Hinge
All is given in Table 5. Here, the best correlations
are also predictably achieved by the models which
were finetuned on Hinglish CS data.

Comparing different acceptability measures with
each other, we observe that unnormalized LP works
quite well, but is usually outperformed by PenLP.
In general, however, unidirectional (GPT-like) mod-
els benefit more from normalization. These obser-
vations support the findings of Lau et al. (2020).
In general, we note that CS finetuned models con-
sistently perform better than their original counter-
parts.

5.2 Supervised approach

Table 6 shows the results of 10-class classification
on HinglishEval data. To be consistent with the
participants of HinglishEval competition, we re-
port both validation and test results and round the
scores to thousandths. Here, HingMBERT-mixed
achieves the best score and beats current SOTA
(0.261) as reported in HinglishEval leaderboard6.
It outperforms HingMBERT, although all Hindi
data in HinGE is romanized.

Although the best model for regression (see Ta-
ble 7) is still chosen based on F1-score, this kind of

6https://codalab.lisn.upsaclay.fr/
competitions/1688

https://codalab.lisn.upsaclay.fr/competitions/1688
https://codalab.lisn.upsaclay.fr/competitions/1688
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model Mean syntactic correctness Mean semantic correctness Mean naturalness Mean human score
LP MeanLP PenLP LP MeanLP PenLP LP MeanLP PenLP LP MeanLP PenLP

BERT 0.08 0.03 0.1 0.07 0.03 0.09 0.05 0.04 0.08 0.07 0.04 0.09
m-BERT uncased 0.33 0.13 0.28 0.31 0.12 0.26 0.28 0.12 0.25 0.31 0.13 0.26
m-BERT cased 0.28 0.15 0.26 0.26 0.14 0.24 0.24 0.14 0.24 0.26 0.15 0.25

GPT-2 0.09 0.16 0.31 0.08 0.16 0.29 0.06 0.16 0.28 0.08 0.16 0.3
mGPT 0.35 0.21 0.41 0.33 0.2 0.39 0.3 0.2 0.37 0.33 0.2 0.39

HingBERT 0 -0.08 -0.04 0 -0.07 -0.04 -0.02 -0.07 -0.06 -0.01 -0.08 -0.05
HingMBERT 0.08 -0.07 0.02 0.08 -0.07 0.02 0.07 -0.05 0.02 0.07 -0.06 0.02

HingMBERT mixed 0.41 0.28 0.39 0.39 0.27 0.37 0.37 0.27 0.36 0.39 0.28 0.37
HingGPT -0.02 -0.18 -0.06 -0.03 -0.18 -0.06 -0.04 -0.19 -0.07 -0.03 -0.19 -0.07

HingGPT-devanagari 0.2 0.31 0.26 0.19 0.3 0.25 0.17 0.29 0.23 0.19 0.3 0.25

Table 3: Acceptability measures’ correlations on TCS Devanagari

model Mean syntactic correctness Mean semantic correctness Mean naturalness Mean human score
LP MeanLP PenLP LP MeanLP PenLP LP MeanLP PenLP LP MeanLP PenLP

BERT 0.03 -0.02 0.01 0.02 -0.03 0 0.01 0 0 0.02 -0.02 0
m-BERT uncased 0.02 -0.05 -0.01 0.01 -0.06 -0.02 0 -0.04 -0.01 0.01 -0.05 -0.01
m-BERT cased 0.01 -0.09 -0.04 0 -0.1 -0.05 0 -0.07 -0.04 0 -0.09 -0.05

GPT-2 0.03 0 0.04 0.02 0 0.02 0 0.01 0.02 0.02 0 0.02
mGPT 0.05 0.02 0.06 0.04 0.02 0.05 0.02 0.04 0.05 0.03 0.03 0.05

HingBERT 0.18 0.2 0.22 0.16 0.18 0.2 0.16 0.21 0.22 0.17 0.2 0.22
HingMBERT 0.15 0.12 0.19 0.13 0.11 0.17 0.13 0.13 0.18 0.14 0.12 0.18

HingMBERT mixed 0.16 0.13 0.2 0.14 0.12 0.18 0.14 0.14 0.2 0.15 0.13 0.2
HingGPT 0.07 0.02 0.07 0.06 0.01 0.06 0.04 0.04 0.06 0.06 0.02 0.07

HingGPT-devanagari 0.05 0.05 0.05 0.04 0.03 0.04 0.02 0.02 0.03 0.04 0.03 0.04

Table 4: Acceptability measures’ correlations on TCS transliterated

model LP MeanLP PenLP
BERT 0.19 -0.04 0.15

m-BERT uncased 0.19 -0.07 0.14
m-BERT cased 0.19 -0.08 0.14

GPT-2 0.19 -0.06 0.2
mGPT 0.2 -0.06 0.21

HingBERT 0.22 0.08 0.2
HingMBERT 0.22 0.1 0.21

HingMBERT mixed 0.23 0.1 0.21
HingGPT 0.2 0.1 0.25

HingGPT-devanagari 0.18 0.11 0.19

Table 5: Acceptability measures’ correlations on Hinge
All

problem statement allows to reduce the MSE score
as compared to 10-class classification. A low MSE,
however, does not lead to a higher F1-score. The
best F1-scores are achieved by HingMBERT and
HingRoBERTa, but are insufficient to overcome
the level of 10-class classification.

Binarizaton of the problem (see Table 8) allows
to significantly raise the F1-scores. The best result
here is achieved by HingMBERT-mixed. We ob-
serve that CoLA BERT performs better than BERT
base model, which may indicate transfer learning
from English acceptability task.

We note that similarly with unsupervised setting,
CS models consistently outperform their original

counterparts in all supervised problem statements.

6 Discussion

Our experiments show that both in unsupervised
and supervised setups, models pretrained on
Hinglish data consistently outperform their orig-
inal counterparts. This goes in line with previous
studies which have shown that pretraining on CS
data yields better results than monolingual pretrain-
ing (Santy et al., 2021; Ansari et al., 2021).

On HinglishEval 10-class classification, our
HingMBERT-mixed establishes new SOTA, sur-
passing the m-BERT baseline from Srivastava and
Singh (2021c) which was trained solely on Hinglish
sentences from Hinge. Moreover, our Hinglish
models trained solely on Hinglish sentences pro-
duce scores competitive with the participants of
HinglishEval shared task which use all available in-
formation from HinGE (original Hindi and English
sentences and annotators’ disagreement; Furniture-
wala et al., 2022; Guha et al., 2022; Kodali et al.,
2022; Singh, 2022).

6.1 Error analysis

In this subsection, we look for sources of errors of
our best performing model, HingMBERT-mixed.
We analyze its predictions on the test subset of
HinglishEval 10-class classification. We put three
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model Val Test
F1 CK MSE F1 CK MSE

BERT 0.232±0.013 0.069±0.015 2.812±0.146 0.238±0.011 0.082±0.014 2.778±0.215

CoLA BERT 0.238±0.014 0.081±0.014 2.774±0.274 0.225±0.019 0.065±0.016 2.76±0.327

m-BERT uncased 0.255±0.016 0.102±0.013 2.867±0.193 0.238±0.016 0.086±0.014 2.826±0.115

m-BERT cased 0.245±0.015 0.08±0.02 2.944±0.215 0.237±0.013 0.078±0.017 2.878±0.149

XLMRoBERTa 0.229±0.014 0.081±0.02 2.957±0.187 0.203±0.013 0.045±0.016 2.878±0.194

GPT-2 0.216±0.013 0.056±0.018 3.182±0.173 0.204±0.017 0.036±0.022 3.175±0.243

HingBERT 0.253±0.005 0.106±0.007 2.689±0.123 0.248±0.012 0.101±0.015 2.839±0.134

HingMBERT 0.262±0.015 0.11±0.015 2.663±0.213 0.253±0.019 0.1±0.02 2.613±0.182

HingMBERT-mixed 0.253±0.014 0.1±0.02 2.627±0.23 0.267±0.01 0.119±0.011 2.526±0.184
HingRoBERTa 0.245±0.012 0.099±0.015 2.682±0.102 0.251±0.024 0.109±0.027 2.734±0.16

HingGPT 0.237±0.009 0.066±0.01 3.116±0.15 0.25±0.014 0.087±0.016 3.031±0.199

HingGPT-devanagari 0.209±0.006 0.051±0.008 3.29±0.141 0.196±0.016 0.037±0.018 3.195±0.154

m-BERT baseline 0.202 0.003 2.797 0.256 0.092 2.628

Table 6: 10-class classification results on HinglishEval. m-BERT baseline from Srivastava and Singh (2021c)

model Val Test
F1 CK MSE F1 CK MSE

BERT 0.222±0.011 0.063±0.014 2.371±0.086 0.218±0.013 0.055±0.018 2.219±0.123

CoLA BERT 0.219±0.008 0.059±0.012 2.364±0.078 0.222±0.018 0.056±0.018 2.226±0.058

m-BERT uncased 0.223±0.011 0.06±0.016 2.341±0.065 0.215±0.009 0.051±0.015 2.213±0.079

m-BERT cased 0.217±0.006 0.049±0.011 2.391±0.08 0.215±0.008 0.05±0.011 2.205±0.035
XLMRoBERTa 0.189±0.007 0.019±0.012 2.453±0.05 0.197±0.009 0.033±0.011 2.396±0.063

GPT-2 0.211±0.012 0.042±0.015 2.411±0.077 0.22±0.013 0.053±0.011 2.246±0.054

HingBERT 0.232±0.016 0.069±0.016 2.359±0.14 0.244±0.016 0.081±0.018 2.331±0.149

HingMBERT 0.239±0.024 0.083±0.028 2.401±0.088 0.25±0.014 0.093±0.015 2.37±0.092

HingMBERT-mixed 0.226±0.03 0.066±0.037 2.437±0.146 0.235±0.025 0.075±0.026 2.388±0.154

HingRoBERTa 0.236±0.013 0.08±0.012 2.276±0.133 0.25±0.02 0.092±0.017 2.276±0.128

HingGPT 0.247±0.008 0.076±0.009 2.389±0.1 0.256±0.007 0.086±0.01 2.278±0.095

HingGPT-devanagari 0.194±0.008 0.027±0.014 2.625±0.188 0.191±0.014 0.027±0.014 2.545±0.228

Table 7: Regression results on HinglishEval

model Val Test
F1 CK MSE F1 CK MSE

BERT 0.639±0.011 0.253±0.023 0.357±0.013 0.662±0.011 0.304±0.021 0.333±0.011

CoLA BERT 0.633±0.007 0.246±0.018 0.365±0.008 0.673±0.013 0.329±0.026 0.325±0.014

m-BERT uncased 0.646±0.011 0.27±0.025 0.353±0.011 0.648±0.01 0.278±0.022 0.348±0.01

m-BERT cased 0.626±0.015 0.23±0.031 0.371±0.016 0.637±0.01 0.254±0.021 0.359±0.01

XLMRoBERTa 0.623±0.025 0.222±0.058 0.371±0.019 0.639±0.015 0.258±0.036 0.356±0.013

GPT-2 0.612±0.02 0.211±0.041 0.388±0.022 0.619±0.016 0.228±0.026 0.379±0.019

HingBERT 0.665±0.007 0.324±0.02 0.336±0.007 0.648±0.015 0.287±0.026 0.353±0.016

HingMBERT 0.682±0.011 0.354±0.021 0.318±0.012 0.672±0.015 0.333±0.24 0.327±0.016

HingMBERT-mixed 0.682±0.008 0.353±0.014 0.318±0.009 0.681±0.008 0.352±0.019 0.319±0.008
HingRoBERTa 0.689±0.013 0.369±0.026 0.312±0.013 0.668±0.011 0.323±0.021 0.332±0.011

HingGPT 0.642±0.009 0.269±0.02 0.358±0.009 0.643±0.011 0.269±0.022 0.355±0.012

HingGPT-devanagari 0.574±0.01 0.116±0.021 0.42±0.011 0.609±0.008 0.193±0.017 0.383±0.012

Table 8: Binary classification results on HinglishEval
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factor mean statistically
significantcorrect incorrect

sentence
length

17.0 19.2 ✗

Hindi fraction 0.63 0.67 ✓

# of switch
points

5.5 6.1 ✗

Table 9: Error source factors for HinglishEval 10-class
classification, model is HingMBERT-mixed

factors under consideration: sentence length in
words, fraction of Hindi words in a sentence and
number of code switches within a sentence. To
compute the latter two values, we annotate HinGE
test subset with HingBERT-LID model proposed
in Nayak and Joshi (2022). We compare the mean
value of the factors depending on the correctness
of model’s prediction (see Table 9). We find that
the mean of all three factors is greater for incorrect
predictions, which means that the model tends to
consistently make mistakes on more complex sen-
tences. However, computing the t-test shows that
only the difference in fraction of Hindi words is
statistically significant. These results can be seen
as an answer to the questions about the reasons
influencing the quality of synthetic CS posed in
(Srivastava and Singh, 2021c), e.g. “Does the dom-
inance of a language (English or Hindi) present in
the Hinglish sentence impact the rating provided
by the humans?”.

7 Conclusion and further work

In this paper, we address the task of evaluating
synthetic CS in supervised and unsupervised ap-
proaches. In supervised setting, we solve Hingli-
shEval quality rating prediction task with a line
of finetuned Hinglish Transformer models and es-
tablish a new SOTA. In unsupervised setting, we
apply the method of acceptablity measures to eval-
uate the synthetic CS sentences in HinGE dataset.
We find that Hinglish finetuned models consistently
outperform their original versions.

Several further work directions open up based
on this work. First, it is promising to directly com-
pare the unsupervised and supervised approaches
presented in this paper, possibly applying the semi-
supervised method of Warstadt et al. (2019) for
acceptability measures. Second, it is of interest
to continue the analysis presented in Section 6.1
with various CS metrics, thus repeating the study
of Srivastava and Singh (2021a) on a larger scale.
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