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Abstract
We present a simple yet effective method to
train a named entity recognition (NER) model
that operates on business telephone conversa-
tion transcripts that contain noise due to the
nature of spoken conversation and artifacts of
automatic speech recognition. We first fine-
tune LUKE, a state-of-the-art Named Entity
Recognition (NER) model, on a limited amount
of transcripts, then use it as the teacher model
to teach a smaller DistilBERT-based student
model using a large amount of weakly labeled
data and a small amount of human-annotated
data. The model achieves high accuracy while
also satisfying the practical constraints for in-
clusion in a commercial telephony product: re-
altime performance when deployed on cost-
effective CPUs rather than GPUs.

1 Introduction

We describe a named entity recognition (NER) sys-
tem that identifies entities mentioned in English
business telephone conversations. The input to the
NER system is transcripts produced by an auto-
matic speech recognition (ASR) system. These
transcripts are inherently noisy due to the nature
of spoken communication and due to the limita-
tions of the ASR system. The transcripts contain
dysfluencies, false starts, filled pauses, they lack
punctuation information and have incomplete in-
formation about case.

Because there was no pre-existing annotated data
set publicly available that matched the characteris-
tics of the ASR transcripts in the domain of busi-
ness telephone conversations (Li et al., 2020), the
NER model is required to be trained on a large
dataset containing telephone conversations to ef-
fectively detect named entities in such noisy data.
Moreover, the NER model needs to provide real-
time functionality in a commercial communication-
as-a-service (CaaS) product such as displaying in-
formation related to the named entities to a cus-
tomer support agent during a call with a customer.

The deployed system was therefore required to be
fast (less than 200ms inference time) but economi-
cal (able to operate on CPU, rather than more ex-
pensive GPUs).

To address the above issues, in this paper, we
present a simple yet effective method, distill-then-
fine-tune, to transfer knowledge from a large and
complex model to a small and simple model while
reaching a similar performance as the large model.
More specifically, we fine-tune a state-of-the-art
NER model, LUKE (Yamada et al., 2020), on our
limited amount of noisy telephone conversations
and predict the labels of a large amount of unla-
beled conversations, denoted as distillation data.
The smaller model is then trained on the distilla-
tion data using pseudo-labels. We conduct exten-
sive experiments with our proposed approach and
observe that our distilled model achieves 75x infer-
ence speed boost while reserving 99.09% F1 score
of its teacher. This makes our proposed approach
very effective in limited budget scenarios as it does
not require the annotation of a huge amount of
noisy data that would otherwise be required to fine-
tune simpler transformers on downstream tasks.

2 Related Work

NER is often framed as a sequence labeling prob-
lem (Huang et al., 2015; Akbik et al., 2018) where
a model is used to predict the entity type of each to-
ken. Previously, various models based on the recur-
rent neural network architecture have been widely
used for this task. In recent years, pre-trained lan-
guage models have been employed to perform the
NER task where a new prediction layer is added
into the pre-trained model to fine-tune for sequence
labeling (Devlin et al., 2019).

More recently, (Yamada et al., 2020) proposed a
new approach to provide the contextualized repre-
sentations of words and entities based on a bidirec-
tional transformer. In their proposed model, LUKE,
they treat words and entities in a given context
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Type Utterances Person Prod/Org Location
Train 16124 4852 4443 4135
Dev 2292 682 627 629
Test 4497 1382 1274 1151

Table 1: Labeled in-domain dataset class distribution.
The numbers under each entity type represent number
of utterances containing the specific type.

as independent tokens, and output the contextual-
ized representations of them. The LUKE model
achieved impressive performance in various entity-
related tasks. However, this model is inherently
slow due to its complex architecture and so it is not
applicable for usage in production environments in
a limited computational budget scenario.

In scenarios where the computational budget is
limited, using a smaller model that can mimic the
behaviour of the large model can be used. Knowl-
edge distillation (Hinton et al., 2015) is one such
technique where a large model is compressed into a
small model. One prominent approach for Knowl-
edge Distillation that has been used in recent years
is the work of (Tang et al., 2019), where they pro-
posed a task specific knowledge distillation method
to show that using an additional unlabeled trans-
fer dataset can augment the training set for more
effective knowledge transfer. However, most prior
work that leveraged such knowledge distillation
techniques focused on typed input, whereas the
amount of work that leveraged knowledge distil-
lation for noisy texts (e.g., telephone conversation
transcripts) is very limited (Gou et al., 2021). Mo-
tivated by the advantages of knowledge distillation,
in this work, we also leverage knowledge distilla-
tion to address the computational issues that occur
while utilizing large state-of-the-art language mod-
els in a limited computational environment, while
minimizing the amount of noisy data that must be
human-annotated for use during fine-tuning.

3 Datasets

In this section, we first introduce the in-domain
training data (noisy human-to-human conversa-
tions) that we sampled and annotated to train the
teacher model. Then, we describe the data used for
knowledge distillation of the student model.

3.1 In-domain Data Annotation

Since our in-domain dataset is sampled from tran-
scripts produced by an ASR system, the dataset
does not contain any punctuation marks and only

contains partial casing information. This makes
the property of our dataset fundamentally differ-
ent from the data that most pre-trained models are
trained on. This also makes the task more difficult
since upper-cased words are a very strong hint of a
token being a named entity (Mayhew et al., 2019).

For data annotation, we sampled 26,000 utter-
ances from telephone conversation transcripts and
had them annotated by Appen1. Four types of
named entities were labeled by the annotators: per-
son name, product or organization, geopolitical
location, and none. The detailed statistic of this
dataset labeled by Appen is shown in Table 1.

3.2 In-domain Distillation Data

Our goal is to reduce the amount of human anno-
tated data in the training set. For this purpose, we
perform knowledge distillation that transfers knowl-
edge from a large and complex teacher model to
a small and simple student model. Since the stu-
dent model is expected to be much simpler than the
teacher model, it requires a large amount of labeled
training data. In addition, due to the sparsity of
named entities, the model cannot learn too much
from randomly sampled utterances where most of
them may not contain any named entities. We ad-
dress this issue by using the spaCy2 NER model to
select utterances that are highly likely to contain at
least one named entity of a type we are interested
in. Specifically, we only used four entity types rele-
vant to this study from the spaCy model: PERSON,
ORG, GPE, PRODUCT. This sampling method
produced 483, 766 unlabeled utterances from busi-
ness telephone conversation transcripts and largely
increased the information density in the data. How-
ever, annotating this huge amount of unlabeled data
would be a prohibitively costly process. To tackle
this problem, we use the trained teacher model to
predict the labels of these utterances. In this way,
the teacher model provides the pseudo-labels of a
large unlabeled noisy dataset to alleviate the need
of human annotation for such data. We use this
large noisy speech data with pseudo-labels as the
distillation data to train the student model. The
statistics of this dataset is listed in Table 2.

4 Our Proposed Approach

In this section, we first describe the architectures
of the teacher and student models. We then de-

1https://appen.com/, accessed on January 4, 2022.
2https://spacy.io/api/entityrecognizer

https://appen.com/
https://spacy.io/api/entityrecognizer
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Figure 1: Our knowledge distillation approach: (a) first, fine-tune the teacher model (LUKE) on the labeled dataset,
and generate the pseudo-labels of a huge amount of unlabeled data for distillation. (b) Next, fine-tune the student
model (DistilBERT) in two steps, step 1: on the distillation data having pseudo-labels that were generated in the
previous step, and step 2: on the original labeled training data where the teacher model was also trained. Here,
‘PDORG’ denotes ‘PROD/ORG’, while ‘Bold’ font in the output layer denotes the entities tagged by the model.

Type # Examples
Positive utterances 347,412
Negative utterances 136,354

Utterances containing Person tags 179,495
Utterances containing Prod/Org tags 97,857
Utterances containing Location tags 138,989

Table 2: Pseudo-labeled distillation data class distribu-
tion. “Positive utterances" are those that contain any of
the 3 entity types, and “Negative utterances" are those
that do not contain any of the 3 entity types. Here, ‘#’
denotes ‘Total number of’.

scribe our proposed knowledge distillation method,
distill-then-fine-tune, that can be broken down into
four steps: i) fine-tune the teacher model on the
in-domain data, ii) sample distillation data from
unlabeled examples, iii) perform distillation, and
iv) fine-tune the student model. An overview of
our proposed approach is illustrated in Figure 1.

Model Architecture: We use LUKE, a bidirec-
tional transformer, that was pre-trained by (Yamada
et al., 2020) on Wikipedia data to learn contextu-
alized representations of words and entities. In
LUKE, the input representation of a token (word
or entity) is computed using three types of embed-
ding: token embedding, position embedding, and
entity type embedding. Token embedding, which
is decomposed into two small matrices, represents
the corresponding token. Position embedding rep-

resents the position of a token in a word sequence,
while the entity type embedding represents whether
the token is an entity. To further leverage the en-
tity type embedding, an entity-aware self attention
mechanism is used to handle interactions between
entities in a given word sequence. Since LUKE is
a large model that contains approximately 483M
parameters (355M on its encoder and 128M for en-
tity embeddings), we use it as the teacher to teach
a student model.

For the student model, we adapt the Distil-
BERT (Sanh et al., 2019) model, a 6-layer bidirec-
tional transformer encoder that was pre-trained for
the language modeling task by Sanh et al. (2019).
The DistilBERT model was initialized from its
teacher BERT model by taking one layer out of
two. It was pre-trained on the same corpus as
BERT while using both the distillation loss and
the masked language modelling loss. It contains
approximately 66M parameters (approximately one
seventh the size of the teacher model), making it
more economical to deployment in a production
environment with limited resources.

Distillation Method: Our goal is to build an
NER system that can detect named entities in busi-
ness conversations, but the LUKE model that we
employ as a teacher model was pre-trained on writ-
ten text, which is very different from noisy tran-
scribed human-to-human conversations. To adapt
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Model F1 Score Inference Time
LUKEft 86.07 2980ms

DistilBERTft 83.08 40ms
DistilBERTdtft 85.29 40ms

Table 3: Performance of our proposed DistilBERTdtft
models (fine-tuned on a large amount of distillation data
and a small amount of in-domain human-annotated data)
compared to the LUKEft and DistilBERTft models that
were fine-tuned only on the in-domain human-annotated
data. Inference time is measured on a 2.20Ghz Intel
Xeon CPU with sixteen virtual cores.

to the domain of business conversations, we first
fine-tune the LUKE model on 16,124 in-domain
human-annotated examples (see Section 3.1 for de-
tails). The resulting model is called LUKEft. The
LUKEft model serves as the teacher that generates
pseudo-labels for the distillation data (see Section
3.2 for details).

Next, we use a two-step fine-tuning approach for
the student model (Fu et al., 2021; Laskar et al.,
2022c). The student model is initialized with the
pre-trained DistilBERT model. For step 1, we fine-
tune the student model on the distillation data with
pseudo-labels generated by the teacher. During the
training stage, we use the cross entropy loss defined
below.

LCE = − 1

N

N∑
n=1

log
eŷn,yn∑C
c=1 e

ŷn,c
(1)

Here, N is the number of samples in a batch, and
C denotes the number of classes. ŷn,c is the logit
of the c-th class in the n-th example, and ŷn,yn is
the logit of the gold class in the n-th example.

For the final distillation step, we fine-tune the
student model further on the in-domain human-
annotated data. The resulting child model is termed
DistilBERTdtft.

5 Experiments

In this section, we describe our experimental set-
tings and results.

5.1 Experimental Settings

Below, we discuss the baseline models and the
training parameters used in our experiments.

Baselines: To compare the performance with our
proposed model, we use the following baselines, (i)
LUKEft: The pre-trained LUKE model fine-tuned
on our human-annotated in-domain training data,
and (ii) DistilBERTft: Similar to the other baseline,

it was fine-tuned only on our human-annotated in-
domain training data.

Training Parameters: For the teacher model,
LUKEft, we set the batch size to 2, learning rate to
5× 10−5, and the number of epochs to 3. For the
student DistilBERT model, we set the batch size
to 32 and the learning rate to 5 × 10−5, and the
number of epochs to 5.

5.2 Results and Analyses

From Table 3, we see that the LUKEft model
(fine-tuned on in-domain human-annotated data)
achieves the highest F1 score, 86.07%, but with
an inference time of 2980ms it is not practical for
realtime applications.

The DistilBERTft model (also fine-tuned only
on the in-domain human-annotated data), with an
inference time of 40ms is suitable for realtime ap-
plication, but loses almost three percentage points
of accuracy, reducing to an F1 score of 83.08%.

Our proposed DistilBERTdtft model, which
leverages two stage of fine-tuning (uses the large
distillation data on stage 1 of fine-tuning and the
human-annotated data on stage 2 of fine-tuning)
brings the F1 score back to within 1% of the
LUKEft model. Since DistilBERTdtft model has
the same model architecture and the same num-
ber of parameters as the DistilBERTft model, its
inference time is identical: 40ms, i.e. 75x faster
than LUKEft. This makes DistilBERTdtft model
applicable for production deployment as it achieves
an improved F1 score with high efficiency while
requiring less computational resources due to its
small size.

6 Conclusion

In this paper, we introduce the distill-then-fine-tune
method for entity recognition on real world noisy
data to deploy our NER model in a limited budget
production environment. By generating pseudo-
labels using a large teacher model pre-trained on
typed text while fine-tuned on noisy speech text to
train a smaller student model, we make the student
model 75x times faster while reserving 99.09%
of its accuracy. These findings demonstrate that
our proposed approach is very effective in limited
budget scenarios to alleviate the need of human
labeling of a large amount of noisy data. In the
future, we will explore how to apply knowledge
distillation to other tasks (Laskar et al., 2022a,b;
Khasanova et al., 2022) containing noisy data.
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Ethics Statement

The data used in this research is comprised of indi-
vidual sentences that do not contain sensitive, per-
sonal, or identifying information. Each machine-
sampled utterance is labelled by annotators before
the utterance is used as part of the training dataset.
While annotator demographics are unknown and
therefore may introduce potential bias in the la-
belled dataset, the annotators are required to pass a
screening test before completing any labels used in
these experiments, thereby mitigating this unknown
to some extent. Future work should nonetheless
strive to improve training data further in this regard.
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