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Abstract
Despite the wide use of inline formatting, not
much has been studied on translating sentences
with inline formatted tags. The detag-and-
project approach using word alignments is one
solution to translating a tagged sentence. How-
ever, the method has a limitation: tag reinser-
tion is not considered in the translation process.
Another solution is to use an end-to-end model
which takes text with inline tags as inputs and
translates them into a tagged sentence. This ap-
proach can alleviate the problems of the afore-
mentioned method, but there is no sufficient
parallel corpus dedicated to such a task. To
solve this problem, an automatic data augmen-
tation method by tag injection is suggested, but
it is computationally expensive and augmen-
tation is limited since the model is based on
isolated translation for all fragments. In this
paper, we propose an efficient and effective tag
augmentation method based on word alignment.
Our experiments show that our approach out-
performs the detag-and-project methods. We
also introduce a metric to evaluate the place-
ment of tags and show that the suggested metric
is reasonable for our task. We further analyze
the effectiveness of each implementation detail.

1 Introduction

While most machine translation studies are focused
on plain text, the textual information that we en-
counter every day on the internet contains words
with different styles and links within the sentence.
Various styling of any part of the text is called in-
line formatting and is represented by markup and
markdown tags. The inline formatting not only
improves the readability of documents but also pro-
vides additional information with tags; so it is im-
portant to correctly translate sentences including
tag information. In addition, the widespread use of
formatting tags in the computer-based document
system makes it inevitable to increase the demand
for translating web text or structured documents
containing inline tags.

There are two main approaches to translating
segments with inline tags. One solution is the detag-
and project method (Hanneman and Dinu, 2020). It
first strips tags from the source sentence and trans-
lates only the plain text. Then, the removed tags are
reinserted into the translation results using word
alignments, which can be induced from attention
weight in the model or an external aligner such as
SimAlign (Jalili Sabet et al., 2020). This method
does not take into account the re-insertion of tags in
the translation process, making it difficult to restore
tags at the proper positions.

Another way is to use an end-to-end model
which takes sentences including tags as inputs and
generates translation results with tags. Since tag
information is considered, the translation can be
performed with more context, thus this method po-
tentially improves the quality of translation and the
placement of tags. To train end-to-end models, a
parallel corpus, where both source target sentences
contain aligned tags, is required. Even though a
parallel corpus with markup tags was released by
Hashimoto et al. (2019), their data is limited to the
domain of online help and there is still not many of
such data available to train a high-quality model.

To address this lack of tagged parallel corpus,
Hanneman and Dinu (2020) introduces a data aug-
mentation approach using tag injection. Their
method is to insert tags into corresponding frag-
ments in the source and the target. In their ap-
proach, the aligned phrases are identified by an
exhaustive search by matching all translated source
fragments with all target fragments. This method
has two drawbacks by its nature. The first is that
their approach requires a high computational cost
because it requires computing translation for all
possible phrases for at least millions of parallel
sentences to train a model. Secondly, only con-
strained tags can be augmented because they find
corresponding pairs with out-of-context translation.

In this paper, we propose an efficient and effec-
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tive tag augmentation method using word align-
ments (Brown et al., 1993) to overcome the above
shortcomings. Our method uses an external word
aligner to compute correspondence between the
source and target words, and find aligned fragments
by phrase extraction algorithm (Och et al., 1999).
Then tags are inserted according to the phrasal
alignments. The tag-augmented parallel corpus
by this method can train a model that translates
sentence containing tags in an end-to-end way.

For comparisons, we implement competitive
baselines and propose a metric to automatically
evaluate the placement of tags. Through experi-
ments, we show that our approach is superior to
the detag-and-project methods and demonstrate the
effectiveness of each implementation detail.

2 Method

In this section, we propose an efficient and effective
method to insert inline tags into an existing parallel
corpus. In augmented data, the position of tags in
the source segment must be preserved in the target
segment. The word "preserved" means that tags
in the target sentence must surround spans with
the same role and meaning as the corresponding
source spans. In other words, the source and target
fragment in the same tag has to correspond with
each other. Moreover, inline tags can contain not
only a word but also a phrase or even any consecu-
tive words. Therefore, how to find corresponding
phrase1 pairs for each parallel sentence is the key to
synthesizing tag-aligned parallel data. This makes
our method focus on finding aligned phrase pairs.

Our proposed augmentation method consists of
three steps. We first generate word alignments for
the parallel corpus using external word aligners
(Section 2.1). Then we extract aligned phrase pairs
for each sentence pair with the word alignments
(Section 2.2). Lastly, for each parallel sentence and
the aligned phrase pairs, since each sentence usu-
ally has a lot more aligned pairs than the number
of words in the sentence, we randomly select some
of the pairs and insert tags to surround the phrases
(Section 2.3). Figure 1 presents the whole pro-
cess of our methods. The example is from Philipp
Koehn’s lecture2.

1In this paper, the word "phrase" indicates consecutive
words of any length. The length can be 1 and more.

2https://wiki.eecs.yorku.ca/course_archive/
2014-15/W/6339/_media/esslli-slides-day3.pdf

Figure 1: The process of our methods.

2.1 Word Alignment

Word alignment represents word-level correspon-
dence in a parallel sentence. In statistical ma-
chine translation, implementation of IBM models
(Brown et al., 1993) such as FastAlign (Dyer et al.,
2013) and GIZA++ (Och and Ney, 2003) are fa-
mous to compute word alignment from parallel
corpus. As deep neural network-based aligners,
there are SimAlign (Jalili Sabet et al., 2020) and
AwesomeAlign (Dou and Neubig, 2021). These
neural methods use the similarity of contextual em-
beddings based on pretrained multilingual models
to compute the correspondence between source and
target words.

Our approach starts by using one of the above
external word aligners to compute forward (source-
to-target) and backward (target-to-source) word
alignment, and then apply symmetrizing heuris-
tics (Koehn et al., 2005) such as grow-diag and
grow-diag-final-and for better alignment.

887

https://wiki.eecs.yorku.ca/course_archive/2014-15/W/6339/_media/esslli-slides-day3.pdf
https://wiki.eecs.yorku.ca/course_archive/2014-15/W/6339/_media/esslli-slides-day3.pdf


2.2 Phrase Extraction

The phrase level alignment has been proposed in
Och et al. (1999) to improve statistical machine
translation.

We find aligned phrase pairs depending on word
alignments with phrase extraction algorithms. The
phrase extraction algorithm finds phrasal align-
ments by exhaustively searching all phrase pairs
that are consistent with word alignment. For the de-
tailed algorithm description, please see the NLTK
implementation (Loper and Bird, 2002)3.

We do not use phrase probability tables (Koehn
et al., 2003) to refine aligned pairs since it prevents
the collection of diverse kinds of phrases. Instead,
we do not allow phrases with unaligned words for
more accurate phrase extraction4.

2.3 Tag Insertion

In this step, we insert tags that surround aligned
phrase pairs. The number of tags is randomly se-
lected to less than 30% of the number of words.
Then the aligned phrase pairs are randomly cho-
sen as many as the number of tags, and tags are
inserted according to the pairs. In this process, we
can insert tags following the HTML syntax, and
the tags can be nested.

2.4 Augmentation Cost Analysis

The cost of augmentation is crucial since machine
translation models typically are trained on more
than millions of parallel sentences. For this reason,
we roughly analyze the amount of computation
to show that our method is cost-efficient over the
previous approach.

The previous tag augmentation method sug-
gested in Hanneman and Dinu (2020) uses a ma-
chine translation model to find corresponding frag-
ments with exhaustive search. Their method needs
at least O(n ∗m) translation model inferences for
each parallel sentence, where n is the size of the
maximum corresponding phrase length and m is
the number of tokens in the source.

Assume that our method use SimAlign (Jalili Sa-
bet et al., 2020) for a word aligner. Our approach
requires one XLM-R (Conneau et al., 2020) infer-
ence to compute contextual word embeddings and

3https://www.nltk.org/_modules/nltk/translate/
phrase_based.html

4The original phrase extraction implemented in the NLTK
includes unaligned words in the aligned phrase since it is still
considered to be consistent with word alignment.

single matrix multiplication to get cosine similari-
ties between tokens. Since single XLM-R inference
cost much to single matrix multiplication, we can
count single XLM-R inference as the amount of
computation. Alignment symmetrizing heuristic
algorithms and phrase extraction are also required
for our approach, but we do not count it to time
comparison since these algorithms also take much
less time than neural model inference.

Because the translation model uses beam search,
both XLM-R and a translation model have almost
the same computation cost, but the translation
has more latency because it is autoregressive. In
short, the previous method needs O(n ∗m) trans-
lation model inference but our approach only re-
quires a single XLM-R inference for each sentence
pair. Therefore, our model is more efficient than
translation-based augmentation.

3 Experimental Setup

3.1 Data

3.1.1 Training Data

Our data augmentation goal is to train an end-to-
end model to translate inline tagged text with com-
petitive translation quality. For a fair comparison
of translation performance, we use the same train-
ing and test sets as Edunov et al. (2018) and Garg
et al. (2019). The tagged parallel corpus released
by Hashimoto et al. (2019) is also used to evaluate
the placement of tags.

WMT’18 This dataset is a set of parallel corpora
for the WMT’18 English-German news translation
task (Bojar et al., 2018) and consists of the Eu-
roparl v7, common crawl, news commentary v13,
and rapid corpus of EU press releases. Parallel
sentences with either a sentence longer than 250 to-
kens or a source/target token length ratio exceeding
1.5 are removed5.

LXM In this paper, we call the dataset released
by Hashimoto et al. (2019) LXM which is their
GitHub repository name’s initials6. The data have
parallel sentences with aligned inline tags. For
German-to-English, there are about 100,000 train
pairs and 2,000 development pairs. Only about a
quarter of them contain tags.

5We use the XLM-R tokenizer to filter the parallel corpus.
6https://github.com/salesforce/

localization-xml-mt
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LXM-plain This data is the LXM training data
without tagged pairs. Since the domain of LXM
is online help and WMT’18 corpora do not cover
them, thus we add this data to training data. In
this paper, we prove the effectiveness of the tag
augmentation approach, thus we only use plain
sentences from the training set.

3.1.2 Test Data
For comparison of our approach to the previous
works, we use newstest2014 (WMT’14) to evalu-
ate translation quality and LXM development set
(LXM-dev) for the accuracy of tag placement.

3.2 Naive End-to-end Baseline
This baseline takes text with markup tags as inputs
and handles them like plain text but uses a model
which has been trained without tagged parallel cor-
pus.

3.3 Detag-and-project Baselines
The detag-and-project approach (Hanneman and
Dinu, 2020) first strips tags from the source sen-
tence, translates the plain one, and then places the
removed tags in the corresponding positions ac-
cording to the word alignments. During the projec-
tion stage, one tag can be projected into separated
parts, in this case, we insert one minimum-sized
tag that surrounds all of the parts, which is also
called the Min-Max Tag Pair Projection in Zenkel
et al. (2021).

We establish three detag-and-project baselines
according to the way to get word alignment.

Layer Average Baseline The layer average base-
line is to extract word alignments from the at-
tention. There are two methods to induce word
alignments from the attention (Chen et al., 2020):
NAIVE-ATT and SHIFT-ATT. Word alignments
are induced from attention scores between the en-
coder and decoder. NAIVE-ATT (Garg et al., 2019)
relates the maximum attention scores with the de-
coder’s output token and uses attention weight of
the penultimate layer of the decoder. SHIFT-ATT
(Chen et al., 2020) associates the maximum atten-
tion scores with the decoder’s input token and uses
attention weight of the third layer of the decoder.

Garg et al. (2019) This baseline can be sim-
ply called attention enhanced approach. Like the
layer average baseline, this method also extracts
word alignments from attention scores, but it uses
the trained attention head by multi-task learning.

Specifically, one attention head of the fifth layer
of the decode is jointly trained with translation
by word alignments from GIZA++ (Och and Ney,
2003). Furthermore, full target context is used
when the attention weight learns word alignments
and predicts alignments from cross-attention. We
re-implement the model by the author’s Fairseq
(Ott et al., 2019) implementation7 to reproduce
their results. In this paper, we do not apply any
pre-tokenizer, and only use an unigram language
model tokenizer (Kudo, 2018) with a vocabulary
size of 35,000. All other hyperparameters are the
same as Garg et al. (2019).

SimAlign This method uses SimAlign (Jalili Sa-
bet et al., 2020) as an external aligner to restore
tags on the translation results. For this model, the
layer average baseline model is used to generate
translated sentences. We take argmax8 function to
extract each direction of word alignment and apply
grow-diag-final-and heuristics (Koehn et al.,
2005) to symmetrize the bidirectional alignments
for better word alignments.

3.4 Implementation Details
Reversible Tokenization The previous works
use Moses tokenizer (Koehn et al., 2007) as a
pre-tokenizer before applying Byte-Pair-Encoding
(Sennrich et al., 2016). However, we don’t use
any pre-tokenizers like Moses because it is impos-
sible to detokenize tokenized results to the origi-
nal sentence completely even if a well-designed
rule-based detokenizer is applied. We only apply
SentencePiece (Kudo and Richardson, 2018) for
tokenization, because it is a reversible tokenizer
and makes a purely end-to-end system possible. A
unigram language model tokenizer (Kudo, 2018)
is trained from the WMT’18 corpus only without
applying subword regularization.

Whitespace Shift As SentencePiece (Kudo and
Richardson, 2018) tokenizer adds dummy whites-
pace at the beginning of a sentence, we move the
whitespace before the tag to the back of the tag
since the whitespace at the beginning of a word
plays an important role in tokenization because the
whitespace is also considered a target to tokenize by
the subword tokenizer. A word without whitespace
at the beginning is often tokenized differently from
a word with a whitespace. For example, "World" is

7https://github.com/facebookresearch/fairseq/
tree/main/examples/joint_alignment_translation

8Argmax aligns words to the most similar word.
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WMT’14 LXM-dev
Model BLEU BLEU XML BLEU XML Acc. XML Match F1
Edunov et al. (2018) 29.0
Hashimoto et al. (2019) 52.91 51.16 99.75 99.3
Naive End-to-end
- WMT’18 only 28.7 25.12 22.14 98.05 95.15 44.83
- WMT’18 + LXM-plain 28.8 51.05 49.9 98.6 98.2 58.93
Layer Average Baseline
- NAIVE-ATT 28.8 52.22 50.45 100 98.5 60.53
- SHIFT-ATT 28.8 52.22 50.71 100 98.75 61.59
Garg et al. (2019) 28.7 52.46 50.64 100 98.0 68.04
SimAlign 28.8 52.22 48.43 100 97.55 60.96
Tag Augmentation (ours) 29.1 53.37 52.8 100 99.35 74.31
Tag Shift 29.1 53.37 52.07 100 99.35 53.75

Table 1: Evaluation results on the WMT’14 and LXM-dev. Models are trained with WMT’18 and LXM-plain by
default. In Tag Shift, all tags are moved to one word to the left in the translation hypothesis.

tokenized into "Wo", "r", "ld", however, "_World"
is tokenized into "_Wor", "ld". This inconsistency
affects adversely translation quality. For this rea-
son, we move the space and put it back in the pre-
and post-processing step.

Tag Replacement Markup tags often have
attributes and the attributes generally don’t
need to be translated and just copied to the
translation. Like other approaches (Müller, 2017)
and (Hanneman and Dinu, 2020), we replace
the real tags with indexed special tags. We
insert at most 9 tags per each parallel pair in tag
augmentation. In our implementation, we use
"<a_0>,<a_1>,...<a_9>,</a_0>,</a_1>,...</a_9>"
as special tokens. In the training step, the index of
special tokens is shuffled for training efficiency. In
the inference, we convert real tags to the special
tokens and the convert table in the pre-processing
step. After translation, we revert them to the
original tags in post-processing.

Tag Augmentation Hyperparmeters We use
subword alignments instead of word alignments
since according to recent studies (Garg et al., 2019)
(Jalili Sabet et al., 2020), and (Dou and Neubig,
2021); subword-based alignments outperform word
alignments on AER (Alignment Error Rate). Since
our SimAlign baseline uses the XLM-R model
(Conneau et al., 2020), for a fair comparsion, paral-
lel corpus is tokenized by the XLM-R tokenizer9

9They use SentencePiece tokenizer and the model can
download in https://github.com/facebookresearch/
XLM.

before computing word alignment with statistical
models.

Like Garg et al. (2019), for our augmentation,
Giza++ with 5 iterations of IBM1, HMM, IBM3
and IBM4 are used as a word aligner. However,
for training an end-to-end model, we use a differ-
ent tokenizer as explained in 3.4. For end-to-end
training, we use the combination of tagged data
and plain data in a 1:1 ratio.

Model Training Hyperparameters Basically
for all experiments, we follow the same hyper-
parameters as the Align and Translate Task of Garg
et al. (2019). We use the fairseq toolkit (Ott et al.,
2019) for all of our experiments. The big trans-
former architecture10 with the post layer normal-
ization is used for all experiments. The difference
is that we use learning rate of 5e-4, learning rate
warmup over the first 8000 steps, and a batch size of
32768 tokens11 on 8 A100 GPUs for 120k updates.
We use the checkpoint which averages the last 10
checkpoints, and a beam size of 5 for inference.

4 Evaluation

In this section, we describe several metrics to eval-
uate our methods and present experimental results.

4.1 Evaluation Metrics
For comparison of translation quality to Garg
et al. (2019) and Edunov et al. (2018), we use

10The architecture name we used in faisreq is
trasnformer_wmt_en_de_big.

11Actually, we use 16384 tokens with accumulating 2 up-
date gradients.
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WMT’14 LXM-dev
Variation BLEU BLEU XML BLEU XML Match (Acc.) F1
Baseline 29.1 53.37 52.8 99.35 74.31
w/o Tag Replacement

trained on plain corpus 28.8 51.05 49.9 98.2 (98.6) 58.93
trained on tagged corpus 28.7 52.44 51.62 99.05 (99.85) 71.14

Symmetric Heuristics
intersection 29.2 53.13 52.4 99.2 60.13
grow 28.9 53.21 52.52 99.2 74.73
grow-diag-final-and 29.0 53.11 52.39 99.2 75.35

Phrase Length
8 28.8 53.33 51.9 99.05 72.07
16 28.9 53.17 52.86 99.45 73.61
32 29.1 52.85 52.25 99.25 73.12
128 28.9 52.92 52.55 99.45 72.84

Word Aligner
Fast-Align 29.0 52.89 52.14 99.2 72.99
SimAlign 28.9 52.99 52.41 99.15 73.5

w/o whitespace shift 28.6 52.88 52.26 99.4 71.77
NLTK phrase extraction 28.9 52.85 51.96 99.3 72.48
Violating HTML syntax 29.1 53.09 52.29 99.2 72.58
Tagged data only 28.5 52.59 51.66 99.35 72.27

Table 2: Variations on tag augmentation. The baseline uses grow-diag heuristics, phrase length of 64, GIZA++ as a
word aligner, and improved phrase extraction. The score on XML Accuracy is not mentioned because all scores are
100. w/o whitespace shift do not apply whitespace shift in the training and inference.

sacreBLEU (Post, 2018) with WMT’14. Like
Hashimoto et al. (2019)’s work, we use BLEU,
XML BLEU, XML Accuracy, and XML Match as
metrics in the evaluation of LXM-dev. We also use
the same evaluation scripts as they do12. For accu-
rate evaluation of the tag placement, we introduce
an F1 score-based metric to evaluate the position of
tags by focusing on the words that tags surround.

BLEU and XML BLEU The BLEU score here
is the same as the existing BLEU score measured in
plain text. For that, all tags first are removed if exist,
and then the BLEU is measured using the same
tokenizer as Hashimoto et al. (2019). The XML
BLEU uses the same metric, but if there are tags,
the BLEU score is measured with text containing
XML tags. The XML tags are also considered to
compute the score.

XML Accuracy and Match The XML accuracy
is the ratio of the valid XML outputs in all trans-
lation results. The XML match is the ratio of the
outputs that have the same XML structure as the

12https://github.com/salesforce/
localization-xml-mt

reference.

F1 score This metric is introduced to evaluate
the placement of tags. Since the goal of tag transfer
is to surround the corresponding words accurately,
we introduce a metric to focus on evaluating words
surrounded by tags. In this sense, we make use of
the metric from SQuAD (Rajpurkar et al., 2016),
since it evaluates the words in the span. SQuAD’s
answers consist of a span of consecutive words in
a paragraph and they evaluate how accurately the
span contains the correct answer. Since what we
really want to evaluate is not the position of tags
but the content of the span surrounded by tags, the
goal of their evaluation is similar to ours in that
they aim to assess a range of words.

We apply this metric to evaluate the accuracy
of tag placement. The score measures the over-
lap between the ground truth and the prediction to
calculate a score. More precisely, they treat the
hypothesis and the reference as bags of words, and
calculate F1. Unlike SQuAD dataset, LXM-dev
can have more than one tag for each sentence, thus

891

https://github.com/salesforce/localization-xml-mt
https://github.com/salesforce/localization-xml-mt


Model Alignment Error Rate (AER)
Method SHIFT-ATT NAIVE-ATT
Layer 1 2 3 4 5 6

Layer Average Baseline 29.1 31.8 36.1 41.9 42.8 51.2
Tag Augmentation (ours) 27.9 26.4 49.6 37.8 35.7 44.7
Garg et al. (2019) (all heads) 32.0 26.0 22.7 35.3 29.1 (20.5)∗ 72.2

Table 3: Results on Vilar et al. (2006). ∗ uses the first head trained by word alignments. Others use the average.
While we apply SHIFT-ATT for the half bottom layers, we apply NAIVE-ATT on the top 3 layers for better
performance on AER (Chen et al., 2020).

we use the average score per tag13.

4.2 Results

Firstly, in order to show the relevance of the pro-
posed F1 metric, we shift all tags to the left by
one word, which must cause performance degrada-
tion in tag placement. In the results of Tag Shift
in Table 1, compared to Tag Augmentation, there
is only a slight drop on XML BLEU, however, the
F1 score shows a significant decrease. This implies
that the proposed metric is reasonable to evaluate
the placement of tags.

In Table 1, there are the results of the baselines
and our tag augmentation method. The experi-
mental results show that our augmentation method
achieves the best performance for all metrics. Fur-
thermore, according to the XML Accuracy, the tag
augmentation model is able to generate all XML
tags grammatically correctly in the source without
XML-constrained beam search.

4.3 Augmentation Variation

We conduct various experiments to figure out what
greatly affects the performance. Firstly, we note
that tag augmentation with intersection heuristics
causes considerable degradation on the f1 score.
We also note that according to (Dou and Neubig,
2021), the performance of word alignments be-
tween Fast-Align and Giza++ is considerable, but
the models trained on each data show relatively
similar performance compared to the AER scores.

Even though there is a little gap in performance,
the result indicates that all of our proposed imple-
mentation details have a positive influence on both
translation quality and tag placement. As a result,

13Unfortunately, some sentences in LXM-dev have multiple
of the same name tags in a sentence. Because there is no way
to align the same name tags, we regard the multiple separate
spans with the same name as one consecutive span in the
evaluation.

performance improvement is achieved by all fac-
tors combined.

4.4 Indirect Learning Alignment
We further investigate the effect of the aligned
tagged corpus. Table 3 shows that the AER score
from all layers is improved than the Layer Average
Baseline, but does not reach the score of multi-task
training model (Garg et al., 2019) where word align-
ments are trained directly. This result indicates that
the tag-augmented data help models’ attention to
learn the correspondence between source and target
words indirectly.

5 Conclusion

In this paper, we have presented an efficient and
effective inline tag augmentation method to insert
tags into existing parallel corpora using a word
aligner and the phrase extraction algorithm. Our
approach injects inline tags economically and ac-
curately.

We also introduced a reasonable metric for the
automatic and accurate evaluation of the placement
of tags and analyzed the effectiveness of the de-
tailed methods used in our approach. The experi-
ment results show that the model trained on data
augmented by our method outperforms the previ-
ous detag-and-project methods.
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