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Abstract
Leveraging shared learning through Massively
Multilingual Models, state-of-the-art machine
translation (MT) models are often able to adapt
to the paucity of data for low-resource lan-
guages. However, this performance comes at
the cost of significantly bloated models which
are not practically deployable. Knowledge Dis-
tillation is one popular technique to develop
competitive lightweight models: In this work,
we first evaluate it’s use to compress MT mod-
els focusing specifically on languages with ex-
tremely limited training data. Through our
analysis across 8 languages, we find that the
variance in the performance of the distilled
models due to their dependence on priors in-
cluding the amount of synthetic data used for
distillation, the student architecture, training
hyper-parameters and confidence of the teacher
models, makes distillation a brittle compression
mechanism. To mitigate this, we explore the
use of post-training quantization for the com-
pression of these models. Here, we find that
while distillation provides gains across some
low-resource languages, quantization provides
more consistent performance trends for the en-
tire range of languages, especially the lowest-
resource languages in our target set.

1 Introduction

While NLP has made giant strides in producing
more accurate models, these benefits are often
not transferred representatively to end-users who
would eventually use a language-technology (Etha-
yarajh and Jurafsky, 2020; Caselli et al., 2021).
Bloated sizes, cumbersome inference times (Tao
et al., 2022a) and a limited set of languages that
these models serve are a few reasons for this. More
specifically, their usage is hindered by access bot-
tlenecks such as (a) Infrastructural Obstacles:
A large percentage of end-users do not have sus-
tained access to internet or high-compute devices
to enjoy a stable access to cloud-inferencing of cur-
rent NLP models (Ranathunga and de Silva, 2022;

Diddee et al., 2022), (b) Latency Requirements:
Certain NLP services (chat-bots, real-time assis-
tance interfaces, etc.) require very low-inference
time which requisite lightweight-models (c) Pri-
vacy Constraints: The outflow of sensitive user
data which is fed for inferencing to remotely hosted
NLP models also has well documented issues (Sri-
nath et al., 2021; Huang and Chen, 2021; Huang
et al., 2020; Diddee and Kansra, 2020).

Within the research that focuses on evaluating
and mitigating these practical constraints, the focus
on low-resource language setups has been fairly
limited (Ganesh et al., 2021). For instance, while
the compression of large language models has re-
ceived consistent attention through analysis of prun-
ing (Behnke and Heafield, 2020; Behnke et al.,
2021), distillation (Bapna et al., 2022; Mghab-
bar and Ratnamogan, 2020; Kim and Rush, 2016;
Junczys-Dowmunt et al., 2018) and even quantiza-
tion (Bondarenko et al., 2021; Zadeh et al., 2020)
- much of this work has focused on compressing
language models for high-resource languages.

In this paper, we report the results of a compara-
tive analysis of the performance of distillation and
quantization. By focusing on compressing seq2seq
multilingual models across a range of languages
with data ranging from 7000 to 3M samples - we es-
pecially demonstrate the different priors that need
to be ascertained for the successful distillation of
the model. We are unaware of any previous study
that demonstrates the performance of these mecha-
nisms on such low resource languages.

The utility of this work is in commenting on the
feasibility of these two compression techniques for
rapid development and deployment of MT Mod-
els for low resource languages (Joshi et al., 2020).
More specifically, we believe that distillation’s re-
liance on several priors can be addressed naively
through a resource-intensive exercise, where the
optimal values of these priors are computed exhaus-
tively. However, in the absence of such a budget,
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we expect this to be a major impediment in the
development of lightweight models for such lan-
guages. Since low resource language communities
may also be marginalised in other ways, exhaustive
investment of data and compute might not be feasi-
ble for such communities as well as the language
technologists working on these languages (Zhang
et al., 2022; Diddee et al., 2022; Markl, 2022).

The main contributions of this work are:

1. We distill competitive baseline models for
8 low-resource languages (Bribri, Wixarica,
Gondi, Mundari, Assamesse, Odia, Punjabi
and Gujarati) and evaluate the sensitivity of
the generated models to priors including (a)
amount of synthetic Data being used for train-
ing (b) The architecture of the student model
(c) the training hyper-parameter configuration
and (d) the confidence of the teacher models.

2. We, then, quantize these models to observe
if quantization provides a more consistent
compression mechanism for these languages.
Based on our analysis, we conclude that
the suprising stability of naive Post-Training
Quantization, especially in the compression
of extremely-low resource languages (training
data between 5000 and 25000 samples) over
distillation.

We release a combination of lightweight, offline
support MT models for these languages along with
the scripts for generation and offline inference to
further reproducible research in this domain1.

2 Approach - Model and Size Adaptations

In this section, we describe the languages (2.1),
architectures under consideration (2.1), the adap-
tations that we make for training and fine-tuning
these models (2.2) and the adaptations we make to
compress their size.

2.1 Languages
We perform our analysis on the eight languages
shown in Table 1. These languages cover a wide
range of availability of monolingual and parallel
data, spanning from classes 0 to 3 as defined in
Joshi et al. (2020). Additionally, they differ in
scripts and their inclusion in pretraining corpus
which result in interesting modelling adaptions that
are needed to be performed for the development

1Codebase and Open-Sourced Models

of their baselines. In this work, we only study the
High-Resource Language (HRL) → Low-Resource
Language (LRL) translation direction. The source
languages for all our target languages are men-
tioned in Table 1.

Family of Models For this work, we leverage
two model classes to carry out our analysis: I)
seq2seq transformer (Vaswani et al., 2017), here-
after referred to as vanilla transformer: With 6 En-
coder and Decoder Layers, Vocabulary size - vary-
ing between 8k to 32k and 8 attention heads. and
II) mT5-small (Xue et al., 2021): With 8 Encoder
and Decoder Layers, Vocabulary Size - 250100 and
6 attention heads.

We train the vanilla transformer from scratch,
hereafter referred to as transformer, to develop a
naive baseline for our experiments, and further fine-
tune the mT5-small, hereafter referred to as mT5,
with certain adaptations for all the languages, as
discussed in section 2.2.

For ease of reporting, we define the highest-
performing-model (denoted by HM) over our fam-
ily of models as:

HM = argmax
M

A(M)

where M is a model class with performance
A(M) after training (where A is a metric like
BLEU (Papineni et al., 2002) or chrF (Popović,
2016) used to monitor the task-specific perfor-
mance of the model).

2.2 Model Adaptations: Language Specific
Approaches

Here we describe the strategies required to adapt
these models to different low-resource languages:
During fine-tuning, we adapt the pretrained mT5 to-
kenizer to unseen scripts (encountered for Odia) by
transliterating it to the closest, highest-resource lan-
guage included in the pretraining corpus of the pre-
trained model (Khemchandani et al., 2021; Ramesh
et al., 2021, 2022). For our extremely low-resource
languages, we used Lexicon-Adaption (Wang et al.,
2022) for the augmentation of target-side monolin-
gual data for languages wherever a bilingual lexi-
con could be leveraged - Detailed performance with
Hindi-Gondi is provided in the Appendix section
A.2. However since such methods were not exten-
sible to all the languages in our target language set,
we report final experimental results on the models
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Language Class Source Language Data Constraints Model Constraints
Monolingual Data Parallel Data Shared Script Included in Pretraining

Bribri 0 Spanish
Wixarica 0 Spanish
Mundari 0 Hindi

Gondi 0 Hindi
Assammese 1 English

Odia 1 English
Punjabi 2 English
Gujarati 1 English

Table 1: Languages Under Consideration: Note that the except the language’s inclusion in the pretraining corpus of
our chosen pretrained language models, all factors are independent of our experimental setup. Source language
column enlists the source language of the translation pairs

which did not leverage any additional data other
than the data mentioned in A.1. Since we analyze
the HRL to LRL direction and 4 out of 8 (Bribri,
Wixarica, Gondi and Mundari) of our target lan-
guages have little to negligible monolingual data -
we were also unable to leverage Back-Translation
to augment our language-specific parallel corpus
(Edunov et al., 2018).

2.3 Size Adaptation: Knowledge Distillation

Knowledge distillation involves training a smaller
student network to mimic the token level proba-
bilities of a larger, more accurate teacher model.
We distill our models using Hard Distillation (Kim
and Rush, 2016): we utilize a set of monolingual
sentences in the HRL - and forward translate using
the HM to generate synthetic labels that a lighter
student model is then trained on.

2.3.1 Estimation of Optimal Values for Priors

We define a prior as any attribute of the compres-
sion mechanism that needs to be initialized mean-
ingfully and/or optimized for optimal performance
- akin to hyperparameters. We use this term specifi-
cally so as to put all the dependent variables - such
as training data, prediction confidence of the un-
compressed models, etc in a single bucket: rather
than using a term like hyperparameters that already
holds traditional significance in literature. The ex-
perimental sweeps for these priors are briefly ex-
plained in this section. Note that we focus largely
on distillation while estimating for these priors, be-
cause quantization provides competitive models
even with the default choices established by lit-
erature whereas with distillation - the estimation
of these priors is critical to achieve a competitive
compressed model variant in most cases.

Prior 1: Optimal Student Architecture Fol-
lowing prior work like Bapna et al. (2022), we
experimented with 3 candidate architectures, two
of which used deep encoders and shallower de-
coders. We sweeped across 3 candidate architec-
tures - all variants of a seq2seq transformers with
(a) 8 Encoder + 6 Decoder Layers (b) 6 Encoder +
4 Decoder Layers and (c) 6 Encoder + 3 Decoder
Layers. We chose the architecture that gave the
best BLEU performance after 30 epochs. Sweeps
for the architecture were done across each of the
following languages - Gondi, Assamesse and Odia
as they covered a wide range of training data.

Prior 2: Optimal Training Hyperparameters
We sweeped across a set of hyper-parameter sets
for Bribri, Gondi, Assamesse and Gujarati to iden-
tify the optimal set for the distilled student models.
Our goal here was to specifically study the trans-
ferability of a hyperparameter set which performed
competitively for one or more languages, to all the
languages in our target set.

Prior 3: Amount of Training Data for the Stu-
dent We sweeped across 3 candidate sizes of our
synthetic dataset: 100K, 250K and 500K pseudo-
labels. Since this decision could also be greatly
dependent on the quality of the labels generated
per language - we ran this sweep for Bribri, Gondi,
Odia and Gujarati, as the quality of the labels gen-
erated by the teachers for these languages would
be expected to demonstrate significant variation.

Prior 4: Optimal Teacher Architecture To do
a preliminary quantification of the effect of the
choice of a teacher architecture and the quantity of
data that a teacher is trained for on the compress-
ibility of the model - we decided to evaluate the
confidence of our teacher models on the predictions
they generated. For this, we sampled 100 instances
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from each of our testsets and monitored the logit
distribution of our teacher models. Specifically,
we calculated the average of the softmax entropy
of the token-level softmax distributions for a se-
quence. Taking inspiration from the unsupervised
estimation of quality of machine translation outputs
(Fomicheva et al., 2020) through similar methods,
we hypothesised that the lower the entropy of our
model, the more confident it would be in its pre-
dictions for a given sample. The intuition here was
that if a model is confident about its prediction,
its logit distribution would be highly-skewed, and
not resemble a uniform distribution (which would
indicate its indecisiveness in being able to predict
the right token - and therefore, the right sequence).
Eventually, this could be used to gauge the quality
of the pseudo labels that are student were being
trained on.

2.4 Size Adaptation: Quantization

Quantization is a common way to reduce the com-
putational time and memory consumption of neu-
ral networks (Wu et al., 2020). Here, a lower-bit
representation of weights and activation functions
is used to achieve a lower memory footprint. In
this work, we perform post-training quantization,
where after training the base model with full pre-
cision of floating point 32 bits (fp-32), we convert
the weights and activations of the model to 8 bit
integers (int-8). Note that during inference, we
still preserve the precision of the input and output
encoder-decoder distributions as fp-32. In theory,
this brings down the memory consumption of the
model by nearly 4x times, though we see an effec-
tive reduction of about 3x in practice. More details
on the memory-reductions achieved are specified
in the Appendix A.4

3 Experimental Setup

3.1 Data

(a) Bribri and Wixarica: We use the training data
7K and 8K sentences, respectively from Feldman
and Coto-Solano (2020) and evaluate on test data
from Mager et al. (2021). (b) Gondi: We use 26k
sentences from the data opensourced by CGNET
Swara (CGNET, 2019) and split it into training
and test sets.2 (c) Mundari: We use a dataset

2To avoid any test-set leaks, we deduplicate the data by
removing tuples (Si, T i) where Si is the ith sentence in
the source language and T i is iththe sentence in the target
language, between the train and the test set.

of 10K sentences provided by Indian Institute of
Technology, Kharagpur3, and split it into training
and test sets.1 (d) Assamesse, Odia, Punjabi and
Gujarati: We use the training data from Ramesh
et al. (2022) (with 0.14M, 1M, 2.4M and 3M sen-
tences, respectively) and evaluate on test data from
FLORES200 Goyal et al. (2022) for Assamese and
WAT2021 Nakazawa et al. (2021) for the remaining
languages. Additional details about datasets (sizes
and splits) are mentioned in the Appendix A.1.

3.2 Training Setup

Hyperparameters: We use the transformer and
mT5 as our model classes as described previously
in Section 2. The hyperparameters for our trans-
former model was optimized for fine-tuning of
Odia, trained on 1M sentence pairs. For fine-
tuning, we use the Adafactor optimizer (Shazeer
and Stern, 2018), with a linearly decaying learning
rate of 1e-3. Since training with smaller batches
is known to be more effective for extremely low-
resource language training (Atrio and Popescu-
Belis, 2022), we tuned the training batch size for
every language - varying from 32 to 256 (with gra-
dient accumulation as 2) though we did not see very
significant variation in the performance on the basis
of this tuning. For our stopping criteria: we fine-
tuned all models for 60 epochs (which concluded
with considerably overfit models) and then selected
models by we picking the checkpoint which had the
best validation performance on BLEU (with only
the 13a tokenizer which mimics the mteval-v13a
script from Moses) (Post, 2018).

We use the sentencepiece tokenizer to build tok-
enizers for training the baselines for each of the lan-
guages (Kudo and Richardson, 2018). We use the
per-token cross-entropy loss for fine-tuning all our
models. Following Xu et al. (2021), we opt for a
relatively smaller vocabulary size with the intent of
learning more meaningful subword representations
for our extremely low-resource languages. Specif-
ically, we use a vocabulary size of 8K for Gondi,
Mundari, Bribri and Wixarica, compared to 32K
used for Assamesse, Odia Punjabi and Gujarati.

Experimental Setup for Distillation For
Mundari and Gondi we utilize 500K Hindi sen-
tences sampled from the Samanantar corpus
(Ramesh et al., 2022); We use the corresponding
English corpus to sample English sentences for
generating the pseudo labels for Assamesse, Odia,

3Data to be released soon;
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Punjabi and Gujarati. For Bribri and Wixarica -
We use Spanish data made available by the Tatoeba
Challenge (Tiedemann, 2020). We use the per-
token cross-entropy loss for training our distilled
models.

Evaluation Metrics: We use BLEU (sacrebleu
with spm pre-tokenization (version 2.2.0)) (Post,
2018) for all our evaluations (Goyal et al., 2020).
In addition to this, we also report chrF2 (Popović,
2016) for all our experiments for a more compre-
hensive comparison between the models.

4 Results

In section 4.1, we present the performances of our
base models in Table 2. In the following section
4.2, we report the performances of the distilled
HM in Table 3. Using these empirical results we
focus on answering the following questions (a) To
what degree can scaling the student training data
improve the performance of the student model?
(4.3) (b) How sensitive is distillation to the choice
of the architecture of the student model? (4.4) (c)
How can we choose an optimal teacher that is most
suitable for compression? (4.5) (d) To what degree
does the hyperparameter set suitable for distilling
a model for one language transfer to another lan-
guage? (4.6)

While answering these questions, we also ana-
lyze in parallel the performance of the quantized
variants of these models implicitly indicating the
reduced sensitivity of these variants from most of
the previously discussed priors in spite of their
competitive performances.

Language Data Vanilla transformer mT5

spBLEU chrF2 spBLEU chrF2

Bribri 7K 1.7 11.6 6.4 19.3
Wixarica 8K 2.2 14.1 6.2 28.0
Mundari 10k 0.1 5.6 15.9 33.7
Gondi 26K 1.2 7.9 14.3 32.5
Assamesse 140K 0.8 12.4 10.7 30.4
Odia 1M 23.7 43.6 27.4 47.6
Punjabi 2.4M 38.4 50.6 34.8 44.1
Gujarati 3.05M 35.9 53.4 35.7 49.8

Table 2: Performance of our base models (transformer
and mT5) without quantization or distillation. Best per-
forming models out of the two architectures are marked
in bold.

4.1 Analyzing the Baseline Models
As expected, the transformer models for target lan-
guages start competing (and outperforming) once

an adequate amount of data is available for training
the vanilla transformers. In addition to the obvious
gain for being only optimized for target languages,
the performance gains of these baselines can also
be attributed to the language-specific tokenizer that
they utilize, in contrast to the pretrained mT5 to-
kenizer that might be sub-optimal for language-
specific generation. For our low-resource lan-
guages though, the advantage of transfer learning
is clearly evident: all languages achieve a mini-
mum and maximum performance improvement of
4 and 16 BLEU points. Gondi and Mundari, de-
spite having relatively low-amount of data, perform
well - though we expect an overestimation of their
performance due to the homogenity between the
train and the test set. Additionally though, both
languages share scripts with a dominant language
script i.e., Devanagari and hence, can be expected
to gain because of that.

4.2 Analyzing the Compressed Models

In Table 3, we briefly present the performances
of our distilled and quantized models. As evi-
dent, especially for the lowest-resource models,
both distillation and quantization give competitive
performance in addition to providing a significant
size reduction. Note that Table 3 does not report
the performance of the quantization of the vanilla
transformer models for Odia, Gujarati and Punjabi
even though they had competed or outperformed
the mT5 variants. This is because they suffered a
significant drop in performance - Odia dropped in
performance to 8.4 BLEU/30.5 chrF2 in contrast
to its HM scores of 23.7 BLEU/ 43.6 chrF2 respec-
tively. Gujarati and Punjabi also dropped to 16
BLEU/31.2 chrF2 and 19.1/36.0 , respectively. To
explain this we note what distinguishes these two
architectures: (a) mT5 is deeper than transformer
having 2 extra layers on the encoder’s side than
the vanilla transformer and (b) leverages multilin-
gual pretraining. These attributes become useful
in interpreting mT5 robustness to compression. In
agreement with prior work like Li et al. (2020),
deeper models can be expected to be more immune
to compression. In fact, these models can be ex-
pected to be regularized by a certain degree through
quantization, and we posit that we might be adopt-
ing a sub-optimal fine-tuning hyperparameter set
for the initial fine-tuning of these models, conse-
quently generating potentially overfit models and
this gets mitigated to some extent upon quantiza-
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tion. Taking into consideration the lack of prior
work on fine-tuning large LMs on such extremely
low-resource languages and the infeasibility of run-
ning intricate hyperparameter sweeps per language
with such large models, this can also be expected
to degrade the quality of the labels generated for
training the distilled models - ultimately affecting
the performance that the distilled models achieve.

Language HM Distilled HM Quantized HM

spBLEU spBLEU chrF2 spBLEU chrF2

Bribri 6.4 6.8 13.2 7.4 19.4
Wixarica 6.2 4.1 17.3 7.2 26.8
Mundari 15.9 18.2 32.7 15.7 29.3
Gondi 14.3 14.2 32.8 13.8 31.1
Assamesse 10.7 9.6 27.4 6.2 25.7
Odia 27.4 20.2 40.7 21.0 41.3
Punjabi 38.4 32.8 46.6 27.0 48.0
Gujarati 35.9 29.8 48.6 28.4 51.4

Table 3: Performance of the HM for all languages after
applying Distillation and Quantization. Best performing
models out of both of the size adaptations are marked
in bold.

In the following sections we focus on presenting
our analysis of distillation’s sensitivity to certain
priors. In each section, we also discuss an analysis
of the same priors’ effect on quantization. Note that
since the mT5 outperformed the vanilla transformer
variants for all languages up till Odia - we distilled
and quantized them for these languages. Also note
that the HM for these languages is hence, mT5.
Additionally, for Odia, Gujarati and Punjabi, we
quantized both the mT5 and the vanilla transformer
variants of the models.

4.3 Sensitivity to Priors: Data

The quality, quantity and the domain of data that
the teacher or uncompressed variant of the model is
trained on, appears to impact both the mechanisms
of compression: For distillation the gold training
data as well as the monolingual data utilized for
generating student labels is of relevance, and for
quantization only the gold data that the teacher is
fine-tuned for, is of relevance.

Quantity of Training Data Interestingly, quan-
tization displayed consistent performance varia-
tions across the entire range of our low-resource
language sets (all languages up till Odia), giving
marginally close scores to the HM so at least within
the data sparse languages we did not see any di-
rect variation in the performance according to the

amount of training data used. Both mechanisms
show nearly equal degradation in performance for
the HRL.

Quality of Training Data The quality of the data
that the teacher is trained on affects the model’s
immunity to compression. This is best demon-
strated by the post-compression performances of
Gondi and Mundari in Table 3: In Gondi - the train
set has nearly 26K sentences, which by the virtue
of being collected via crowd-sourcing may be ex-
pected to be noisy. Mundari’s training data, though
also crowd-sourced, claims to have been validated
manually after its collection by the providers to
generate the final corpus of about 10K sentences.
The observed difference where Gondi suffers a
slight performance degradation post-compression
and Mundari experiences a significant performance
gain, may be attributed to the difference in the qual-
ity of their training data. Note that both languages
are being translated from the same source language,
share the same script and are being tested on a cor-
related test set - so the quality and quantity of train-
ing data are expected to be major contributors to
the variations in their performance.4

Quantity of Pseudo-Labels used for Student’s
Training Results of our analysis of scaling stu-
dent data between 100K to 500K are presented in
Figure 1. More data seemed to help for the entire
spectrum of languages - though it is evident that the
gain in the performance diminished in proportion
to the amount of added data as we approached the
lowest-resource languages in our set. The gain in
performance upon the addition to 250K samples to
a HRL like Odia or Punjabi is significantly more
pronounced than the gain in performance for Bribri
or Gondi - where there is a very marginal improve-
ment in the performance upon the addition of 250K
samples. This could be indicative of the dimin-
ishing efficacy of the increasingly noisy data that
was generated by the lowest-resource teachers. We
explore this notion in more depth in Section 4.5.

Domain of Data While we do not perform any
targeted experiments to evaluate the domain depen-
dence of the two compression mechanisms - we
posit that the distilled models’ significantly bet-
ter performance than its quantized variant in As-

4The two languages do belong to two different language
families - Gondi belonging to the Dravidian language family
which has a higher representation in the pretraining corpus for
mT5, and Mundari being Austro-Asiatic
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(a) Variation in the efficacy of pseudo-
labels between Bribri and Odia

(b) Variation in the efficacy of pseudo-
labels between Punjabi and Gondi

Figure 1: Min/Max range curves of the performance of
the models trained on scaled data: The shaded range is
considerably lower for the lowest-resource languages
indicating reduced efficacy of scaling student data.

samesse could be attributed to the distilled model’s
exposure to the diverse-domain data during the
student’s training. Note that the testset used in
Assamesse, FLORES 200 (Goyal et al., 2022),
is claimed to be of a very diverse-domain origin.
Given this, the process of training a student on
monolingual data of a potentially more diverse ori-
gin to that of the native training set - would ex-
plain the gain that the language demonstrates on
a domain-agnostic testset. Prior work like Mghab-
bar and Ratnamogan (2020) already shows distil-
lation’s efficacy in enabling students to adapt to
out-of-domain data that the teacher may not have
ever been exposed to. Quantization on the other
hand, has no opportunity for exposure to any out-
of-domain data - so its adaptation and performance
across a domain-agnostic testset can be expected
to only degrade.

4.4 Sensitivity to Priors: Student Architecture

We find that distilled student models could be ad-
versely sub-optimal for a given language, despite
being sub-optimal or even an optimal choice for
a large subset of languages. To demonstrate this

Figure 2: Variation in BLEU due to difference in the
choice of a student architecture: An optimal architecture
choice for Odia and Gondi gives adversely sub-optimal
performance for Assamesse

in Figure 2, we show the performance of two dis-
tilled models on an identical hyperparameter set
and student architecture. While the chosen stu-
dent architecture gives competitive performances
for Gondi and Odia, Assamesse performs signif-
icantly worse for this candidate architecture. We
did attempt retraining the model with a different
seed to negate the possibility of a randomly poor
initialization though this did not improve the con-
vergence. While we did not notice such a dras-
tic performance variation across any other candi-
date set, this instance did indicate brittleness to
the student-architecture for a given language. After
these sweeps, we fixed a transformer-based encoder
with 6 layers and a transformer-based decoder with
4 layers as the distilled model for our further exper-
iments.

4.5 Sensitivity to Priors: Confidence of the
Teacher Model
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Figure 3: Entropy distributions of mT5 and trans-
former: lower-entropy indicates high-confidence and
consequently suggest higher-quality of translations.

Estimating the confidence of our teacher models
displayed manifold benefits: Within Distillation,
it helped us get an indirect estimate of the qual-
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ity of the training data that the student model was
trained on. Within Quantization, it was useful in
analyzing why the mT5-variants were more robust
to quantization. Note that since the testsets for
all the languages are of varying difficulty - doing
a language-wise comparison on the basis of such
metrics was non-trivial since the confidence predic-
tions could also vary in accordance with the com-
plexity of the testsets being evaluated upon. Hence,
we majorly focused on analyzing languages which
were either evaluated on the same test set (Gujarati,
Punjabi, Odia with WAT21 testset (Nakazawa et al.,
2021)) or the different architectures for each of our
languages which could be evaluated for the same
testset.

Figure 3 demonstrates the difference in the en-
tropy of the softmax distributions of the mT5 and
transformer teacher variants. Note that this is for
Gujarati and Odia, our highest resource language,
for which both architectures perform quite competi-
tively and the vanilla transformer even outperforms
the mT5.

As is evident, the mT5 variant has much lower
entropy scores, with lower dispersion indicating
high-confidence in the predictions it produces for
each of the samples. Note that the inference
pipeline for both architectures is identical - Greedy
Search with no sampling so we don’t expect any
difference in the decoding mechanism to affect the
quality or distribution of representations that we
are monitoring. This is a very interesting observa-
tion, as both models appear to perform comparably
according to our automatic metric evaluations - yet
differ quite significantly in the stability with which
they generate these predictions.
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Figure 4: Entropy distributions for transformer across
different languages: Models become increasingly more
confident about their predictions with an increase in
training data

Next, we attempt to establish if training with

more data makes a model more confident in its pre-
diction. Figure 4 demonstrates the entropy scores
for Odia, Punjabi and Gujarati. Each of these have
data increasing in the order of 1M, 2.4M and 3M
respectively. Here we observe that indeed, models
trained with more data achieved consistently lower
entropy scores.

4.6 Sensitivity to Training Hyperparameters

In this section we present results of evaluating if
an adequate hyperparameter set for a given lan-
guage may be suitable for generating an optimal
variant for another distilled language. Here too, we
demonstrate using a subset of our hyperparameter
sweep that there can be a marked degradation in
the suitability of an averagely optimal hyperparam-
eter set (that might be close to optimal to multiple
languages with similar attributes) to an unseen lan-
guage;

Figure 5: Min/Max range of performances of Gujarati,
Bribri and Assamesse across a hyperparameter set that
is optimal for these languages but adversely sub-optimal
set for Gondi

In Figure 5, when tuned for the hyperparameter
set that is optimal for a majority of languages in
our set, Gondi does not even converge as a result of
which the lower-bound of a teacher’s performance
for that hyperparameter set is 0. Note that this
hyperparameter set transferability does not seem
to show any specific data oriented trends as well.
For instance, the same hyperparameter set that was
optimal for Gujarati, our highest resource language
with 3M data points, is only slightly sub-optimal
for Bribri, our lowest resource language with 7000
data points, and Assamese, our mid-resourced lan-
guage with 135K sentences. Also note that we
were able to get acceptable performance for Gondi
with almost an identical hyperparameter setup with
a larger batch size (quadrupled to the one in this

877



setup) indicating that a per-language sweep would
be an ideal and acceptable solution even though this
would imply that distilling models would mandate
a significant hyperparameter tuning for achieving
optimal performance. A detailed list of what hy-
perparameters we sweeped through can be found
in the Appendix Table 5.

5 Takeaways

We encapsulate the learning from our analysis as
the following takeaways:

1. Data Dependence of the Method of Com-
pression: Training teacher models with lesser
quantity, higher quality data is expected
to improve a model’s robustness against
both quantization and distillation. The post-
quantization performance suffers equally for
models trained with varying degrees of data.
This is not the case with distillation, where
increasing the amount of training data for stu-
dent distilled models starts providing dimin-
ishing returns as the amount of training data
for the teacher reduces.

2. Cost of Compression: Distillation is quite
sensitive to its training hyperparameters and
the student’s architecture. This choice doesn’t
necessarily follow any data-oriented trends as
well i.e., languages having similar amount of
data may perform very differently on similar
hyperparameter and student architecture sets.
Hence, Distillation mandates a significant hy-
perparameter tuning cost that Quantization
does not incur.

3. Stability of Compression: Hard Distilla-
tion and Post-Training Quantization are both
promising methods of quickly compressing
massively multilingual models for machine
translation for extremely low-resource lan-
guages. Post-Training Quantization should
be preferred when the uncompressed vari-
ants is pretrained and/or deep, expected de-
gree of compression is upto 4x the original
model’s size and the cost of compression is to
be minimum. Distillation, on the other hand,
should be preferred when domain-expansion,
language-specific tokenization and more than
4x degree of compression needs to be achieved
at the cost of a tuning for optimal architecture
and training setup selection.

6 Related Work

Owing to the known benefits of compressing lan-
guage models due to their lower-memory footprint,
improved inference speed and even improved per-
formance in some cases, compression techniques
have been explored widely in NLP.

Quantization While the work on quantizing
encoder-models is replete (Zafrir et al., 2019; Bon-
darenko et al., 2021; Kim et al., 2021; Zadeh et al.,
2020) the focus on quantizing decoder-only models
(Tao et al., 2022b), and specifically seq2seq mod-
els has been relatively much lower. Recent work
like, EdgeFormer, (Ge and Wei, 2022), LLM.int8()
(Dettmers et al., 2022) have recently demonstrated
the generation of seq2seq quantized models which
provide a high-compression ratios and competitive
performances though this work has also been done
with much higher resource languages.

Distillation Work within distillation is replete,
even for the multilingual-type of models that we
focus on. Work like Kaliamoorthi et al. (2021);
Jiao et al. (2021); Yang et al. (2022) represent
the major body of work in multi-lingual distilla-
tion - that is also centered across the encoder-only
space. Relatively lesser work has been done in
the space of mutli-lingual distillation (Soltan et al.,
2021; Mukherjee et al., 2021) of seq2seq models
and even though work like Zhang et al. (2020);
He et al. (2019) extends this analysis to relatively
low-resource languages, they rely on the use of
monolingual data for the target language, a luxury
that we cannot afford for half of the languages in
our language set.

Note that since both processes are orthogonal,
their conjunctive use has also been explored - Tao
et al. (2022a) for instance, get competitive results
by applying token level contrastive distillation and
module-wise dynamic scaling while quantizing
generative models. Note that we made the con-
scious decision of excluding pruning from our anal-
ysis because while it is known to demonstrate very
effective parameter reduction, it is generally not
as aggressive in it’s memory footprint reduction as
much as quantization and distillation (Behnke and
Heafield, 2020; Mohammadshahi et al., 2022). As
we’ll discuss further in section 7, size-reduction
was an implicit focus of this work that is one of
the most fundamental bottlenecks of community
deployment A.4.
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7 Discussion

While this work explicitly focuses on only the
performance comparison between distillation and
post-training quantization, it’s efficacy can also
be viewed in demonstrating the development of
lightweight, machine translation models for ex-
tremely low-resource languages. This is a very
critical outcome as Performance-oriented Machine
translation (MT) models for low-resource lan-
guages are often not suited for the immediate con-
sumption of the community. The access bottle-
neck introduced by these bloated models, can es-
pecially affect those communities which haven’t
traditionally enjoyed access to a digital ecosystem,
often widening the gap between those who can
and cannot access these tools. Towards this direc-
tion, the exploration of compression strategies for
these models - especially when tied to end-user
centric NLP services such as translation is imper-
ative. In this work, the size of all models being
evaluated after compression was less than 400MB -
the quantized models are at least 3x lighter the size
of the native HM and the distilled models give even
more impressive gains of upto 8x smaller than their
uncompressed counterparts. This size reduction,
coupled with the increased speed of inference asso-
ciated with this reduction in most cases can enable
a suite of accessible translation models for these
languages5. This establishes a very promising po-
tential in achieving deployment-constraint aware
models: For instance, in areas where users do not
enjoy a sustained access to the internet - these light-
weight models may be adapted to operate on edge
in an offline fashion.

8 Conclusion and Future Work

In this work we established that hard-distillation
is sensitive to several priors which makes it a brit-
tle mechanism of compression, especially for lan-
guages with extremely low-resources. In relative
comparison, post-training quantizaton provides a
competitive, stable and cost-effective compression
mechanism that works effectively for extremely
low-resource languages as well. Moving forward,
we wish to explore the effect of using additional
data (augmented or natively available) on the com-
pressed variants of these models and extend distil-
lation’s analysis to utilizing logit distributions of

5A more detailed description of the sizes of these mod-
els and the associated inference patterns is provided in the
Appendix A.4

the teacher (soft-distillation). Having observed the
poor confidence measures of the transformer - and
it’s relatively random distributions we expect to get
more interpretable evidence towards the suitability
of these models for soft distillation through such
an analysis.
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A Appendix

A.1 Details of Data Sources

For all the languages in Table 1 we now describe
the training and evaluation corpora used. Note
that for languages like Assamesse, Odia, Punjabi,
etc. we could have accessed a monolingual cor-
pus to supplement our training as well but since
we wouldn’t have been able to leverage data at a
similar scale and quality for the entire language set,
we abstained from using methods that leveraged
monolingual corpora in these languages.

Bribri Training data from Feldman and Coto-
Solano (2020) containing about 7K parallel sen-
tences. Test data from Mager et al. (2021) with
1003 sentences.

Wixarica Training data from Feldman and Coto-
Solano (2020) containing about 8k parallel sen-
tences. Test data from Mager et al. (2021) with 1K
sentences.

Mundari We requested Indian Institute of
Kharagpur for Data on Mundari. This corpus con-
tained 10K parallel sentences. We partition train
and test sets from this and generate a test set of 980
sentences 6

Gondi Data obtained from CGNET (2019) con-
taining 26K sentences. We partition train and test
sets from this and generate a test set of 730 sen-
tences6.

Assamesse Train data obtained from Ramesh
et al. (2022) containing 0.14 parallel sentences.
Test data from (Goyal et al., 2022) containing 1012
sentences

6 To avoid any test-set leaks, we deduplicate the data by
removing tuples (Si, T i) where Si is the ith sentence in
the source language and T i is iththe sentence in the target
language, between the train and the test set.
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Odia Train data obtained from Ramesh et al.
(2022) containing 1M parallel sentences. Test set
from WAT2021 (Nakazawa et al., 2021) containing
2390 sentences

Punjabi Train data obtained from Ramesh et al.
(2022) containing 2.42M parallel sentences. Test
set from WAT2021 (Nakazawa et al., 2021) con-
taining 2390 sentences

Gujarati Train data obtained from Ramesh et al.
(2022) containing 3.05M parallel sentences. Test
set from WAT2021 (Nakazawa et al., 2021) con-
taining 2390 sentences

A.2 Evaluating Continued Pretaining with
Synthetically Augmented or Lexicon
Adapted Monolingual Data for improving
the HM

The use of continual pretraining with monolingual
data has been shown to be very useful in improv-
ing the transfer for low-resource languages. In our
cases, our lowest resource languages, i.e, Bribri,
Wixarica, Gondi and Mundari, did not have any
monolingual data available natively so we explored
the augmentation of the same using lexicons (Wang
et al., 2022). We also generated forward trans-
lated data using the HM that we developed to
fuse with the lexicon-adapted data. For continued
pretraining we use a fixed learning rate of 0.001.
Results of our experiments are logged in Table
5.We use the following notations to report our re-
sults GMD- Gold Monolingual Data, LA- Lexicon
Adapted Monolingual Data, KDD- Knowledge Dis-
tilled Monolingual Data where GMD indicates the
target-side monolingual data available within the
parallel corpus of the language, KDD indicates the
forward-translated data that we generate via our
best-performing model for Gondi i.e., mt5-base.
We generated 100K labels using mt5-base teacher,
and also experimented adding 100K sentences from
a weaker teacher, i.e., mt5-small in hopes of lever-
aging a more diverse class of labels to train the
student on.

We did observe a small gain in performance upon
the addition of LA data during pretraining - though
the post-quantization performance and the distilled
model’ significant performance degradation called
for a deeper investigation on the effects of contin-
ued pretraining for this language.

A.3 Hyperparameter Trial Configurations

We ran Hyperparameter sweeps with the configura-
tions specified in Table 5.

Note that in congruence with the observations of
subsection 4.6, we also provide the min-max range
of performance for Gondi and Bribri in Figure 6.

(a) Min/Max Range of Bribri’s Sweep

(b) Min/Max Range of Gondi’s Sweep

Figure 6: Variation of performance across languages

As can be observed, for a set of hyperparam-
eters, at least one of which is optimal for some
other language in the set, both languages fail to
converge. Similarly, in extension to subsection 4.4,
we also checked if for the same hyperparameter
set, the variation in student architecture produced
significant performance variations.

The results demonstrated in Figure 7 did not
show any significant variation except for the case
of Gondi, i.e., altering the student architecture -
while keeping all other priors the same: adversely
affected the performance in that one case.

A.4 Comparing Size-Reduction Affinity of
Quantization and Distillation

This exploration is extremely useful as the size
of a model significantly impacts several factors
associated with the consumption of any service,
impacting it’s adoption by community members
through several ways including (a) Accessibility
on Edge: Since mobile devices are constrained in
their RAM and Memory Usage - users with edge
devices of low-capabilities are naturally inhibited
to is services that drain their device’s resources. In-
adequate Connectivity Requirement for Inference,
One-time download and Service Updates: Users
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Model Data spBLEU S(M) (in MB)
Transformer 26.2k 1.4 240
mT5-small 61.9k 12.7 1200
mT5-small 26.2k 14.3 1200
mT5-base 26.2k 15.6 2100
mBART 26.2k 13 2280
mT5-small: CPT {GMD } 26.2kmono 14.9 1200
mT5-small: CPT {LA } 200kmono 14.9 1200
mT5-small: CPT {LA } 200kmono 10.8 400
mT5-small: CPT {KDD } 143kmono 15.2 1200
mT5-small: CPT {GMD + LA + KDD } 26.2k + 343kmono 14.7 1200
mT5-small: Quantizing M1 26.2k 13.8 400
Quantizing CPT Model {Best mT5-small } 26.2k 10.2 400
Transformer + KD 26.2k + 240k 10.1 185

Table 4: Gondi: Use of Lexicon Adaptation, Continued Pretraining and Mixed-training with Lexicon Adapted and
Forward Translated Monolingual Data.

Hyperparameter Candidate Values

Train batch size 32, 64
Epochs 10, 30, 60
Method grid
Metric BLEU
Gradient Accumulation 2, 4
Label Smoothing 0, 0.1
Learning Rate 5{e-5,e-5,e-6}
Warmup Steps 500, 1000

Table 5: Candidate values of hyperparameters: Sweep
for finding the optimal hyperparameter set for Distilla-
tion

may often avoid downloading apps that seem too
large, particularly in emerging markets where de-
vices connect to often-spotty 2G and 3G networks
or work on pay-by-the-byte plans 7. Large Ren-
dering Time: Finally, a bloated size may often be
associated with a larger rendering response period
which might hinder the usability experience of a
user engaging with the MT service.

Note on Inference Times In theory, compres-
sion through both distillation and quantization is
expected to be conducive to faster inference for
the models: The distilled models are not bounded
to use a pretrained embedding and hence can gain
in inference by using smaller, target-language spe-
cific embeddings. The quantized models can also
benefit due to the reduced precision in which the

7https://developer.android.com/topic/performance/reduce-
apk-size

(a) Variation in BLEU with change in student archi-
tecture for Assamesse

(b) Variation in BLEU with change in student archi-
tecture for Gondi

Figure 7: In the legend E and D refers to Encoders and
Decoders respectively

inference operations are carried out, though this op-
timization is heavily dependent on if the hardware
running the model can leverage these operations in
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Language Native S(HM) Compressed S(Q,D)

Bribri 1228 (400, 153)
Wixarica 1228 (400, 153)
Gondi 1228 (400, 153)
Mundari 1228 (400, 153)
Assamesse 1228 (400, 189)
Odia 1228 (400, 189)
Punjabi 232 (75, 189)
Gujarati 232 (75, 189)

Table 6: Sizes of the Uncompressed and Compressed
Variants for all languages - Q and D indicate the com-
pressed sizes of the Quantized and the Distilled Models
respectively. All sizes are in MB.

their expected precision (Bondarenko et al., 2021).
Especially in the case of quantization, the scope of
this analysis would be quite vast, which is why we
also excluded it from our current analysis.
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