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Abstract

A straightforward approach to context-aware
neural machine translation consists in feeding
the standard encoder-decoder architecture with
a window of consecutive sentences, formed
by the current sentence and a number of sen-
tences from its context concatenated to it. In
this work, we propose an improved concate-
nation approach that encourages the model to
focus on the translation of the current sentence,
discounting the loss generated by target con-
text. We also propose an additional improve-
ment that strengthen the notion of sentence
boundaries and of relative sentence distance,
facilitating model compliance to the context-
discounted objective. We evaluate our approach
with both average-translation quality metrics
and contrastive test sets for the translation of
inter-sentential discourse phenomena, proving
its superiority to the vanilla concatenation ap-
proach and other sophisticated context-aware
systems.

1 Introduction

While current neural machine translation (NMT)
systems have reached close-to-human quality in
the translation of decontextualized sentences (Wu
et al., 2016), they still have a wide margin of im-
provement ahead when it comes to translating full
documents (Läubli et al., 2018). Many works
tried to reduce this margin, proposing various ap-
proaches to context-aware NMT (CANMT)1. A
common taxonomy (Kim et al., 2019; Li et al.,
2020) divides them in two broad categories: multi-
encoding approaches and concatenation (single-
encoding) approaches. Despite its simplicity, the
concatenation approaches have been shown to
achieve competitive or superior performance to
more sophisticated, multi-encoding systems (Lopes
et al., 2020; Ma et al., 2021). Nonetheless, it

1Unless otherwise specified, we refer to context as the
sentences that precede or follow a current sentence to be
translated, within the same document.

Figure 1: Example of the proposed approach applied
over a window of 2 sentences, with context discount CD
and segment-shifted positions by a factor of 10.

has been shown that Transformer-based NMT sys-
tems (Vaswani et al., 2017) struggle to learn locality
properties (Hardmeier, 2012; Rizzi, 2013) of both
the language itself and the source-target alignment
when the input sequence grows in length, as in the
case of concatenation (Bao et al., 2021). Unsur-
prisingly, the presence of context makes learning
harder for concatenation models by distracting at-
tention. Moreover, we know from recent litera-
ture that NMT systems require context for a sparse
set of inter-sentential discourse phenomena only
(Voita et al., 2019; Lupo et al., 2022). Therefore, it
is desirable to make concatenation models more fo-
cused on local linguistic phenomena, belonging to
the current sentence, while also processing its con-
text for enabling inter-sentential contextualization
whenever it is needed. We propose an improved
concatenation approach to CANMT that is more
focused on the translation of the current sentence
by means of two simple, parameter-free solutions:

• Context-discounting: a simple modification
of the NMT loss that improves context-aware
translation of a sentence by making the model
less distracted by its concatenated context;

• Segment-shifted positions: a simple,
parameter-free modification of position
embeddings, that facilitates the achievement
of the context-discounted objective by
supporting the learning of locality properties
in the document translation task.

We support our solutions with extensive experi-
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ments, analysis and benchmarking.

2 Background

2.1 Multi-encoding approaches
Multi-encoding models couple a self-standing
sentence-level NMT system, with parameters θS ,
with additional parameters θC that encode and inte-
grate the context of the current sentence, either on
source side, target side, or both. The full context-
aware architecture has parameters Θ = [θS ; θC ].
Multi-encoding models differ from each other in
the way they encode the context or integrate its rep-
resentations with those of the current sentence. For
instance, the representations coming from the con-
text encoder can be integrated with the encoding
of the current sentence outside the decoder (Maruf
et al., 2018; Voita et al., 2018; Zhang et al., 2018;
Miculicich et al., 2018; Maruf et al., 2019; Zheng
et al., 2020) or inside the decoder (Tu et al., 2018;
Kuang et al., 2018; Bawden et al., 2018; Voita et al.,
2019; Tan et al., 2019), by making it attending to
the context representations directly, using its inter-
nal representation of the decoded history as query.

2.2 Single-encoder approaches
The concatenation approaches are the simplest in
terms of architecture, as they mainly consist in con-
catenating each (current) source sentence with its
context before feeding it to the standard encoder-
decoder architecture (Tiedemann and Scherrer,
2017; Junczys-Dowmunt, 2019; Agrawal et al.,
2018; Ma et al., 2020), without the addition of
extra learnable parameters. The decoding can then
be limited to the current sentence, although de-
coding the full target concatenation is more effec-
tive thanks to the availability of target context. A
typical strategy to train a concatenation approach
and generate translations is by sliding windows
(Tiedemann and Scherrer, 2017). An sKtoK model
decodes the translation yj

K of a source window
xj
K , formed by K consecutive sentences belonging

to the same document: the current (jth) sentence
and K − 1 sentences concatenated as source-side
context. Besides the end-of-sequence token <E>,
another special token <S> is introduced to mark
sentence boundaries in the concatenation:

xj
K = xj−K+1

<S>xj−K+2
<S>...<S>xj−1

<S>xj
<E>

yj
K = yj−K+1

<S>yj−K+2
<S>...<S>yj−1

<S>yj
<E>

Both past and future contexts can be concatenated
to the current pair xj ,yj , although in this work we

consider only the past context, for simplicity. At
training time, the loss is calculated over the whole
output yj

K , but only the translation yj of the cur-
rent sentence is kept at inference time, while the
translation of the context is discarded. Then, the
window is slid by one position forward to repeat the
process for the (j + 1)th sentence and its context.
Concatenation approaches are trained by optimiz-
ing the same objective function as standard NMT
over a window of sentences:

L(xj
K ,yj

K) =

|yj
K |∑

t=1

logP (yjK,t|y
j
K,<t,x

j
K), (1)

so that the likelihood of the current target sen-
tence is conditioned on source and target context.

2.3 Closing the gap
Concatenation approaches have the advantage of
treating the task of CANMT in the same way
as context-agnostic NMT, which eases learning
because the learnable parameters responsible for
inter-sentential contextualization are the same that
undertake intra-sentential contextualization. In-
deed, learning the parameters responsible for inter-
sentential contextualization in multi-encoding ap-
proaches (θC) has been shown to be challenging
because the training signal is sparse and the task of
retrieving useful context elements difficult (Lupo
et al., 2022). Nonetheless, encoding current and
context sentences together comes at a cost. In fact,
when sequences are long the risk of paying atten-
tion to irrelevant elements increases. Paying at-
tention to the "wrong tokens" can harm their intra
and inter-sentential contextualization, associating
them to the wrong latent features. Indeed, Liu et al.
(2020) and Sun et al. (2022) showed that learning
to translate long sequences, comprised of many
sentences, fails without the use of large-scale pre-
training or data-augmentation (e.g., like Junczys-
Dowmunt (2019) and Ma et al. (2021) did). Bao
et al. (2021) provided some evidence about this
leaning difficulty, showing that failed models, i.e.,
models stuck in local minima with a high validation
loss, present a distribution of attention weights that
is flatter (with higher entropy), both in the encoder
and the decoder, than the distribution occurring in
models that converge to lower validation loss. In
other words, attention struggles to learn the local-
ity properties of both the language itself and the
source-target alignment (Hardmeier, 2012; Rizzi,
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2013). As a solution, Zhang et al. (2020) and Bao
et al. (2021) propose two slightly different mask-
ing methods that allow both the encoding of the
current sentence concatenated with context, and
the separate encoding of each sentence in window.
The representations generated by the two encoding
schemes are then integrated together, at the cost of
adding extra learnable parameters to the standard
Transformer architecture.

3 Proposed approach

3.1 Context discounting
Evidently, Equation 1 defines an objective function
that does not factor in the fact that we only care
about the translation of the current sentence xj ,
because the context translation will be discarded
during inference. Moreover, as discussed above,
we need attention to stay focused locally, relying
on context only for the disambiguation of relatively
sparse inter-sentential discourse phenomena that
are ambiguous at sentence level. Hence, we pro-
pose to encourage the model to focus on the trans-
lation of the current sentence xj by applying a
discount 0 ≤ CD < 1 to the loss generated by
context tokens:

LCD(x
j
K ,yj

K) = CD·Lcontext + Lcurrent (2)

= CD·L(xj−1
K−1,y

j−1
K−1) + L(xj ,yj).

This is equivalent to consider an sKtoK con-
catenation approach as the result of a multi-task
sequence-to-sequence setting (Luong et al., 2016),
where an sKto1 model performs the reference task
of translating the current sentence given a concate-
nation of its source with K-1 context sentences,
while the translation of the context sentences is
added as a secondary, complementary task. The
reference task is assigned a bigger weight than the
secondary task in the multi-task composite loss. As
we will see in Section 4.5, this simple modification
of the loss allows the model to learn a self-attentive
mechanism that is less distracted by noisy context
information, thus achieving net improvements in
the translation of inter-sentential discourse phenom-
ena occurring in the current sentence (Section 4.3),
and helping concatenation systems to generalize to
wider context after training (Section 4.5.3).

3.2 Segment-shifted positions
Context discounting pushes the model to discrim-
inate between the current sentence and the con-

text. Such discrimination can be undertaken by
cross-referencing the information provided by two
elements: sentence separation tokens <S>, and sinu-
soidal position encodings, as defined in (Vaswani
et al., 2017). In order to facilitate this task, we
propose to provide the model with extra informa-
tion about sentence boundaries and their relative
distance. (Devlin et al., 2019) achieve this goal by
adding segment embeddings to every token repre-
sentation in input to the model, on top of token and
position embeddings, such that every segment em-
bedding represents the sentence position in the win-
dow of sentences. However, we propose an alterna-
tive solution that does not require any extra learn-
able parameter nor memory allocation: segment-
shifted positions. As shown in Figure 1, we apply a
constant shift after every separation token <S>, so
that the resulting token position is equal to its origi-
nal position plus a total shift depending on the cho-
sen constant shift and the index k = 1, 2, ...,K of
the sentence the token belongs to: t′ = t+k∗shift.
As a result, the position distance between tokens
belonging to different sentences is increased. For
example, the distance between the first token of the
current sentence and the last token of the preceding
context sentence increases from 1 to 1 + shift. By
increasing the distance between sinusoidal position
embeddings2 of tokens belonging to different sen-
tences, their dot product, which is at the core of the
attention mechanism, becomes smaller, possibly re-
sulting in smaller attention weights. In other words,
the resulting attention becomes more localized, as
confirmed by the empirical analysis reported in
Section 4.6.1. In Section 4.3, we present results
of segment-shifted positions, and then compare
them with both sinusoidal segment embeddings
and learned segment embeddings in Section 4.6.2.

4 Experiments

4.1 Setup3

We conduct experiments with two language pairs
and domains. For En→Ru, we adopt a document-
level corpus released by Voita et al. (2019), based
on OpenSubtitles2018 (with dev and test sets), com-
prised of 1.5M parallel sentences. For En→De, we
train models on TED talks subtitles released by
IWSLT17 (Cettolo et al., 2012). Models are tested

2Positions can be shifted by segment also in the case of
learned position embeddings, both absolute and relative. We
leave such experiments for future works.

3See Appendix A for more details.
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on IWSLT17’s test set 2015, while test-sets 2011-
2014 are used for development, following related
works in the literature.

Besides evaluating average translation qual-
ity with BLEU4 (Papineni et al., 2002) and
COMET5 (Rei et al., 2020), we employ two con-
trastive test suites for the evaluation of the transla-
tion of inter-sentential discourse phenomena. For
En→Ru, we adopt Voita et al. (2019)’s test suite for
evaluation on deixis, lexical cohesion, verb-phrase
ellipsis and inflection ellipsis. This test suite is com-
prised of a development set with examples of deixis
and lexical cohesion, that we adopted for a prelimi-
nary analysis of context discounting. For En→De,
we evaluate models on ambiguous pronoun transla-
tion with ContraPro (Müller et al., 2018), a large
contrastive set of ambiguous pronouns whose an-
tecedents belong to context. In order to validate the
improvements achieved by our approaches on the
test sets, we perform statistical significance tests,
detailed in Annex A.1.

We experiment with two models: 1) base: a
context-agnostic baseline following Transformer-
base (Vaswani et al., 2017); 2) s4to4: a context-
aware concatenation approach with the exact same
architecture as base, but that adopts sliding win-
dows of 4 concatenated sentences as source and
target. An implementation of these models and the
proposed approach can be found on github.6

4.2 Preliminary analysis

As a preliminary analysis, we evaluate the im-
pact of various values of context discounting
on the performance of concatenation approaches
with sliding windows, in order to choose one
value for all the subsequent experiments. We
train En→Ru s4to4 models with context dis-
counts ranging from 1 (no context discount-
ing) to 0 (context loss is completely ignored):
CD = 1.0, 0.9, 0.7, 0.5, 0.3, 0.1, 0.01, 0. We evalu-
ate these models on the development sets by means
of their average loss calculated over the current
target sentence (current loss) and the average accu-
racy on the disambiguation of discourse phenom-
ena. The results are plotted on Figure 2. We find
out that the stronger the context discounting, the
better the performance, with an improving trend
from CD = 1 to CD = 0.01. Performance drops

4Moses’ multi-bleu-detok (Koehn et al., 2007) for De,
multi-bleu for lowercased Ru as Voita et al. (2019).

5Default model: wmt20-comet-da.
6https://github.com/lorelupo/focused-concat
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Figure 2: Evaluation of En→Ru s4to4 trained with vari-
ous levels of context discounting, ranging from 1 to 0.
We plot the best current loss obtained by each model
on the development set (red), and its average accuracy
on the development portion of the contrastive set on
discourse phenomena (blue). In yellow, the average por-
tion of attention that is focused on the current sentence
(see Section 4.5.2).

on the extreme case of CD = 0, likely because too
much training signal is lost in this situation (all
the training signal coming from the context is com-
pletely ignored). As such, we set CD = 0.01 for all
of our following experiments.

4.3 Main results
Tables 1 and 2 display the main evaluation re-
sults measured in terms of accuracy on contrastive
test sets (Disc.) and BLEU, for the En→Ru and
En→De language pairs, respectively. We first ob-
serve that s4to4 is a strong context-aware base-
line as it improves accuracy on contrastive sets by
a large margin compared to the context-agnostic
base, as already reported by previous works (Voita
et al., 2019; Zhang et al., 2020; Lopes et al., 2020).

Average translation quality as measured by
BLEU is virtually the same for all models. Indeed,
our main focus is on contrastive evaluation of dis-
course translation, since average translation quality
metrics like BLEU have been repeatedly shown to
be ill-equipped to detect improvements in CANMT
(Hardmeier, 2012). Learned average translation
quality metrics like COMET might be more sensi-
tive to inter-sentential discourse phenomena when
applied at document-level, as we do. However,
COMET differences are also negligible: all models
perform on par according to statistical significance
tests, except for the En→Ru model with context
discount and segment shifting, that outperforms all
the others with statistical significance.

When evaluating the accuracy on inter-sentential
discourse phenomena, instead, we remark relevant
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En→Ru system Deixis Lex co. Ell. inf Ell. vp Disc. BLEU COMET

base 50.00 45.87 51.80 27.00 46.64 31.98 0.321
s4to4 85.80 46.13 79.60 73.20 72.02 32.45 0.329
s4to4 + CD 87.16* 46.40 81.00 78.20* 73.42* 32.37 0.328
s4to4 + shift + CD 85.76 48.33* 81.40 80.40* 73.55* 32.37 0.334*

Table 1: Accuracy on the En→Ru contrastive set for the evaluation of discourse phenomena (Disc., %), and BLEU
score on the corresponding test set. The accuracy on Disc. is detailed on its left with the accuracy on each of the
4 discourse phenomena evaluated in the contrastive set. The symbol * denotes statistically significant (p < 0.05)
improvements w.r.t. base and s4to4.

En→De system d = 1 d = 2 d = 3 d > 3 Disc. BLEU COMET

base 32.89 43.97 47.99 70.58 37.27 29.63 0.546
s4to4 68.89 74.96 79.58 87.78 71.35 29.48 0.536
s4to4 + CD 72.86* 75.96 80.10 84.38 74.31* 29.32 0.522
s4to4 + shift + CD 72.56* 77.15* 80.27 86.65 74.39* 29.20 0.528

Table 2: Accuracy on the En→De contrastive sets for the evaluation of discourse phenomena (Disc., %), and BLEU
score on the corresponding test sets. The accuracy on Disc. is detailed on its left with the accuracy on anaphoric
pronouns with antecedents at different distances d = 1, 2, ... (in number of sentences). The symbol * denotes
statistically significant (p < 0.05) improvements w.r.t. base and s4to4.

performance improvements. In fact, adding a 0.01
context discounting (+ CD) improves the accuracy
on all of the 4 discourse phenomena under evalua-
tion in En→Ru, and for all distances of pronoun’s
antecedents in En→De, with the sole exception of
d > 3, proving to be an effective solution. Adding
segment-shifted positions further improves perfor-
mance for 3 discourse phenomena out of 4, and for
pronouns with antecedents at distances d = 1, 2,
showing that sliding windows systems often ben-
efit from enhanced sentence position information
in order to achieve the discounted CANMT objec-
tive. For both language pairs, we adopt a segment-
shifting equal to the average sentence length, cal-
culated over the entire training corpus, i.e., +8 po-
sitions for En→Ru and +21 positions for En→De.
Experiments with other shifting values are reported
in Section 4.6.3.

As a further experiment, we apply our solutions
to concatenation models with concatenated
windows shorter than 4 sentences,7 and evaluate
them in the En→Ru setting. The results presented
in Table 3 show that context discounting is
effective for s2to2 and s3to3 too, while adding
segment-shifted positions only helps s2to2 + CD.
As in the case of s4to4, BLEU only displays
negligible fluctuations.

7We cannot evaluate with more sentences because 4 is the
maximum size of documents in the test sets specialized on
discourse phenomena.

System Disc. BLEU

s2to2 59.10 32.73
s2to2 + CD 60.28* 32.69
s2to2 + shift + CD 60.54* 32.41

s3to3 65.58 32.34
s3to3 + CD 67.02* 32.42
s3to3 + shift + CD 66.98* 32.45

Table 3: Accuracy on the En→Ru contrastive set for
the evaluation of discourse phenomena (Disc., %), and
BLEU score on the test set. The symbol * denotes
statistically significant (p < 0.05) improvements w.r.t.
s2to2/s3to3. Our approach is effective for different con-
catenation windows.

4.4 Benchmarking

For a wider contextualization of our results, we
compare in Table 4 our best system with other
CANMT systems from the literature. For the
En→Ru language pair, we compare with all the
systems from the literature that were trained and
evaluated under the same experimental conditions
as ours, to the best of our knowledge. In particular,
we report the results by Chen et al. (2021), Sun
et al. (2022)’ MR Doc2Doc, Zheng et al. (2020),
Kang et al. (2020)’s CADec + DCS-pf and Zhang
et al. (2020). All of them are sophisticated CANMT
systems that add extra trainable parameters to the
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System En→Ru En→De
Deixis Lex co. Ell. inf Ell. vp Disc. d=1 d=2 d=3 d>3 Disc.

Chen et al. (2021) 62.30 47.90 64.90 36.00 55.61 n.a. n.a. n.a. n.a. n.a.
Sun et al. (2022) 64.70 46.30 65.90 53.00 58.13 n.a. n.a. n.a. n.a. n.a.
Zheng et al. (2020) 61.30 58.10 72.20 80.00 63.30 n.a. n.a. n.a. n.a. n.a.
Kang et al. (2020) 79.20 62.00 71.80 80.80 73.46 n.a. n.a. n.a. n.a. n.a.
Zhang et al. (2020) 91.00 46.90 78.20 82.20 75.61 n.a. n.a. n.a. n.a. n.a.
Maruf et al. (2019) n.a. n.a. n.a. n.a. n.a. 34.70 46.40 51.10 70.10 39.15
Voita et al. (2018) n.a. n.a. n.a. n.a. n.a. 39.00 48.00 54.00 66.00 42.55
Stojanovski and Fraser (2019) n.a. n.a. n.a. n.a. n.a. 53.00 46.00 50.00 71.00 52.55
Lupo et al. (2022) n.a. n.a. n.a. n.a. n.a. 56.50 44.90 48.70 73.30 54.98
Müller et al. (2018) n.a. n.a. n.a. n.a. n.a. 58.00 55.00 55.00 75.00 58.13
s4to4 + shift + CD (ours) 85.76 48.33 81.40 80.40 73.56 72.56 77.15 80.27 86.65 74.39

Table 4: Benchmarking: accuracy (%) on the contrastive sets for the evaluation of discourse phenomena (Disc., %).

Transformer architecture. Despite being the sim-
plest and the only parameter free approach, our
method outperforms all the others on lexical cohe-
sion and noun phrase inflection based on elided con-
text, while it is only second to Zhang et al. (2020)
on deixis and verb-phrase ellipsis. BLEU scores
were not available for comparison on the same test
set, except for Zhang et al. (2020), which scored
31.84 BLEU points against the 32.45 BLEU points
of our method.

For the En→De language pair, we compare to
the literature performing evaluation on Müller et al.
(2018)’s test set and providing details about their
accuracy on pronouns with antecedents at d > 1. In
particular: Maruf et al. (2019)’s best offline system,
Stojanovski and Fraser (2019)’s pron-25→pron-0*,
Lupo et al. (2022)’s K1-d&r, Müller et al. (2018)’s
s-hier-to-2.tied and their evaluation of Voita et al.
(2018)’s architecture.8 All of these works but
Maruf et al. (2019) adopt the much larger WMT179

dataset for training. Despite this advantage, our sys-
tem outperforms each of them on all the discourse
phenomena under evaluation, by a large margin.

Notably, from this comparison it might seem
that our approach is proposed in opposition to the
others reported in Table 4, but it can actually be
complimentary to many of them, such as (Zhang
et al., 2020)’s, hopefully in a synergistic way. We
encourage future research to investigate this possi-
bility.

8Whenever the cited works present and evaluate multiple
systems, we compare to the best performing one. To the best
of our knowledge, we are including all the relevant works
available in the literature. BLEU scores are not compared
because, besides using different training data, the cited works
don’t adopt the same test set neither, with the sole exception
of (Lupo et al., 2022).

9http://www.statmt.org/wmt17/translation-task.html

4.5 Analysis of context-discounting
4.5.1 Loss distribution
In this section, we analyze the impact of context
discounting on the ability of the model to predict
the translation of the current sentence. On the left
side of Figure 3 we plotted the evolution along
training epochs of the loss calculated on the current
target sentence (current loss), for the En→Ru lan-
guage pair. The right side, instead, represents the
ratio between the current loss and the average loss-
per-sentence calculated on the context sentences be-
longing to the same sliding window. These results
support empirically our idea of context discounting
as a solution to improve model performance on the
current sentence. They also confirm that a strong
discounting works best. Interestingly, predictions
are improved on the current sentence (left) partially
as a result of a trade-off with context quality (right).
In fact, the current/context loss ratio of context-
discounted models increases along training even
when the current loss is decreasing, indicating that,
at the beginning of training, context discounting
pushes the model to only care about current pre-
dictions, but later it allows for good predictions
of the context too. Such behavior is in line with
the intuition that a good translation of the current
sentence, even if strongly prioritized, also requires
a good translation of the context. Otherwise, it is
not possible to systematically solve the translation
ambiguities referring to context.

4.5.2 Attention distribution
In this section we show some empirical evidence
in favor of our intuition that context-discounting
improves performance by helping the self-attentive
mechanism to be more focused on the current
sentence (less distracted by context). We analyzed
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Figure 3: Context discounting enables better predictions of the current sentence (lower validation loss, on the left) at
the expense of context sentences (lower current/context validation loss ratio, on the right). Language pair: En→Ru.

the distribution of the self-attention weights
generated by the queries belonging to the current
sentence (current queries), and how it is impacted
by context discounting. Figure 2 clearly shows
that context-discounting impacts the distribution
of attention weights by skewing it towards the
current sentence: a higher percentage of the total
attention from current queries is directed towards
tokens belonging to the (same) current sentence.
As expected, the higher the context-discounting,
the higher the portion of attention that is not
dispersed towards context. The limit case of
CD = 0 is not aligned with this trend, however.
We suspect that the attention distribution is more
flat in this case because the model encounters
learning difficulties due to the training signal
from the context being completely ignored (c.f.
Bao et al. (2021) on non-fully-converged models
having a flatter attention distribution).

4.5.3 Robustness

Figure 4 shows that the s2to2 model is not robust
to the translation of concatenation windows longer
than those seen during training, i.e. longer than 2
sentences. Indeed, s2to2 loses 9.23 BLEU points
when translating the same test set with windows of
3 sentences, and 12.14 BLEU points when trans-
lating with windows of 4. Instead, the context dis-
counted model (blue bars) is very robust to unseen
context lengths, being capable of translating them
with minor degradation in average translation qual-
ity (−0.68 and −1.06 BLEU points for windows of
3 and 4, respectively). We observe a similar trend
for s3to3, that loses 1.74 BLEU points when tested
with windows of size 4, but recovers completely
when equipped with context-discounting. The in-
creased robustness of the concatenation models
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Figure 4: Our approach improves robustness of En→Ru
s2to2 to window sizes unseen during training.

w.r.t. context size suggests once again that con-
text discounting helps the models focusing on the
current sentence.

4.6 Analysis of segment-shifted positions

4.6.1 Attention distribution
As a complementary evaluation, we tested if
segment-shifted positions work as intended, i.e., by
helping context-discounted models to learn the lo-
cality properties of both the language itself and the
source-target alignment (Hardmeier, 2012; Rizzi,
2013). In other words, we expect segment-shifted
positions to result in a more localized attention-
distribution, in each of the sentences belonging to
the concatenated sequence. To this aim, we com-
puted the average entropy of the distribution of
attention weights generated by all queries (both
from current and context sentences), in both self
and cross-attention. Results are shown in Table 5:
context-discounting slightly reduces the average
entropy, and this effect is amplified with the adop-
tion of segment-shifted positions. Segment-shifted
positions make attention more focused locally, as
intended, which explains why the job of context
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System Attn entropy

s4to4 2.293
s4to4 + CD 2.276
s4to4 + shift + CD 2.251

Table 5: Average entropy of self and cross-attention
weights decreases with the help of context-discounting
and segment-shifted positions. All of the three values
are different from one another with statistical signifi-
cance (p<0.01).

En→Ru En→De
System Disc. BLEU Disc. BLEU

s4to4 + shift + CD 73.56 32.45 74.39 29.20
s4to4 + lrn + CD 73.68 32.45 72.14 28.35
s4to4 + sin + CD 73.48 32.53 73.88 29.23

Table 6: Comparison between segment-shifted positions,
learned segment embeddings and sinusoidal segment
embeddings. Approaches are evaluated with accuracy
on contrastive sets for the evaluation of discourse phe-
nomena (Disc., %), and BLEU score on test sets. Dif-
ferences across models are not statistically significant
(p>0.05), except for s4to4+lrn+CD on En→De.

discounting is eased by this solution.

4.6.2 Comparison with segment-embeddings

In this section we compare our parameter-free ap-
proach to include explicit information on segment
position (segment-shifted positions), with learned
segment embeddings (Devlin et al., 2019), and
sinusoidal segment embeddings. The latter are
added to token and position embeddings at input,
in the very same way as learned segment embed-
dings, with the only difference that their parame-
ters are not learned but defined in the same way
as sinusoidal position embeddings (Vaswani et al.,
2017). In order to evaluate which approach helps
best with context-discounting, we trained a context-
discounted concatenation model with learned seg-
ment embeddings (s4to4+lrn+CD), and one with si-
nusoidal segment embeddings (s4to4+sin+CD), and
compared them with s4to4+shift+CD. The results
reported in Table 6 do not display any statistically
significant differences across the three alternatives
(p>0.05), except for learned embeddings, that un-
derperform with statistical significance the other
two variants on En→De. Instead, sinusoidal seg-
ment embeddings are competitive with segment-
shifted positions on both language pairs. We leave
a more in-depth analysis of segment-embeddings
for concatenation approaches to future works.

System Shift Disc. BLEU

s4to4 + shift + CD 100.00 73.46 32.41
s4to4 + shift + CD avg-sequence 73.86 32.37
s4to4 + shift + CD avg-corpus 73.56 32.45

Table 7: Accuracy on the En→Ru contrastive set for
the evaluation of discourse phenomena (Disc., %), and
BLEU score on the test set. Differences across models
are not statistically significant (p>0.05).

4.6.3 Segment-shifting variants

In the experiments reported above, we always adopt
a shifting value equal to the average sentence length
calculated over the entire training corpus (avg-
corpus), i.e., +8 positions for En→Ru, +21 po-
sitions for En→De. In this section we evaluate two
alternative strategies for the selection of the shifting
value: 1) applying a big shift of 100 units, one or-
der of magnitude bigger than the average sentence
length in the corpus (100); 2) applying a shifting
value equal to the average sentence length of each
window, calculated dynamically for each window
of 4 concatenated sentences (avg-sequence). The
results of this study are reported in Table 7. We do
not observe relevant differences in average transla-
tion quality (BLEU) nor accuracy on the translation
of discourse phenomena, and therefore confirm that
the avg-corpus approach is a good alternative.

5 Conclusions

We presented a simple, parameter-free modification
of the NMT objective for context-aware translation
with sliding windows of concatenated sentences:
context discounting. We analyzed the impact of
our approach in the trade-off between current sen-
tence predictions and context sentence predictions,
showing that context discounting helps the model
to focus on the current sentence, as intended. As
a result, the concatenation model significantly im-
proves its ability to disambiguate inter-sentential
discourse phenomena, and becomes more robust
to different context sizes. As an additional induc-
tive bias towards locality, we equipped our model
with segment-shifted positions, marking more ex-
plicitly the boundaries between sentences. This
solution brings further improvements on targeted
evaluation metrics. In the attempt of explaining
the empirical functioning of the proposed solutions,
we analysed their impact on the distribution of the
attention weights, showing that they make it more
focused and skewed towards the current sentence,
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as intended.

Limitations and future works

Our experiments are limited to the use case of
short concatenated windows (up to 4 sentences).
This is enough for capturing most of the ambigu-
ous inter-sentential discourse phenomena, that usu-
ally span across a few sentences only (Müller
et al., 2018; Voita et al., 2019; Lupo et al., 2022).
However, recent works suggest that longer con-
text windows might be helpful to increase aver-
age translation quality (BLEU) of concatenation
approaches (Junczys-Dowmunt, 2019; Bao et al.,
2021; Sun et al., 2022), and long-range discourse
phenomena could be handled. We hope to investi-
gate the impact of context discounting on longer se-
quences in future works. We also encourage to test
the effectiveness of our approach on a wider range
of data scenarios: from very limited document-
level data to very abundant, including back transla-
tion (Ma et al., 2021) and monolingual pre-training
techniques (Junczys-Dowmunt, 2019; Sun et al.,
2022), to understand whether these methods are
only alternative to context discounting or there exist
synergies. Furthermore, experimenting with future
context is also needed (c.f. Wong et al. (2020)).
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A Details on experimental setup

All models are implemented in fairseq (Ott et al.,
2019) and follow the Transformer-base architec-
ture (Vaswani et al., 2017): hidden size of 512, feed
forward size of 2048, 6 layers, 8 attention heads, to-
tal 60.7M parameters. They are trained on 4 Tesla
V100, with a fixed batch size of approximately 32k
tokens for En→Ru and 16k for En→De. As it has
been shown that Transformers need a large batch
size for achieving the best performance (Popel and
Bojar, 2018). We stop training after 12 consecu-
tive non-improving validation steps (in terms of
loss on dev), and we average the weights of the
5 checkpoints that are closest to the best perform-
ing checkpoint, included. We train models with
the optimizer configuration and learning rate (LR)
schedule described in Vaswani et al. (2017). The
maximum LR is optimized for each model over
the search space {7e− 4, 9e− 4, 1e− 3, 3e− 3}.
The LR achieving the best loss on the validation
set after convergence was selected. We use label
smoothing with an epsilon value of 0.1 (Pereyra
et al., 2017) for all settings. We adopt strong model
regularization (dropout=0.3) following Kim et al.
(2019) and Ma et al. (2021). At inference time, we
use beam search with a beam of 4 for all models.
We adopt a length penalty 0.6 for all models. The
other hyperparameters were set according to the
relevant literature (Vaswani et al., 2017; Popel and
Bojar, 2018; Voita et al., 2019; Ma et al., 2021;
Lopes et al., 2020).

A.1 Statistical hypothesis tests

We perform statistical hypothesis testing with Mc-
Nemar’s test McNemar (1947) for comparing ac-
curacy results on the contrastive test sets. For com-
paring BLEU performances and mean entropy (Ta-
ble 5), we use approximate randomization (Riezler
and Maxwell, 2005) with 10000 and 1000 permu-
tations, respectively. For COMET, the official li-
brary10 has a built in tool for the calculation of
statistical significance with Paired T-Test and boot-
strap resampling (Koehn, 2004).

10https://github.com/Unbabel/COMET

B Details on experimental results

In this section, we report more details about the
results presented in our Tables.

B.1 Evaluation of the translation of discourse
phenomena

For each model that we evaluated by its accuracy on
the contrastive sets for the evaluation of discourse
phenomena (Disc., %), we include in Table 8 the
accuracy achieved on the different subsets of the
contrastive sets, as already done for Tables 1, 2 and
4. For the En→Ru set (Voita et al., 2019), we report
the accuracy on each of the 4 discourse phenomena
under evaluation; for the En→De test set (Müller
et al., 2018), the accuracy on anaphoric pronouns
with antecedents at different distances d = 1, 2, ...
(in number of sentences). As it can be noticed, our
approach mostly outperform baselines and other
variants on the majority of the evaluation subsets.
We also include the column Discavg, which is cal-
culated, for both language pairs, as the average of
the 4 columns before the vertical dashed line.

Disc. =
d1 ∗ 7075 + d2 ∗ 1510 + d3 ∗ 573 + (d > 3) ∗ 442

9600
,

Discavg =
d1 + d2 + d3 + d > 3

4
.

Discavg represents the average accuracy on
the disambiguation of the discourse phenomena
present in the contrastive sets, as if they were all
present with the same frequency. Instead, Disc.
represents the overall accuracy on the contrastive
set, which is equivalent to the average over the
same 4 columns, but weighted by the sample size
(last row) of each penomenon represented by the
columns. While Disc. is a proxy of the ability to
correctly translate a distribution of inter-sentential
discourse phenomena as represented in the con-
trastive set, Discavg is a proxy for the average abil-
ity to translate each of the inter-sentential phenom-
ena under evaluation. Interestingly, Discavg cap-
tures more evidently than Disc. the improvement
achieved by adding segment-shifted positions to
the context-discounted concatenation models. Fi-
nally, Discall−d is calculated like Disc. but it also
take into account pronouns whose antecedent be-
long to the same sentence (d = 0, i.e., they don’t
require context).
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En→Ru En→De

System Deixis Lex co. Ell. inf Ell. vp Disc. Discavg d=0 d=1 d=2 d=3 d>3 Disc. Discavg Discall−d

base 50.00 45.87 51.80 27.00 46.64 47.67 68.75 32.89 43.97 47.99 70.58 37.27 48.86 43.57
s4to4 85.80 46.13 79.60 73.20 72.02 71.18 75.20 68.89 74.96 79.58 87.78 71.35 77.80 72.12
s4to4 + CD 87.16 46.40 81.00 78.20 73.42 73.19 76.66 72.86 75.96 80.10 84.38 74.31 78.33 74.78
s4to4 + shift + CD 85.76 48.33 81.40 80.40 73.56 73.97 75.25 72.56 77.15 80.27 86.65 74.39 79.16 74.56
s4to4 + sin + CD 87.96 46.80 78.00 76.60 73.48 72.34 76.75 71.83 76.82 80.97 87.55 73.88 79.29 74.46
s4to4 + lrn + CD 88.12 46.47 81.20 75.60 73.68 72.85 73.91 70.21 75.29 77.66 85.06 72.14 77.06 72.49
s4to4 + 100 + CD 85.60 48.73 80.80 79.60 73.46 73.68 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
s4to4 + avg-seq + CD 84.84 46.20 77.60 73.00 71.34 70.41 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
s2to2 61.84 46.07 74.60 69.00 59.10 62.88 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
s2to2 + CD 62.88 46.27 78.00 71.60 60.28 64.69 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
s2to2 + shift + CD 62.60 46.60 81.20 71.40 60.54 65.45 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
s3to3 73.52 45.87 78.00 72.60 65.58 66.45 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
s3to3 + CD 73.88 46.80 82.40 78.00 67.02 67.45 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
s3to3 + shift + CD 75.24 46.07 79.40 76.00 66.98 68.45 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Chen et al. (2021) 62.30 47.90 64.90 36.00 55.61 52.78 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Sun et al. (2022) 64.70 46.30 65.90 53.00 58.13 57.48 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Zheng et al. (2020) 61.30 58.10 72.20 80.00 63.30 67.90 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Kang et al. (2020) 79.20 62.00 71.80 80.80 73.46 73.45 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Zhang et al. (2020) 91.00 46.90 78.20 82.20 75.61 74.58 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
(Maruf et al., 2019) n.a. n.a. n.a. n.a. n.a. n.a. 68.60 34.70 46.40 51.10 70.10 39.15 50.58 45.04
(Müller et al., 2018) n.a. n.a. n.a. n.a. n.a. n.a. 75.00 39.00 48.00 54.00 66.00 42.55 51.75 49.04
(Stojanovski and Fraser, 2019) n.a. n.a. n.a. n.a. n.a. n.a. 74.00 53.00 46.00 50.00 71.00 52.55 55.00 56.84
(Lupo et al., 2022) n.a. n.a. n.a. n.a. n.a. n.a. 81.10 56.50 44.90 48.70 73.30 54.98 55.85 60.21
(Müller et al., 2018) n.a. n.a. n.a. n.a. n.a. n.a. 65.00 58.00 55.00 55.00 75.00 58.13 60.75 59.51

Sample size 2500 1500 500 500 5000 5000 2400 7075 1510 573 442 9600 9600 12000

Table 8: Accuracy on contrastive sets for the evaluation of discourse phenomena (Disc., %) and on their subsets:
for En→Ru, the accuracy on each of the 4 discourse phenomena under evaluation; for En→De, the accuracy on
anaphoric pronouns with antecedents at different distances d = 1, 2, ... (in number of sentences). Discall−d, includes
also d = 0. Discavg denotes the average of the 4 accuracies before the dashed line.
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