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Abstract
In MT evaluation, pairwise comparisons are
conducted to identify the better system. In con-
ducting the comparison, the experimenter must
allocate a budget to collect Direct Assessment
(DA) judgments. We provide a cost effective
way to spend the budget, but show that typi-
cal budget sizes often do not allow for solid
comparison. Taking the perspective that the
basis of solid comparison is in achieving statis-
tical significance, we study the power (rate of
achieving significance) on a large collection of
pairwise DA comparisons. Due to the nature of
statistical estimation, power is low for differen-
tiating less than 1-2 DA points, and to achieve
a notable increase in power requires at least 2-
3x more samples. Applying variance reduction
alone will not yield these gains, so we must
face the reality of undetectable differences and
spending increases. In this context, we propose
interim testing, an “early stopping” collection
procedure that yields more power per judgment
collected, which adaptively focuses the budget
on pairs that are borderline significant. Interim
testing can achieve up to a 27% efficiency gain
when spending 3x the current budget, or 18%
savings at the current evaluation power.

1 Introduction

In machine translation (MT), pairwise evaluations
are conducted to identify the better system over
a test domain. MT has long taken intrinsic qual-
ity as an object of interest, and assumes it can be
determined directly from the output (Gatt and Krah-
mer, 2018). Most practitioners accept that human
judgments reflect such quality, and take human
evaluation as the gold standard (Bojar et al., 2016).
In conducting an evaluation, the experimenter must
allocate a budget to collect human judgments, and
so evaluation can be an expensive endeavor. No
one in the history of MT research has ever been
satisfied with the cost or reliability of human evalu-
ation (Graham et al., 2017; Chaganty et al., 2018;
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Figure 1: A graphical representation of evaluation with
different testing procedures. Currently, our evaluation
uses fixed testing, and our current budgets (depicted)
often result in underpowered comparison (§5). To get a
notable increase in power, we will need to spend more
(§6), and interim testing is a way to spend efficiently.
Interim testing allows for early stopping by trading off
power for additional peeks. In MT, such a tradeoff is a
favorable and can yield more power per judgment (§7).

Saldías Fuentes et al., 2022, inter alia). Likewise,
we were keen to find savings, upon the foundation
of statistically rigorous inference.

Evaluation is a noisy process, and we may not
expect a repeat experiment to declare the same win-
ners. For one, we may want a holistic answer of
the best system over the entire test domain, but we
can only evaluate on a small and finite set of input
source sentences (Koehn, 2004; Dror et al., 2018).
This introduces a sample bias that our conclusion
must be wary of. For another, human judgments
on the same output may diverge, so we assume that
humans are only a noisy reflection of the true intrin-
sic quality (Graham et al., 2015). This introduces
additional noise when drawing a conclusion from
our observations. Intuitively, using a larger test set
or averaging over more human judgments should
yield more consistency in pairwise comparison.

Inferential statistics is necessary in MT evalua-
tion to declare “winning” MT systems under un-
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certainty. Basic usage of statistical testing covers
the use case of pairwise MT system comparison
(Mathur et al., 2020). After data collection is com-
plete, we can declare significance by computing
a p-value (statistical primer in §3). When the p-
value is low, a real effect is likely to exist. When
the p-value is high, repeat experiments will be in-
consistent (effectively tossing a coin), and no good
decisions can be made even if you used the gold
standard Direct Assessment (DA; Graham et al.,
2015) annotation. Significance is the meta-analysis
that guards against falsely declaring winners due
to noise, with some level of guarantee.

Our work takes the perspective that the basis of
solid comparison is in achieving significance. The
rate/likelihood an experiment will observe signif-
icance is the power, and we would like it to be
high. At the same time, we would like to minimize
human effort and keep costs low. This paper inves-
tigates several aspects of the relationship between
power and cost in human evaluation:

1. How can we reason about the power of an
evaluation? We recommend a sensitivity per-
spective to evaluation, where we characterize
an evaluation by its minimum detectable effect
(MDE), or the smallest pairwise difference the
evaluation will reliably yield significance on.
By retrospectively analyzing significance in
pairwise comparisons, we can derive an em-
pirical MDE. Our evaluations can reliably
detect up to 2-3 point of DA difference, but
comparisons often exhibit even smaller dif-
ferences.

2. How can we notably increase the sensitivity
of an evaluation? With the appropriate power
analysis, we can get a rough estimate of the
number of samples required to achieve an ac-
ceptable sensitivity. To increase the sensitivity
to the desired level, we might hope variance
reduction techniques can give us the necessary
sample efficiency. If we wanted half of the
past comparisons to reliably achieve signifi-
cance, we needed at least 2x more samples,
far beyond the ~1.2x sample efficiency vari-
ance reduction offers.

3. How can we spend more money efficiently?
If we are not satisfied with the power of our
current evaluation, increasing the budget and
collecting more judgments is necessary. Cru-
cially, if we accept that small differences can’t

be known, our evaluation can be more effi-
cient by focusing the budget elsewhere. We
verify that an “early stopping” procedure
(interim testing) can can achieve up to a
27% efficiency gain when spending 3x our
current budget, or 18% savings at our cur-
rent evaluation power.

2 Related work

There is a tradition of using test sets to estimate
system performance over the general domain in
machine learning (Hastie et al., 2001). There have
been calls for statistically rigorous evaluation in
natural language processing using significance test-
ing (Dror et al., 2018), however its adoption in
reporting has been mixed. For a classic task such
as part-of-speech tagging, evaluation is generally
significant/consistent even for small gains (Gor-
man and Bedrick, 2019). In MT, even moderate
differences in metric gains (e.g. DA, MQM) may
not be consistent, so there is a stronger need for
significance testing. Historically, MT evaluation
has been heavily based on statistical significance
(Koehn, 2004).

MDEs have been used to describe the power of
experiments in contexts such as education (which
program results in increased test scores?) and so-
ciology (Bloom, 1995). Berg-Kirkpatrick et al.
(2012) empirically investigate the conventional wis-
dom that a certain metric gain corresponds to sig-
nificance (e.g. 0.5 for BLEU). This threshold is ex-
actly an evaluation’s MDE. They find that a thresh-
old has strong empirical backing, but a few exper-
imental parameters affect this threshold. In our
work, we propose taking a sensitivity perspective
to evaluation, and reporting the expected MDE of
an experiment instead of the other experimental
parameters.

Any statistical technique that reduces the cost of
human evaluation is, in another view, improving
the power offered by some fixed budget. Chaganty
et al. (2018) first proposed applying control vari-
ates to human evaluation. Control variates increase
the sensitivity of an evaluation by leveraging in-
formation from a metric. This formulation con-
veniently allows us to analytically understand its
performance based on the experimental conditions.
In realistic experimental conditions, they found that
the sample efficiency gain is at most 20%, which is
in line with results reported in MT (Saldías Fuentes
et al., 2022). Mendonça et al. (2021) propose using
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online learning to adaptively spend the evaluation
budget on determining the best MT systems. How-
ever, their technique lacks in statistical rigor for
decision making.

Knowing when to “early stop” an evaluation al-
lows us to adaptively spend the budget on difficult
pairs and save on easily distinguished pairs. It is
known that peeking at the p-value while data collec-
tion is ongoing is problematic. Peeking inflates the
chance of observing significance and the chance
that such significant observation is incorrect (Al-
bers, 2019). While always valid p-values can be
calculated that adjust for this error and can be re-
ported at any time, they are mathematically difficult
to apply (Johari et al., 2015). Interim testing has
been used in medical trials, where experimenters
have an ethical consideration in stopping the ex-
periment early (O’Brien and Fleming, 1979). By
planning the number of peeks in advance, interim
testing can offer rigorous statistical inference while
potentially saving time and effort, packaged in an
easy to understand technique (Lakens et al., 2021).
Our work investigates whether the tradeoff between
power and savings is favorable for MT evaluation.

3 A primer on inferential statistics

We consider pairwise comparisons as the basic
unit of evaluation echoing calls from Mathur et al.
(2020) and Kocmi et al. (2021). Pairwise compar-
isons are more interpretable than correlations, and
more practical for production deployment scenar-
ios. In a pairwise comparison we test the difference
between two systems A and B. If you were just to
collect a number of DA judgments for each system
and declare a winner, a repeat experiment could
yield different results due to experimental noise.

A statistical test guards against making an in-
correct conclusion due to experimental noise. To
do this, we assume a null hypothesis (that A is
better than B) and examine how likely we could
have made observed our data under this assumption.
There are two outcomes of conducting a test:

(i) there is evidence of a significant difference
which rejects the null hypothesis, or

(ii) the evidence is insufficient and we are unable
to reject the null hypothesis.

In the case of (i), a significance test usually guar-
antees a false detection rate of at most α, where
usually α = 0.05. Therefore, the best outcome

of statistical testing is the presence of significance,
where our inferences enjoy a low false detection
rate. The rate at which we can declare significance
is called an experiment’s power (typically denoted
as 1−β, where β is the false negative rate). In pair-
wise comparison, our evaluation should have an
accuracy (1− α)(1− β) against the true, pairwise
judgment.1

Intuitively, statistical testing can be loosely
thought of as reducing the width of two confidence
intervals, spaced by the true system difference of A
and B (Krzywinski and Altman, 2013). The power
of an experiment is then a function of these three
aspects:

(a) First, the true system difference plays a role in
the power. When the distance between the true
scores is large relative to the noise, noise is
unlikely to obfuscate the true pairwise ranking
of the systems.

(b) Second, the variance of human judgment. The
larger the variance in a single judgment, the
more judgments that will be needed in an av-
erage to get a consistent estimate.

(c) Finally, the sample size or the budget. The
number of judgments you collect shrinks the
confidence intervals by a factor of

√
N from

the single judgment variance.

The more judgements you can collect the smaller
these confidence intervals will be. When the con-
fidence intervals don’t overlap, the comparison is
likely to achieve significance. These three factors
all play a role in whether the intervals will be nar-
row enough.

If we know two of (a), (b), or (c), we can use
the appropriate power analysis to deduce the third.
Typically, we will observe the (b) human judgment
variance, and make a guess at what the true differ-
ence (a) would be, to compute what (c) the budget
we would have to spend is. When providing esti-
mates for the budget, we would provide estimates
under a range of guesses at what the true difference
is (Card et al., 2020). Alternatively, we may also
ask what the minimum detectable effect is for some
fixed budget. Wei and Jia (2021) conducted power
analysis in MT and found that small differences

1This pairwise accuracy holds if you assume that different
MT systems always have different quality. By randomizing
the systems, the null hypothesis will be true exactly half of
the time.
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Figure 2: The minimum detectable effect (MDE) is il-
lustrated in the ENU → FRA language pair. Each point
represents a pairwise comparison conducted for this
language pair. When evaluating pairs exhibiting differ-
ences larger than the MDE, 95% of pairs will achieve
significance at the α = .05 level, which totals to a pair-
wise accuracy of 90%. Unfortunately, most pairs are on
the left hand side of this line. This is also the case for
many other language pairs in the ShipData.

require an infeasible amount of budget. This gives
a hint that most of our MT evaluation is under-
powered. Consistently conducting underpowered
experiments run the risk of inflating the error rate
in significant observations (Ioannidis, 2005).

4 Dataset

MT evaluation has an established tradition of con-
ducting human evaluation and releasing public
datasets. At the time of writing, the current an-
notation method of choice in MT is Direct Assess-
ment (DA; Graham et al., 2015; Akhbardeh et al.,
2021). Direct Assessment asks annotators to rate a
translation’s quality on a sliding point scale from
0-100. We study the ShipData presented in Kocmi
et al. (2021), which is the largest human evaluation
dataset of pairwise comparisons, accumulated over
two years from internal evaluation campaigns at Mi-
crosoft Translator. No text is contained i.e. source,
references, or outputs, but the raw DA scores are
sufficient for our purposes. We focus on this dataset
because it is large and often contain comparisons
between state-of-the-art systems. It contains 4004
pairwise comparisons between two systems, where
each system pair contains about 600 human judg-
ments per system (1200 for both systems).

5 The sensitivity approach to evaluation

The basis of solid comparison is significance.
Therefore, we need a way to reason about the power
of an experiment. In this section, we recommend

Significant / Obs. Median
insignificant MDE difference

ENU → FRA 30 / 153 3.8 1.2
ENU → DEU 19 / 151 3.5 0.7
FRA → ENU 3 / 140 2.4 0.6
DEU → ENU 27 / 130 1.9 0.6
JPN → ENU 78 / 127 2.9 3.2
ENU → JPN 40 / 94 3.8 1.8
ITA → ENU 2 / 81 2.8 0.5

CHS → ENU 30 / 78 2.6 1.5
ENU → PTB 28 / 74 1.0 0.6
ENU → SVE 31 / 73 4.4 1.4

Table 1: Significance and MDE results in the top-10
language pairs (by number of comparisons). Signifi-
cance is calculated at the α = 0.05 level. Observed
MDEs are calculated for 90% pairwise accuracy. The
median system difference is observed from the data. For
most language pairs, less than half of the pairs had a
significant observation. MDEs are small but most of the
system differences appear to be even smaller.

a sensitivity approach to evaluation, and retrospec-
tively deduce the power of previous evaluations.
By looking at the observed effect sizes we can also
set a meaningful target power.

5.1 Minimum detectable effects (MDEs)

The pairwise evaluation of two MT systems is not
a one-size fits all procedure, even though the MT
literature uses a consistent annotation method (Fe-
dermann, 2018). Rather, an evaluation is our best
attempt to answer which MT system is better with
the evaluation annotation budget at hand. How
much budget to allocate should depend on the cir-
cumstantial factors. Statistical inference can give
us a probabilistic answer to this question with what-
ever evidence we are able to collect.

In the best case scenario, a significant result is
observed and a winner is declared after the data is
collected. However, significance depends on the
conditions of the experiment (see §3), where the
size of the pairwise difference, annotation variance,
and number of samples all play a role. The pairwise
difference and annotation variance are determined
by the annotation method. Since most prefer to use
a widely accepted annotation such as Direct Assess-
ment (DA; Graham et al., 2015), these are factors
we may not be able to change. However, we can
increase the budget, and the larger the budget, the
more likely we will be able to achieve significance
for some fixed difference.
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Figure 3: Power analysis for the total number of judg-
ments required to achieve an MDE with 90% inference
accuracy. These figures are calculated through simu-
lation with distributional assumptions on the human
scoring function (see §6.1). Compared to the observed
MDEs, figures here serve as a lower bound. As the
differences decrease linearly, the number of samples
required increases exponentially.

We recommend to think about an MT eval-
uation in terms of its sensitivity. With a fixed
budget and annotation method, there is some
deducible minimum detectable effect (MDE;
Bloom, 1995), where evaluating differences larger
than the MDE will enjoy a comfortable level of
power (rate of significance). Alternatively, if we
did not observe significance for some experiment,
we may suspect that the true difference is likely
to be lower than the experiment’s MDE. With a
sensitivity perspective, our consideration is now to
conduct DA evaluations with a budget large enough
to exhibit an appropriate MDE. Ideally, our eval-
uation exhibits an MDE small enough where we
believe any smaller differences are not practically
meaningful (more in §6.1). Realistically, we would
set up an evaluation with MDEs as small as our
budgets allow.

5.2 Observed MDEs

In this section, we attempt to retrospectively un-
derstand the MDEs/sensitivity of our past evalu-
ations. Refer to Figure 2 for graphical intuition.
We can empirically estimate (as opposed to mak-
ing assumptions and simulating, see Card et al.,
2020) an (observed) minimum detectable effect by
sorting all the pairs by their observed absolute sys-
tem difference, and choosing the difference where
comparisons with a larger system difference (effect
size) will have at least 95% of experiments showing
significance (corresponding to experimental power
1− β = 0.95) at a level of α = 0.05 by the Mann

Variance Reducible
(std. dev.) variance

WMT21 *-en 866.2 (29.4) 23.1%
pSQM zh-en 683.2 (26.1) 9.8%
pSQM en-de 705.4 (26.5) 53.4%

Table 2: Total annotation variance and the reducible pro-
portion of that variance. pSQM scores are provided
by Freitag et al. (2021) and are collected from pro-
fessional annotators. WMT21 scores are provided by
Akhbardeh et al. (2021) and are collected from crowd-
workers. pSQM scores are normalized from 0-100 for
ease of interpretation. At least half of the variance is
irreducible.

ρ WMT21 pSQM(zh-en) pSQM (en-de)

1.0 1.30 1.20 4.33
0.5 1.06 1.12 3.09
0.2 1.01 1.11 2.94

Table 3: Data efficiencies for the control variates estima-
tor under different conditions. Each column represents
a different condition of reducible variance, instantiated
from observed statistics from Table 2. ρ is the corre-
lation of the metric that would be used in the control
variates estimator. With the exception in pSQM en-de,
variance reduction is far from giving us the 2x-10x mul-
tiplier we need.

Whitney U (MWU) test. This ensures that at least
(1− α)(1− β) ≈ 0.9 of the pairs should be accu-
rate (Wei and Jia, 2021). We can interpret this as
the threshold at which our experiments will stop
being accurate at the 90% level.

The minimum detectable effects (MDE) are
small, but differences between systems are even
smaller. Refer to Table 1. Our evaluations have
been able to detect up 1 or 2 points of system-level
DA difference, but often a third of the comparisons
are still not significant. Looking at the density of
the differences (see the x-axis in Figure 2) we see
that most of the pairs exhibit small differences. An
immediate consequence is that most of the budget
is being spent to declare ties. Most of our compar-
isons are underpowered, and where the p-value is
high the experiments are not much better than a
coin toss. The median difference provides a target
MDE if we want half of our evaluations to show
significance (alternatively, declaring ties in half of
the evaluations is acceptable).
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6 Known unknowns

Now that we have established a way to reason about
experimental power, we conduct power analysis to
understand how much more gain we need to im-
prove our power to a desired sensitivity. We inves-
tigate whether variance reduction techniques are
sufficient, and conclude that the only way forward
is to increase the annotation budget.

6.1 Power analysis for the desired sensitivity
As suggested in Card et al. (2020), we can roughly
determine the number of samples for a fixed power
using simulation. As with any power analysis, we
must make some assumptions to estimate the num-
ber of samples needed. Here we assume that the
judgments for a given system’s translation is dis-
tributed as s ∼ 100−Gamma(k, θ) where k = µ2

σ2

and θ = σ2

µ are fit to match the average mean and
variance of a system for that language pair. We
choose the use of the Gamma distribution because
the resulting scoring distribution is such that most
of the scores are high, and the more severe the
translation error the more rare it is, which matches
what we observe in Kocmi et al. (2021). We then
use the bisection method to determine the integer
whose power has the closest match to our desired
β value. We find that the simulation reasonably
matches empirically observed MDEs.

Power analysis shows that most pairs needs
not a little, but a lot more judgments. Refer
to Figure 3. Comparing to the observed MDEs,
the power analysis is optimistic, where the figures
we provide can be seen as a lower bound. Even
a reduction of our MDE to 1 point can require
up to 2x times more judgments (than originally
used in the ShipData). We highlight the fact that
as differences get linearly smaller, the number of
samples is an exponential growth. The nature of
statistical estimation is that smaller differences are
increasingly elusive.

In the search for higher power, we must also keep
in mind that arbitrarily small differences require
arbitrarily large budgets. Therefore, for modern
state-of-the-art comparisons, some differences will
be left unknown. We can not fantasize about de-
tecting every single small difference out there just
by spending more budget or applying some strong
statistical technique (see §6.2). Perhaps this may
be taken in stride, as mathematicians learned to
accept the existence of unprovable theorems nearly
a century ago (Gödel, 1934). Many other important

fields such as domain adaption also grapple with
their unknowns (Ben-David et al., 2010).

6.2 Variance reduction is inadequate
Generally, we assume that a human evaluator
scores a segment with the true segment level qual-
ity score, plus some noise. If H(x) is the human
scoring function on system translations x, there are
2 parts to the scoring variance. We can decompose
the variance of H to

Var(H(x)) = E[Var(H(x)|x)] (1)

+ Var(E[H(x)|x])
by the law of total variance. The first part is the
variance of the true translation quality scores, cap-
turing the real difference in quality across output
translations, and the second part is the rest of the
variance. The second term, which we broadly term
annotator noise, can include annotator biases, pref-
erences, and even mood.

Using repeat judgments we can estimate the sec-
ond term (annotator noise), which is similar to
an inter-annotator agreement (Wei and Jia, 2021).
Since the ShipData doesn’t contain any repeat judg-
ments, we provide estimate of the second term from
a few similar datasets (Akhbardeh et al., 2021; Fre-
itag et al., 2021). Refer to Table 2. In designing
variance reduction techniques, we usually leverage
metric scores to reduce the first term, but not an-
notator information to reduce the annotator noise
(second term), as it is too difficult (Saldías Fuentes
et al., 2022).

With variance reduction (VR) techniques, we
can achieve a higher power with the current bud-
get by leveraging side information (Owen, 2013).
However, VR is not arbitrarily powerful, and its
effectiveness is constrained by the amount of re-
ducible variance present, and how much of the
reducible variance you can actually reduce. Here,
we look at the control variates technique2 which
leverages the linear information in a metric for the
estimation of system quality. The data efficiency in
Chaganty et al. (2018) describes how many times a
control variates estimator improves over the regular
sample mean estimate, and is characterized by

DE :=
Var(µ̂mean)

Var(µ̂cv)
=

1 + γ

1− ρ2 + γ
(2)

2Equal proportion stratified sampling is a special case of
control variates, so these results also apply (Owen, 2013). Any
technique which uses a metric to bin outputs, where the same
number of outputs are sampled for scoring within each bin,
are constrained by these results as well.
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Figure 4: The average power of each pairwise compari-
son for fixed testing at 1200 against interim-futility test-
ing at 2300. Each point represents a pairwise compari-
son. When planning for 2300 judgments with interim-
futility, the actual amount of judgments collected in our
simulation is about 1200. For the same budget, we see
that interim-futility testing boosts the power of moder-
ate to high-powered pairs, but drops that of the lower
powered pairs.

where ρ is the sentence-level Pearson correlation
of the metric and

γ =
σ2
a

σ2
f

=
E[Var(H(x)|x)]
Var(E[H(x)|x]) (3)

Refer to Table 3. With the optimistic assumption
of a perfect metric, we often only get a ~1.2x
efficiency gain from VR, far from the 2-10x mul-
tiplier we need to obtain significant comparisons.
The gains we predict for VR is consistent with the
practical results presented in Saldias et al. (2022).
These reduction techniques work, but is far from
achieving what we need, echoing the narrative of
Chaganty et al. (2018).

7 Spending effectively

To have a notable gain in sensitivity, variance re-
duction alone is inadequate. Therefore, spending
is necessary in the search for higher power. This
section describes a simple yet statistically rigor-
ous way of “early stopping” in a human evaluation
campaign. Interim testing adaptively allocates the
budget to borderline significant pairs, and can be
seen as an efficient way to spend.

7.1 Peek-a-boo! Planning interim peeks

Savings can be achieved if we can stop data col-
lection as soon as a result can be concluded. If the
experimenter runs the preferred statistical test (at
false detection rate α = 0.05) periodically while
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Figure 5: The average number of judgments collected by
each sampling method. For interim and interim-futility,
1200 judgments were planned, and the actual judgments
collected are strictly less. As the system differences
grow larger, both methods have the potential to stop
early. For interim-futility, pairs with small differences
also incurred less judgments.

data collection is on-going, the final process will
have a false detection far higher than the α intended
(Albers, 2019). There are a class of sequential
sampling techniques, which allow you to test after
every single sample while maintaining the false
detection rate constant, but are mathematically dif-
ficult to apply (Johari et al., 2015).

A simpler solution is to use interim sampling
and apply a correction for multiple testing (Lakens
et al., 2021). For instance, the Pocock correction
(Pocock et al., 1987) is appropriate when multiple
comparisons are made, but we want a false detec-
tion to be maintained at a desired α.3 Refer to Fig-
ure 1. For interim testing, we can plan in advance
to collect batches of data, and test between each
batch. To maintain a final false detection rate to the
fixed procedure, your interim tests must have an α0

appropriately adjusted with the Pocock correction.
The downside is that this correction is conservative,
and each test has less power.

At each interim point, we can also stop for fu-
tility, or when we see that even in completion of
the data collection, we are unable to achieve signif-
icance. Practically, there are many ways to set up
this stopping rule (Lakens et al., 2021), but in our
simulation we find that a simple heuristic (checking
if the p > 0.5) works well for our purposes. An
alternative view of futility stopping is that we are
unwilling to conduct the analysis of the original

3Here’s why we need a correction: imagine 20 compar-
isons made at α = 0.05 where the null hypothesis is true, then
the probability of getting at least 1 significant result is actually
1− 0.9520 ≈ 0.63.
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experiment with the corresponding MDE.

7.2 Experimental setup

We compare three different kinds of testing meth-
ods. Refer to Figure 1.

• Fixed testing is most commonly used in eval-
uation. In fixed testing, the annotation bud-
get is spent all at once, and the statistical test
is performed at the end. The advantage of
fixed testing is that only statistical test is per-
formed with the highest (least conservative)
alpha threshold (e.g. is p < 0.05?).

• Interim testing plans to spend the budget
in equal sized steps, with an interim analy-
sis between each step. If significance is ob-
served at any point, the data collection is ter-
minated. We always plan for 3 peeks, and use
the Pocock correction (e.g. is p < 0.0221?
at each peek). While the testing threshold
is lower (more conservative), the savings ob-
tained from some pairs can be used on others,
by planning more judgments for all pairs.

• Interim-futility is the same as interim testing
but also applies a futility stopping rule at each
analysis. If p > 0.5 then the experiment is
terminated early. Futility stopping does not
affect the false detection rate so it does not
need to be adjusted. Futility stopping results
in strictly less power, but the savings can be
used elsewhere, by planning more judgments.

To benchmark these testing procedures against
each other, we simulate data collection from the
pairs in the ShipData by sampling with replace-
ment. For each pair we simulate each testing proce-
dure 1000 times and record the number of times the
procedure is able to achieve significance. For all
tests we use the Mann Whitney U test (standard to
machine translation; Akhbardeh et al., 2021) with
a testing threshold of α = 0.05. Within the Ship-
Data, each pair only has about 1200 judgments,
from which we often oversample. We note that
this is our best faith attempt to study these test-
ing methods in the large budget regime, and actual
benchmarking would require infeasible cost, so the
simulation can serve as our best synthetic testbed.

7.3 Results

Refer to Figure 5. For a fixed sampling procedure,
the number of samples collected is constant for

every effect size. This can be inefficient as pairs
with large differences do not need as many judg-
ments to declare significance. Interim testing is
adaptive; as the differences get larger, interim test-
ing can declare significance at an early step. For
interim-futility, less judgments are also collected
for the pairs with the smallest differences, where
early steps may declare futility. We will later see
that the interim-futility behavior is most favorable.

Refer to Figure 4. When comparing fixed and
interim-futility, we compare two procedures that
spend the same budget. Since interim sampling
spends more on borderline pairs, the power for
pairs with moderate to high differences increases.
Savings are made on pairs with both large and small
differences, with small difference pairs having a de-
crease in power. We highlight that interim-futility
is a different kind of testing. While the use of fixed
testing seeks to best detect every difference no
matter how small, the use of interim-futility pri-
oritizes the pairs that have borderline significant
differences.

Refer to Figure 6(a). The main metric we bench-
mark these methods is by the average power, or
the number of significant comparisons over all the
ShipData. When comparing over all pairs, interim
testing has slightly better performance, but interim-
futility gives considerable gains even at current
budget sizes. Our results show that to attain the
fixed testing power at 1200, interim testing only
needed to spend 990 judgments per comparison,
which is an 18% saving4. The advantage of interim
sampling over fixed sampling is even more pro-
nounced when we are spending large budget sizes,
where we can gain 28% savings at 3600 judgments
(3x). Refer to Figure 6(b). When testing small
differences interim sampling is worse than fixed
sampling, as it has a stricter significance threshold.
However, interim-futility is able to stop on pairs
with little hope and prioritize the borderline signifi-
cant pairs. Refer to Figure 6(c). On pairs with large
differences interim sampling is best, with interim-
futility achieving similar performance. For large
differences futility stopping should rarely trigger,
so the two methods should be similar.

We want to highlight that the distribution
of the differences is key to the success of the
interim-futility testing procedure. Since most
of the pairs are concentrated either in the dense

4All the results in this paragraph are derived using linear
interpolation, akin to using a ruler on Figure 6.
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Figure 6: (Top) The average power of each testing procedure across the ShipData for different sized budgets. (a)
Shows the average power across all data, and (b) shows it over pairs with large differences and (c) shows it for small
differences. (Bottom) The histogram of the true differences in each pairwise comparison. These are true differences
due to the simulation we used to test these procedures. Interim-futility is most favorable by average power in (a), (b)
and (c). Interim testing is weaker in (c) due to its stricter significance threshold.

region of small differences or in the long tail of
large differences, these are areas where interim-
futility can early stop. Compared to fixed testing,
interim-futility will be able to make savings here
to spend elsewhere. Crucially, the application of
futility stopping also requires a change in our eval-
uation mindset, as we must be willing to accept
that some small differences are not worth detecting.
If we can make this change, then interim-futility is
most favorable in terms of average power.

8 Limitations

The most important assumption of our work is
in the use of Direct Assessment (DA). While our
methods can generalize to any real valued judg-
ment, we analyzed DA because of its widely recog-
nized, gold standard status in MT evaluation. DA is
a particularly noisy judgment, and so the power and
variance reduction results are pessimistic. However,
we believe that the study of annotation will be the
most important direction in MT evaluation.

Let’s take Hassan et al. (2018), where one of the
first claims of MT-human parity was made. By their
evaluation, which was conducted according to the

community standard, no significant difference was
found between human and machine translations
with a reasonable budget, and so a tie was declared.
Toral et al. (2018) reassesses this claim, and essen-
tially presents a series of alternative evaluations
and observe significant differences that contradict
with Hassan et al. (2018). This is just one of many
studies which compels an alternative evaluation
with qualitative insight (Läubli et al., 2018, 2020;
Freitag et al., 2021).

Our perspective is that significance is only one
pillar of MT evaluation. It is our hope that the anal-
yses in this work will further our understanding of
significance and evaluation power. However, the
second pillar of MT evaluation is in the annotation
method. While power is quantitative, the study
of annotation methods will be qualitative. Going
forward, understanding how we can change the
annotation method to increase the power will be
crucial. We will need good qualitative understand-
ing to be able to move away from DA and establish
new gold standards.

In addition, we showed that interim testing is
only effective for pairwise comparison. Future
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work should look to make savings in the leader-
board styled evaluation of WMT. This may come in
the form of generalizing interim sampling for mul-
tiple comparisons or formalizing the bandit results
from Mendonça et al. (2021) in terms of statistical
inference.

9 Conclusion

Our work is motivated by the cost of human eval-
uation in machine translation. Before searching
for a higher power from our current budget, we
determined how much more power was necessary.
In doing so, we recommend taking a sensitivity
approach to evaluation. From here we came to
the conclusion that to achieve the power/sensitivity
necessary, variance reduction alone would be in-
sufficient, and spending is our only option. If we
decide to allocate larger budgets, interim testing
is a more effective way to spend, which can yield
18% savings at the current evaluation power, or
27% savings at 3x the original budget.
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