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Abstract

This paper presents the submissions of Huawei
Translation Services Center (HW-TSC) to
WMT 2022 Efficiency Shared Task. For this
year’s task, we still apply sentence-level distil-
lation strategy to train small models with differ-
ent configurations. Then, we integrate the av-
erage attention mechanism into the lightweight
RNN model to pursue more efficient decoding.
We add a retrain step to our 8-bit and 4-bit mod-
els to achieve a balance between model size
and translation quality. We still use Huawei
Noah’s Bolt1 for INT8 inference and 4-bit stor-
age. With Bolt’s support for batch inference
and multi-core parallel computing, we finally
submit models with different configurations to
the CPU latency and throughput tracks to ex-
plore the Pareto frontiers.

1 Introduction

Transformer and its variants (Vaswani et al., 2017;
Shaw et al., 2018; So et al., 2019; Dehghani et al.,
2019) have become benchmark models for machine
translation. A lot of innovations and engineering
optimizations (Tay et al., 2020) in this area are
based on Transformer. However, with the increase
of bilingual and monolingual data sizes used for
training, the size of the model expands and the
requirement of computing ability become higher.
Taking T5 (Raffel et al., 2020), GPT3 (Brown et al.,
2020) and a series of subsequent large models (Fe-
dus et al., 2021; Smith et al., 2022) as examples, al-
though they have achieved very good performances,
it is still difficult for ordinary practitioners to repro-
duce or use these models for research and industry
application. Especially in scenarios where hard-
ware capability is limited, models that balance size,
quality and power consumption is urgently needed.
The WMT Efficiency task is performed under such
constraints.

1https://github.com/huawei-noah/bolt

In this year’s task, we still focus on CPU infer-
ence optimization and participate in CPU latency
and multi-core throughput tracks.

We employ knowledge distillation (Hinton et al.,
2015) to train small models. The teacher models
and distillation data come from official website.
We only perform simple data cleaning, and all of
our experiments are conducted based on fariseq
(Ott et al., 2019).

Deep encoder and shallow deocder models can
balance quality and inference speed (Wang et al.,
2019). We follow this configuration for pursuing
extreme efficient decoding. Inspired by SRU++
(Lei, 2021) and AAN (Zhang et al., 2018), we in-
tegrate the average attention mechanism with a
lightweight RNN for more efficient decoding.

We retrain our 8-bit quantisation model (Jacob
et al., 2018), then compare its result with that of
direct post-quantization (Sung et al., 2015) model.
We finally find that in the distillation scenario, the
difference between the two is not obvious. We
apply 4-bit storage to obtain an extremely small
model size. Although our training and inference
strategies ensure basically the same model quality,
the gap in overall quality is large and the model
needs to be further optimized.

We still use Huawei Noah’s Bolt as the inference
library. This year, we implement batch inference
and parallel computing on multi-core CPUs for the
throughput track.

Finally, after performing some necessary engi-
neering optimizations, we submit four models with
different configurations to explore the Pareto fron-
tiers.

2 Teacher to Student Knowledge
Distillation

2.1 Data Process

The task is to translate English to German follow-
ing the constrained news task from WMT 2021.
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The teacher model, as well as bilingual data and
distillation data used in this task are provided by the
organizer. It makes everyone on the same start line
in the distillation experiment, avoiding the qual-
ity difference due to different teacher models. We
download the data and find it pretty much the same
as the data we used in the task last year. Accord-
ing to our distillation experiment last year, keeping
the ratio of bilingual data and distillation data as
1:2 can ensure that the student model inherits the
knowledge of the teacher model well. Except for
the generation of distillation data, other processing
strategies are the same as last year’s. For details,
please refer to our previous task report (Shang et al.,
2021).

2.2 Vocabulary
We build a joint subword segmentation model from
real parallel data using SentencePiece (Kudo and
Richardson, 2018) as last year. The vocabulary size
is set to 25k tokens.

2.3 Model Structure
The autoregressive module is based on the self-
attention in the Transformer decoder layer. The
decoding complexity increases as the decoding
length increases. Therefore, special processing
is required if we want to pursue extreme decod-
ing performance. The commonly used strategy is
to replace it with a fixed computational cost mod-
ule, such as LSTM, other RNN variants (Lei et al.,
2018), or AAN. These modules use a global cell to
store sentence-level information and perform the
same cell update actions as each token is decoded
without relying on the decoded sequence.

SRU++ (Lei, 2021) further replaces the heavy-
weight multiplication operation outside the cell
with a self-attention component to improve the
representation ability of the model. We use the
AAN to replace the standard self-attention module
for faster decoding while ensuring the expression
ability of the model. We call it the AASRU model.

The calculation formula in the cell is as follows:

f [t] = σ(U [t, 0]) + V ⊙ C[t− 1] + b)

r[t] = σ(U [t, 1]) + V
′ ⊙ C[t− 1] + b

′
)

c[t] = f [t]⊙ C[t− 1] + (1− f [t])⊙ C[t, 2]

h[t] = r[t]⊙ C[t] + (1− r[t])⊙ x[t]

The formula for calculating U is as follows:

Q = W qXT

V = W vXT

AT = AV ERAGE(V T )

UT = W olayernorm(Q+A)

where W q and W v ∈ Rd
′×d, W o ∈ R3d×d

′
, d

is the hidden state size, and d
′

is the attention di-
mension. The σ is the sigmode function, and ⊙
is the element-wise multiplication, t refer to the
time step, v and b are parameter vectors to be learnt
during training, c and h are the cell states and the
hidden states in RNN.

2.4 Training
Our distillation experiments are based on fairseq.
We implement the AASRU module by referring to
the open-source transformer-aan 2. Also, we do
not use regularization techniques such as dropout
and label smoothing. All our models are trained
using 8 Nvidia Tesla V100 for about two days. The
maximum number of tokens vary from 4096 to
10240 according to the model size, as we try to
keep the maximum GPU memory usage the same.

After that, we retrain our 8-bit quantization
model, constrain all Linear and Matual operator’s
inputs to the interval [-1, 1], add quantization and
inverse quantization operators to the model graph.
The retrain is performed after the base model has
been trained for 200K steps.

We compare the results of retrain and post-
quantization on the Base.12 model, and find almost
no difference in performances of the two models
under the current distillation experiment setting.
Therefore, we submit the post-quantized models.

Next, we apply 4-bit storage models to pursue
extreme model sizes. In order to achieve better
translation, we add retrain and verify the consis-
tency between training and inference. The transla-
tion quality obtained via Bolt inference and training
respectively is almost the same. However, the over-
all quality of our model declines greatly, requiring
further optimization.

2.5 Evaluation
We still use WMT 2019 and 2020 News Task
test sets to measure our models with SacreBLEU
(Post, 2018) this year. We perform a simple post-
processing (normalize the punctuation) on the Ger-
man translations, so the BLEU scores are slightly
higher than the officially provided one.

2https://github.com/bzhangGo/transformer-aan

678



Model Emb. FFN Head Depth Params(M) Size(MB) wmt19 wmt20
Teacher*4 1024 4096 16 6/6 200 800 47.08 36.29
Base.12 512 2048 8 12/1 53 210 45.75 35.30
Base.12 + 8-bit 512 2048 8 12/1 53 210 45.89 35.20
Base.6 512 2048 8 6/1 35 140 44.78 34.59
Small.12 384 1536 6 12/1 33 132 45.03 34.89
Small.9 384 1536 6 9/1 28 112 44.62 34.40
Small.6 384 1536 6 6/1 22 88 43.80 34.26
Tiny.12 256 1024 4 12/1 17 68 43.84 33.62
Tiny.6 256 1024 4 6/1 13 52 42.15 32.27
Tiny.6 + 4-bit 256 1024 4 6/1 13 52 34.75 26.30

Table 1: Results of Distillation Training. 8-bit and 4-bit refer to retraining.

Overall, the results of our distillation experi-
ments are within our expectations. The Baseline
model has about 25% parameters as the teacher
model, and its performance is attenuated by about
1.5 BLEU. The 8-bit retraining model is basically
the same as the direct training one. However, we
observe over 5.0 BLEU decrease on our Tiny.6
model after adding 4-bit storage. The reason may
be that we treat every parameter the same way,
including embedding. As a result, more training
tricks and experiments are required in the future.

We also analyze the effect of the encoder’s height
and width on the model. Comparing Base.6 to
Small.12, and Small.6 to Tiny.12, we find that
deeper networks almost have equal or better qual-
ity even with less parameters except for Tiny.12’s
2020 test result.

Under the same height setting, models with dif-
ferent widths also perform differently. A wider
model seems to perform better. Comparing 12-
layer and 6-layer models, we observe less than 1
BLEU difference under the base setting, less than
1.2 BLEU difference under the small setting (and
only 0.7 BLEU difference on the WMT20 test set),
and only about 1.7 BLEU difference under the tiny
setting. Wider encoder means more parameters and
probably better quality.

Based on the above analysis and the quality gap
between the models, We finally decide to submit
four models including Base.12, Small.9, Tiny.12,
and Tiny.6 to explore the Pareto frontiers better.

3 Inference Optimizations

We use Bolt acceleration library as CPU optimiza-
tion backend to build the high-performance trans-
lation engine. Bolt has a standalone C++ run-
time, therefore it can perform fast inference without

any third-party dependencies. We use Bolt v1.4.0,
which will be available in October 2022.

3.1 8-bit Quantization

We still apply the post-training quantization
method this year. All parameters of the model
except the bias are quantized to 8-bit intergers by
absolute maximum quantization. All GEMM op-
erations in the attention layer are in 8-bit and well
optimized by Intel VNNI instructions, but the lay-
ernorm and softmax computations are back off to
FP32.

3.2 4-bit Storage

For this year’s submission, we employ 4-bit storage
to achieve almost 8x model compression. With 4-
bit storage, all parameters have to be converted to 8-
bit integers for calculation because of the hardware
limitations, so there is no performance advantage
compared with 8-bit storage.

3.3 Batch and Thread

For the throughput track, we support batch infer-
ence and merge multiple matrix calculations in at-
tention layer. Our experiments show an end-to-end
speedup of up to 20% on a single core. To further
increase the throughput, we divide the input text
into specified sizes and assign them to multiple
CPU cores for parallel computation. The input text
is sorted first to prevent the performance waste due
to the difference of data lengths within the batch. In
the submitted systems, we uniformly set the batch
size to 4.

3.4 Other Strategies

We apply some other commonly used strategies
such as greedy decoding, caching and shortlist,
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Model Precious Size WPS BLEU
Teacher FP32 2000 - 36.29
Base.12 FP32 212 237 35.30

INT8 53 815 35.20
+retrain INT8 53 815 35.19

Small.9 FP32 112 468 34.40
INT8 28 1129 34.29

Tiny.12 FP32 68 759 33.62
INT8 17 1693 33.39

Tiny.6 FP32 52 996 32.27
INT8 13 2001 31.92

+int4 INT8 6.5 1989 26.10

Table 2: Optimization results. The test set is WMT
2020 News test. The unit of size is MB. WPS refers
to the source side. The test environment is Intel(R)
Xeon(R) Gold 6278C CPU @ 2.60GH. We submit four
models: Base.12, Small.9, Tiny.12 and Tiny.6 and the
final Tiny.6+int4

which can improve the model decoding efficiency
to a certain extent. Details can be found in our last
year’s report.

4 Optimization Results

Our final optimization results are shown in Table 2.
We find that the inference speed of our models is
significantly improved through int8 inference, and
the overall improvement is 2-3 times that of FP32,
which is basically the same as last year’s results.

By analyzing the results of our comparative ex-
periments on Base.12, we find that BLEU is only
slightly decreased when we directly use the post-
quantization inference version. So there is not
much room left when optimizing the performance
of models that employ retraining. The reason may
be the limited diversity of the model under the
distillation setting. The post-quantization model
basically meet our requirement on quality.

We additionally employ 4-bit storage on the
Tiny.6 model for pursuing extreme model size. Af-
ter retraining, we successfully compress the model
to almost 1/8 of the original size, and maintain a
high degree of consistency between training (26.30
BLEU) and inference (26.10 BLEU) with slightly
BLEU score decrease. We also submit the model
for evaluation.

When preparing the model for the throughput
track, we need to set the batch size for batch trans-
lation. We compare the impact of different batch
sizes on throughput in detail using our Base.12
model. Results are shown in Table 3. When the

Batch Size BLEU Costs WPS
Base.12 35.30 - -
1 35.20 53 815
2 35.23 45 978
3 35.17 44 1000
4 35.22 44 1000
8 35.38 45 978
16 35.26 45 978

Table 3: The effect of batch size on throughput. WPS
refers to the source side.

batch size exceeds 3, the improvement becomes in-
significant. Considering that the hardware used in
the task may be different from our test environment,
we set the batch size to 4 for all of our submissions
for convenience.

5 Submitted Docker Images

Due to the simple runtime environment of Bolt, we
can choose a very basic image to run our system.
We still apply the ubuntu:18.04. Our inference
project is inherited from last year’s, adding support
of batch inference and using a thread pool to run
models in parallel on multiple CPU cores. Fol-
lowing the task requirements, our startup script is
/run.sh. Our model is stored in the /model directory,
which contains the converted Bolt model, vocab-
ulary, and shortlist files. The compressed file is
provided.

Our largest model volume is around 50M, and
the base image volume is around 60M. The space
occupied by our inference project is almost negligi-
ble, so the final image we submitted after compres-
sion still does not exceed 70M, and the smallest
one is about 35M.

6 Concolusion

In this year’s task, we follow some strategies from
last year, including data processing, basic distilla-
tion training, etc. In addition, we explore a new
and more efficient decoding structure, AASRU,
this year, which reduces the amount of computa-
tion while maintaining quality. We add 8-bit and
4-bit retrain to distillation training, and verify the
consistency of training and inference. Regarding
engineering, we add the relevant features of Batch
inference and multi-core parallel computing, and
finally submit several models with balanced quality
and speed for CPU latency and throughput tracks.
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