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Abstract

We present a non-autoregressive system sub-
mission to the WMT 22 Efficient Translation
Shared Task. Our system was used by Helcl
et al. (2022) in an attempt to provide fair com-
parison between non-autoregressive and autore-
gressive models. This submission is an effort
to establish solid baselines along with sound
evaluation methodology, particularly in terms
of measuring the decoding speed. The model
itself is a 12-layer Transformer model trained
with connectionist temporal classification on
knowledge-distilled dataset by a strong autore-
gressive teacher model.

1 Introduction

In the past few years, non-autoregressive (NAR)
models for neural machine translation (NMT) at-
tracted interest from the research community (Gu
et al., 2018; Lee et al., 2018). Given the conditional
independence between the output states, the decod-
ing process can be parallelized across time steps.
In theory, this leads to higher decoding speeds.

Since efficient decoding is claimed to be the
main motivation of non-autoregressive models, the
Efficient Translation Shared Task seems to be the
appropriate venue to provide fair comparison be-
tween these models and their autoregressive coun-
terparts. However, all submissions to this task were
autoregressive so far (Birch et al., 2018; Hayashi
et al., 2019; Heafield et al., 2020, 2021).

Recently, Helcl et al. (2022) pointed out com-
mon flaws in the evaluation methodology of NAR
models. We found that optimized autoregressive
models still achieve superior performance over
NAR models. The only scenario where NAR mod-
els showed some potential is GPU decoding with
batch size of 1 (latency). Nevertheless, optimized
autoregressive models were still both faster and
better in terms of translation quality. The main pur-
pose of this submission is to provide a reasonable
baseline to future non-autoregressive submissions.

2 Model

In our experiments, we use the non-autoregressive
model proposed by Libovický and Helcl (2018)
based on Connectionist Temporal Classification
(CTC; Graves et al., 2006). We submit models that
have been trained as a part of Helcl (2022).

Architecture. The architecture is a 6-layer Trans-
former encoder, followed by a state-splitting layer
and another stack of 6 Transformer layers. The
state-splitting layer takes the encoder states, project
them into k-times wider states using an affine trans-
formation, and then split the states into k-times
longer sequence while retaining the original model
dimension. In the submitted model, we set k = 3.
The latter 6 layers cross-attend to the states imme-
diately after state-splitting. We use Transformer
model dimension of 1,024, 16 attention heads and
a dimension of 4,096 in the feed-forward sublayer.

The defining property of non-autoregressive
models is that the decoding process treats output
states as conditionally independent. In this archi-
tecture, we set the output sequence length to k×Tx

where Tx is the length of the source sentence. To
allow for shorter output sequences, the any output
state can produce an empty token. The training loss
is then computed using a dynamic programming
algorithm as a sum of losses of all possible empty
token alignments which lead to the same output
sentence. The schema of the architecture is shown
in Figure 1.

Training. We train our model on the knowledge-
distilled data generated by the provided teacher
(Chen et al., 2021). We use learning rate of 0.0001
in a inverse square-root decay scheme with 8,000
warm-up and decay steps.

Implementation. We implement and train our
model in the Marian toolkit (Junczys-Dowmunt
et al., 2018). For the CTC implementation,
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Figure 1: The CTC-based model architecture. We show
the original image from Libovický and Helcl (2018).

we use the warp-ctc library1. We release
our code at https://github.com/jindrahelcl/
marian-dev. The trained model (and a number
of different variants including models in oppo-
site translation direction) can be downloaded at
https://data.statmt.org/nar.

3 Results

We refer the reader to the original paper for more
details about the evaluation and its results. The
model we submitted is denoted in the paper as
“large”. A summary of the results follows.

Translation Quality. To summarize the main
findings, the model achieves a competitive BLEU
score (Papineni et al., 2002) on the WMT 14 news
test set (Bojar et al., 2014), which serves as a com-
parison to other non-autoregressive models that use
this test set as the de facto standard benchmark.
When evaluated on the WMT 19 news test set,
our model obtains BLEU of 47.8, and a COMET
score (Rei et al., 2020) of 0.1485. Compared to an
similarly-sized autoregressive teacher model with
50.5 BLEU and COMET of 0.4110, we see a some-
what surprising gap between the COMET scores
while BLEU scores are relatively close. We hy-
pothesize that the errors that the non-autoregressive
model makes are out of the training domain of the
COMET models, which makes them more sensitive
towards this kind of errors.

1https://github.com/baidu-research/warp-ctc

Decoding Time. We evaluated our models on the
one million sentences benchmark used in the previ-
ous editions of this task (Heafield et al., 2021), and
we tried to reproduce the official hardware setup
to large extent. For CPU decoding, we measured
time to translate the test set on an Intel Xeon 6354
server from Oracle Cloud, with 36 cores. We run
the evaluation only in the batch decoding mode,
as the models were too slow to decode with a sin-
gle sentence in batch. With the submitted model,
the translation on CPU took 7,434 seconds (using
batch of 16 sentences).

We used a single Nvidia A100 GPU for GPU
decoding. In the latency setup, the translation took
7,020 seconds, and the batched decoding (b = 128)
took 782 seconds. When compared with other sub-
missions to this task, we find that the smallest differ-
ence is indeed found in the GPU decoding latency
setting. However, the optimized models submit-
ted to last year’s round still achieved significantly
better decoding times.

4 Conclusions

We submit a non-autoregressive system to the Effi-
cient Translation Shared Task to the WMT 22. The
model is trained with connectionist temporal clas-
sification, which allows the generation of empty
tokens and thus making generation of sentences of
various length possible while retaining the condi-
tional independence among output tokens without
explicit length estimation.

The main motivation of this submission is to
provide a reasonable baseline system for future
research. We believe that the sub-field of non-
autoregressive NMT cannot progress without con-
trolled decoding speed evaluation, which is exactly
what the shared task organizers provide.
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