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Abstract

We describe the JD Explore Academy’s
submission of the WMT 2022 shared task on
general machine translation. We participated
in all high-resource tracks and one medium-
resource track, including Chinese↔English
(Zh↔En), German↔English (De↔En),
Czech↔English (Cs↔En), Russian↔English
(Ru↔En), and Japanese↔English (Ja↔En).
[Method] We push the limit of our previous
work – bidirectional training (Ding et al.,
2021d) for translation by scaling up two main
factors, i.e. language pairs and model sizes,
namely the Vega-MT system. As for language
pairs, we scale the “bidirectional” up to the
“multidirectional” settings, covering all par-
ticipating languages, to exploit the common
knowledge across languages, and transfer
them to the downstream bilingual tasks. As for
model sizes, we scale the Transformer-BIG
up to the extremely large model that owns
nearly 4.7 Billion parameters, to fully enhance
the model capacity for our Vega-MT. Also,
we adopt the data augmentation strategies,
e.g. cycle translation (Ding and Tao, 2019)
for monolingual data, and bidirectional self-
training (Ding and Tao, 2021) for bilingual
and monolingual data, to comprehensively
exploit the bilingual and monolingual data.
To adapt our Vega-MT to the general domain
test set, generalization tuning is designed.
[Results] Based on the official automatic
scores* of constrained systems, in terms of
the SACREBLEU (Post, 2018) shown in
Figure 1, we got the 1st place in {Zh-En (33.5),
En-Zh (49.7), De-En (33.7), En-De (37.8), Cs-En
(54.9), En-Cs (41.4) and En-Ru (32.7)}, 2nd place
in {Ru-En (45.1) and Ja-En (25.6)}, and 3rd

place in {En-Ja(41.5)}, respectively; W.R.T
the COMET (Rei et al., 2020), we got the

Equal contribution. Work was done when Chang-
tong and Keqin were interning at JD Explore Academy.

*https://github.com/wmt-conference/
wmt22-news-systems/tree/main/scores

1st place in {Zh-En (45.1), En-Zh (61.7), De-En
(58.0), En-De (63.2), Cs-En (74.7), Ru-En (64.9),
En-Ru (69.6) and En-Ja (65.1)}, 2nd place in
{En-Cs (95.3) and Ja-En (40.6)}, respectively.
Models will be released to facilitate the MT
community through GitHub† and OmniForce
Platform‡.
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Figure 1: Vega-MT achieves 7 state-of-the-art BLEU
points out of 10 high-resource translation tasks among
all constrained systems, and significantly outperforms
the competitive Transformer-BIG baselines.

1 Introduction

In this year’s WMT general translation task,
our Vega-MT translation team participated in
10 shared tasks, including Chinese↔English
(Zh↔En), German↔English (De↔En),
Czech↔English (Cs↔En), Russian↔English
(Ru↔En), and Japanese↔English (Ja↔En). We
use the same model architectures, data strategies
and corresponding techniques for all tasks.

†https://github.com/JDEA-NLP/Vega-MT
‡OmniForce Platform will be launched by JD Explore

Academy
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We aim to leverage the cross-lingual knowl-
edge through pretraining (PT) to improve the high-
resource downstream bilingual tasks. Although re-
cent works (Song et al., 2019; Lewis et al., 2020;
Liu et al., 2020b; Wang et al., 2022) attempt to
leverage sequence-to-sequence PT for neural ma-
chine translation (NMT; Bahdanau et al., 2015a;
Gehring et al., 2017; Vaswani et al., 2017a) by
using a large amount of unlabeled (i.e. monolin-
gual) data, Zan et al. (2022b) show that it usually
fails to achieve notable gains (sometimes, even
worse) on resource-rich NMT on par with their
random-initialization counterpart, which is con-
sistent with our preliminary experiments. Ding
et al. (2021d) show that bidirectional pretrained
model as initialization for downstream bilingual
tasks could consistently achieve significantly bet-
ter performance. It is natural to assume that scal-
ing the “bidirectional” to the “multidirectional”
setting with {1) multilingual pretraining and 2)
large enough model capacity} could benefit the
downstream resource-rich bilingual translations.
Tran et al. (2021) and Lin et al. (2020) also pro-
vide empirical evidences to support our motivation
of supervised multilingual pretraining. Different
from Tran et al. (2021) that explores the effective-
ness of multilingual training, we show that further
tuning on the bilingual downstream task provide
more in-domain knowledge and thus could gain
better translation quality. Compared with Lin et al.
(2020), our model do not require any alignment in-
formation during pretraining, which will consume
more extra time and computation resources, mak-
ing our strategy flexible to be applied to any lan-
guage.

For model frameworks in §2.1, we tried au-
toregressive neural machine translation, includ-
ing Transformer-BIG and -XL (Vaswani et al.,
2017b), and non-autoregressive translation mod-
els (Gu et al., 2018), where the Transformer-XL
is employed as the foundation model and autore-
gressive BIG and non-autoregressive models are
used during augmenting. For the core training
strategy of our Vega-MT, we cast the multilin-
gual pretraining as foundation models in §2.2,
including MULTI-DIRECTIONAL PRETRAINING

(§2.2.1) and SPECIFIC-DIRECTIONAL FINETUN-
ING (§2.2.2). For data augmentation strate-
gies, we employ CYCLE TRANSLATION (§2.3.1)
and BIDIRECTIONAL SELF-TRAINING (§2.3.2)
for both monolingual and parallel data. In or-

MBase MBig MXL
#Stack 6 6 24
#Hidden Size 512 1024 2048
#FFN Size 2048 4096 16384
#Heads 8 16 32

Table 1: Model differences among base ( MBase ), big
(MBig) and extremely large (MXL).

der to adapt our Vega-MT to the general do-
mains, we employ GREEDY BASED ENSEM-
BLING (§2.4.1), GENERALIZATION FINETUNING

(§2.4.2) and POST-PROCESSING (§2.4.3) strate-
gies.

The subsequent paper is designed as follows.
We introduce the major approaches we used in
Section 2. In Section 3, we provide the data de-
scription. We also present the experimental set-
tings and results in Section 4. Conclusions are de-
scribed in Section 5.

2 Approaches

2.1 Neural Machine Translation Frameworks

The neural machine translation task aims to trans-
form a source language sentence into the target
language with a neural network. There are several
generation paradigms for translation, e.g. Autore-
gressive Translation (AT, Bahdanau et al., 2015b;
Vaswani et al., 2017b) and Non-Autoregressive
Translation (NAT, Gu et al., 2018).

Autoregressive Translation Given a source
sentence x, an NMT model generates each target
word yt conditioned on previously generated ones
y<t. Accordingly, the probability of generating y
is computed as:

p(y|x) =
T∏

t=1

p(yt|x,y<t; θ) (1)

where T is the length of the target sequence and
the parameters θ are trained to maximize the like-
lihood of a set of training examples according to
L(θ) = argmaxθ log p(y|x; θ). Typically, we
choose Transformer (Vaswani et al., 2017b) as its
state-of-the-art performance and scalability. We
carefully employ the standard Transformer-BASE
(MBase) and Transformer-BIG (MBig) in the pre-
liminary studies, and also scale the framework up
to an extremely large setting (Tran et al., 2021)
– Transformer-XL (MXL) to maintain powerful
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Figure 2: The schematic structure of the two main stages of the Vega-MT.

model capacity (see Table 1) . In Vega-MT, we
utilized the autoregressive translation (AT) model
with MBig and MXL for multi-directional pre-
training (§2.2.1), specific-directional finetuning
(§2.2.2), bidirectional self-training (§2.3.2) and
generalization fine-tuning (§2.4.2) as its powerful
modelling ability and generation accuracy.

Non-Autoregressive Translation Different to
autoregressive translation (Bahdanau et al., 2015b;
Vaswani et al., 2017b, AT) models that generate
each target word conditioned on previously gen-
erated ones, non-autoregressive translation (Gu
et al., 2018, NAT) models break the autoregres-
sive factorization and produce the target words in
parallel. Given a source sentence x, the probabil-
ity of generating its target sentence y with length
T is defined by NAT as:

p(y|x) = pL(T |x; θ)
T∏

t=1

p(yt|x; θ) (2)

where pL(·) is a separate conditional distribution
to predict the length of target sequence. Typi-
callly, most NAT models are implemented upon
the framework of MBase. We utilized the NAT
for bidirectional self-training (§2.3.2) as NAT
can nicely avoid the error accumulation prob-
lems during generation, and generate diverse syn-
thetic samples. Also, we employ several ad-
vanced structure (Gu et al., 2019; Ding et al.,
2020) (Levenshtein with source local context mod-
elling) and advanced training strategies (Ding
et al., 2021a,b,c, 2022b; Ding, 2022) to obtain
high quality and diverse translations.

2.2 Multidirectional Pretraining as
Foundation Models

This section illustrates how we scale the “bidirec-
tional” training in Ding et al. (2021d) up to “multi-
directional” pretraining with all high-resource par-
allel corpora, including Zh, De, Cs, Ru, Ja to/from
En. The pretrained foundation models will be fine-
tuned for the downstream specific-directional task,
e.g. Zh-En. Such two-stage scheme is shown in
Figure 2.

2.2.1 Multi-Directional Pretraining
Recent works on real-world WMT translation
datasets have verified that it is possible to trans-
fer the pretrained cross-lingual knowledge to
the downstream tasks with the pretrain-finetune
paradigm, hence improving performance and gen-
eralization ability (Ding et al., 2022b,a; Wang
et al., 2020a).

Here, we propose multi-directional pretrain-
ing by extending Bidirectional Pretraining (Ding
et al., 2021d, BiT) to utilize multiple transla-
tion corpora of different languages. Compared
with BiT, multi-directional pretraining could uti-
lize the cross-lingual knowledge among more lan-
guages, thus further exploiting the cross-language
knowledge and facilitating the downstream trans-
ferring. The main modifications could be summa-
rized twofold:

1) We increase language numbers to utilize
the cross-lingual knowledge of various languages.
The straight setting for multi-directional pre-
training is multi-lingual translation, which is di-
vided into Many-to-Many (M2M), One-to-Many
(O2M), and Many-to-One (M2O), according to
the language number that the model supports.
M2M has potential of capturing more cross-
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lingual knowledge from N ∗ N pairs compared
with N ∗ 1/1 ∗N pairs of M2O/O2M but usually
leads to worse performance because of the imbal-
anced language data distribution question (Freitag
and Firat, 2020). Inspired by (Tran et al., 2021),
we focus on pretraining two separate systems,
including English-to-Many and Many-to-English.
We also prepend the corresponding language to-
ken to source & target sentences.

2) We further expand model size to an ex-
tremely large setting. While enjoying the ben-
efit of cross-lingual knowledge transferring, the
difficulty of modeling extremely large-scale data
and language-specific feature pushes us to enlarge
Transformer-BIG to an extremely large size (4.7
Billion parameters, see Table 1). This ensures our
models are capable of better mastering multiple
translation corpus.

2.2.2 Specific-Directional Finetuning
The off-target problem, which widely exits in mul-
tilingual translation systems (Yang et al., 2021),
indicates model often generates the translation
with some non-target words. To reduce non-target
word translation ratio in multi-directional pre-
trained models, we consider a two-stage specific-
directional finetuning strategy. As shown in Fig-
ure 2, the English source/target model is tuned
with an English source/target bilingual corpus.

Specifically, we first replace the multilingual
embedding with a bilingual one. To fit model and
bilingual vocabulary, we freeze all parameters of
the Transformer backbone and only tune embed-
ding layers in this stage. Next, we employ full
model finetuning on large-scale translation corpus.
This allows the model to fully adapt to the specific
directional translation task, thus further achieving
gains. To balance both finetune stages, we set the
ratios of update step as 1 : 4 for embedding- and
full model-tuning, respectively.

For future work during specific directional fine-
tuning, it will be interesting to design tuning data
order (Liu et al., 2020a; Zhou et al., 2021) by
leveraging the learning difficulty of each training
sample estimated in the pretraining stage.

2.3 Data Augmentation Strategies

In Vega-MT, we consider augmenting both
the parallel and monolingual data comprehen-
sively. Specifically, we employ the cycle trans-
lation (Ding and Tao, 2019) for regenerating the
low-quality monolingual data, and adopt bidirec-

T2S Model

S2T Model

Low-quality 

mono. data x

S2T(T2S(x))

Semantic-

equivalent

Mono Parallel

T2S(x)

Figure 3: The Cycle Translation process, into which we
feed the low quality monolingual data x, and then cor-
respondingly obtain the improved data CT (x) (denoted
as S2T (T2S(x))). Note that models marked in red and
blue represent the target-to-source and source-to-target
model trained with MBig. The dotted double-headed
arrow between the input x and the final output CT (x)
means they share the semantic but differ in fluency.

# Cycle Translated Sentence “1”→“2”

1 She stuck to her principles even when
some suggest that in an environment of-
ten considered devoid of such thing there
are little point.

2 She insists on her own principles, even
if some people think that it doesn’t make
sense in an environment that is often con-
sidered to be absent.

Table 2: Example of difference between original sen-
tence (line 1) and cycle translated result (line 2). Pre-
trained BERT model using all available English cor-
pora show that the Loss decreased from 6.98 to 1.52.

tional self-training (Ding and Tao, 2021) to distill,
diversify both the monolingual and parallel data.

2.3.1 Cycle Translation for Mono. Data

There is a large amount of monolingual data in-
complete or grammatically incorrect. To fully
leverage such part of monolingual data for better
data augmentation, e.g. back translation (Sennrich
et al., 2016) or sequence -level knowledge distilla-
tion (Kim and Rush, 2016), we adopt Cycle Trans-
lation (Ding and Tao, 2019) (denoted as CT (·), as
Figure 3) to improve the monolingual data below
the quality-threshold (the latter 50% will be cycle
translated according to Ding and Tao (2019)’s op-
timal setting). We give an example in Table 2 to
clearly show how the cycle translation improves
the quality of the sentence.
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2.3.2 Bidirectional Self-Training for Both
Mono&Para Data

Currently, data-level methods have attracted the
attention of the community, including exploiting
the parallel and monolingual data. The most rep-
resentative approaches include:

• Back Translation (BT, Sennrich et al. 2016)
introduces the target-side monolingual data
by translating with an inverse translation
model, and combines the synthetic data with
parallel data;

• Knowledge Distillation (KD, Kim and Rush
2016) generates the synthetic data with
sequence-level knowledge distillation;

• Data Diversification (DD, Nguyen et al.
2020) diversifies the data by applying KD
and BT on parallel data.

Clearly, self-training is at the core of above ap-
proaches, that is, they generate the synthetic data
either from source to target or reversely, with ei-
ther monolingual or bilingual data.

To this end, we employ the bidirectional self-
training (Ding and Tao, 2021; Liao et al., 2020)
strategy for both parallel and monolingual data
(including source and target, respectively). Specif-
ically, baseline AT models with MBig setting
and NAT models with MBase setting are trained
with original (distilled for NAT) parallel data in
the first iteration, and based on these forward-
and backward-teachers, all available source & tar-
get language sentences can be used to generate
the corresponding synthetic target & source sen-
tences. The authentic and synthetic data (gen-
erated by AT and NAT models) are then con-
catenated to train the second round AT and NAT
models. We run the bidirectional self-training
by totally 2 rounds for each translation direc-
tion. And for each round, we train 3 forward-
and 3 backward- AT models, and 1 forward- and
backward- NAT models to perform self-training.
In this way, the amount of bidirectional synthetic
data will be 8x larger than the original parallel and
monolingual data.

2.4 Generalization Adaptation for
Downstream Translation

To adapt Vega-MT to the general domain transla-
tion task, we employ several strategies, including

Algorithm 1: Generalization Finetuning
with Iteratively Transductive Ensemble

Input: Single Model Mn,
General Seed D={D1, D2..Dk},
Ensemble N models EN .

Output: New Model M
′
n

1 t := 0
2 while not convergence do
3 Translate D1 with EN and get DEN

1

4 ..
5 Translate Dk with EN and get DEN

k

6 DEN = DEN
1 ∪ ..DEN

k

7 Train Mn on D ∪DEN and get M
′
n,

then Mn = M
′
n

8 t := t+ 1

9 end

SRC Siltalan edellinen kausi liigassa oli

:::::::
2006-07

HYP Siltala’s previous season in the
league was

:::::
2006

::
at

:::
07

+post Siltala’s previous season in the
league was

::::::::
2006-07

Table 3: Example of the effectiveness of post-
processing in handling inconsistent number translation.

ensembling, generalization finetuning, and post-
processing. Note that in our preliminary study, we
find that noisy channel reranking with the target-
to-source MT model and language model does not
work in our setting, thus we have not reranked the
results in the final submission.

2.4.1 Greedy Based Ensembling
Greedy based ensembling adopts an easy opera-
ble greedy-base strategy to search for a better sin-
gle model combinations on the development set,
which consistently shows better performance than
simply average in our preliminary study, there-
fore we technically follow the instruction of Deng
et al. (2018) to choose the optimal combination
of checkpoints to enhance the generalization and
boost performance of the final model. We refer to
this method as “Ensemble” in the following.

2.4.2 Generalization Finetuning
As the general domain evaluation is on multi-
domain directions, i.e. containing (up to) four dif-
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Languages # Sents # Ave. Len.

Parallel

ZH-EN 46,590,547 22.8/27.1
DE-EN 292,020,383 22.9/21.7
CS-EN 88,244,832 20.5/19.9
RU-EN 98,454,430 28.5/27.8
JA-EN 28,943,024 26.2/28.0

Monolingual

EN 1,384,791,758 21.3
ZH 1,346,538,572 25.8
DE 5,612,161,001 23.2
CS 444,049,843 19.7
RU 8,351,860,471 28.5
JA 5,534,872,418 27.9

Table 4: Data statistics after pre-processing.

ferent domains, we design generalization finetun-
ing strategy to transductively finetune (Wang et al.,
2020b) on each domain, and ensemble them into
one single model, to empower the general transla-
tion ability. The proposed generalization finetun-
ing is shown in Algorithm 1. The main difference
from Multi-Model & Multi-Iteration Transductive
Ensemble (Wang et al., 2021) is that the kth do-
main seed Dk is extracted from the test set using
heuristic artificial knowledge.

2.4.3 Post-Processing
In addition to general post-processing strategies
(e.g. de-BPE), we also employ a post-processing
algorithm (Wang et al., 2018) for inconsistent
number, date translation, for example, “2006-07”
might be translated to the wrong translation “2006
at 07”. Our post-processing algorithm will search
for the best matching number string from the
source sentence to replace these types of errors
(see Table 3). Besides, we also conduct punc-
tuation conversion, including convert quotation
marks to German double-quote style (Czech, Ger-
man), convert punctuation to language-specific
characters (Japanese, Chinese).

3 Data Preparation

We participated in translation of all high-
resource tracks and one medium-resource
track, including Chinese↔English (Zh↔En),
German↔English (De↔En), Czech↔English
(Cs↔En), Russian↔English (Ru↔En), and

Japanese↔English (Ja↔En).
In this section, we take the En↔Zh translation

as example and describe how to prepare the train-
ing data. The setting is the same for other language
pairs. We use all available parallel corpus for
En↔Zh §, including ParaCrawl v9, News Com-
mentary v16, Wiki Titles v3, UN Parallel Cor-
pus V1.0, CCMT Corpus, WikiMatrix and Back-
translated news. For monolingual data, we ran-
domly sample from “News Crawl” and “Common
Crawl”. The final corpus statistics are presented in
Table 4.

To improve the quality of parallel data, we
further propose to filter the low-quality samples.
First, we remove the sentence pair which is pre-
dicted as wrong language with Fasttext (Joulin
et al., 2017, 2016). Second, we replace uni-
code punctuation and also normalize punctuation
with mosesdecoder. We also remove duplicate
sentence pairs and filter out sentences with ille-
gal characters. For length, we remove sentences
longer than 250 words and with a source/target
length ratio exceeding 3.

4 Experiments

Settings We use the extremely large Trans-
former (MXL) for all tasks and Transformer-BIG
(MBIG) for bilingual baselines. For MBIG, we
empirically adopt large batch strategy (Edunov
et al., 2018) (i.e. 458K tokens/batch) to opti-
mize the performance. The learning rate warms
up to 1 × 10−7 for 10K steps, and then decays
for 70K steps with the cosine schedule. For reg-
ularization, we tune the dropout rate from [0.1,
0.2, 0.3] based on validation performance, and ap-
ply weight decay with 0.01 and label smoothing
with ϵ = 0.1. We use Adam optimizer (Kingma
and Ba, 2015) to train models. We evaluate the
performance on an ensemble of last 10 check-
points to avoid stochasticity. For the main model
MXL, we adopt 1M Tokens/Batch to optimize
the performance both in multilingual pretraining
and bilingual finetuning. We set 0.1 as the la-
bel smoothing ratio, 4000 as warm-up steps, and
1e-3 as the learning rate. We optimize Vega-MT
with Adam (Kingma and Ba, 2015). We use 100k
updates for multi-directional pretraining, 40k up-
dates for each specific-directional finetuning. For

§both parallel and monolingual corpus can be ob-
tained fromhttps://www.statmt.org/wmt22/
translation-task.html
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Zh-En En-Zh
Models W21 test W22 test ∆ W21 test W22 test ∆

Transformer-BIG w/ Para. 25.3 21.9 - 25.9 33.2 -
Multi-Directional PT 28.4 25.1 +3.2 27.1 35.7 +1.9

+Specific-Directional FT 29.5 26.7 +4.3 27.4 36.6 +3.6
+Bidirect. Self-Training 30.8 29.0 +6.3 29.7 40.7 +5.7
+Ensemble 31.1 29.8 +6.7 30.4 41.3 +6.4
+Generalization FT 30.3 33.5 +8.3 30.6 44.1 +9.0
+Post-Processing 30.5 33.5 +8.4 33.6 49.7 +13.3

Table 5: Ablation studies of each component on Zh↔En general translation task in terms of SacreBLEU.We
select Transformer-BIG only trained with official parallel data as the baseline.

Models Zh→En De→En Cs→En Ru→En Ja→En ∆

Baseline 21.9 23.0 42.5 30.2 19.0 -
Vega-MT 33.5 33.7 54.9 45.1 25.6 +11.2
Best Official 33.5 33.7 54.9 45.1 26.6

Models En→Zh En→De En→Cs En→Ru En→Ja ∆

Baseline 33.2 26.4 34.8 20.8 17.9 -
Vega-MT 49.7 37.8 41.4 32.7 41.5 +14.0
Best Official 49.7 37.8 41.4 32.7 42.5

Table 6: SacreBLEU-Scores of our submissions in WMT2022 general translation task. “Baseline” indicates
the performance of the baseline systems. And “Best Official” denotes the best results of constrained systems in
each direction.

evaluation, we select SacreBLEU (Post, 2018) as
the metric for all tasks. news-test2020 and
news-test2021 are selected for validation and
test respectively.

All parallel data will be used in the multi-
directional PT stage, and during specific-
directional FT, corresponding bilingual data
augmented by bidirectional self-training are
utilized. Each sentence are jointly tokenized
in to sub-word units with SentencePiece (Kudo
and Richardson, 2018), which is trained on
all concatenated multilingual parallel data for
Transformer-XL with merge operation 120K
at the pretraining stage, and during finetuning
stage, is trained on corresponding bilingual data
with merge operation 60K for English and 75K
for other languages. And for each baseline with
Transformer-BIG, the joint bilingual vocab size
is 80K. During pretraining, we select the sample
with temperature-based method (T=5) to preserve
the representation of relatively low-resource
language, e.g. Japanese. We grid-search the
beam size within the range of [3,4,5,..,8] on
validation set for each translation task. All models

are trained on 32 DGX-SuperPOD A100 GPUs
for about two weeks pre-training and five days
fine-tuning.

Main Results To illustrate the effectiveness of
each strategy in our Vega-MT, we report the abla-
tion results in Table 5 on Zh↔En tasks. Clearly,
directly generating the translations with the multi-
directional pretrained model could obtain aver-
age +3.2 and +1.9 BLEU improvements for Zh-
En and En-Zh, respectively, which is consistent
with the findings of Tran et al. (2021). We show
that tuning on downstream bilingual data could
further improve the translation by +1.4 BLEU
points, showing the necessity of bridging the
cross-lingual gap with in-domain learning dur-
ing leveraging multilingual pretrain (Zan et al.,
2022a). Bidirectional self-training actually con-
tains several strategies, e.g. back translation, dis-
tillation and data diversification, and we empiri-
cally show that such data augmentation strategy
nicely complement pretraining, which is also ver-
ified by Liu et al. (2021). Other strategies could
consistently enhance the translation performance
besides the generalization FT for the news domain
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Models Zh→En De→En Cs→En Ru→En Ja→En ∆

Baseline 16.5 3.5 40.1 8.5 21.5 -
Vega-MT 45.1 58.0 74.7 64.9 40.6 +38.6
Best Official 45.1 58.0 74.7 64.9 42.0

Models En→Zh En→De En→Cs En→Ru En→Ja ∆

Baseline 26.6 -40.6 66.9 -1.4 42.1 -
Vega-MT 61.7 63.2 95.3 69.6 65.1 +52.3
Best Official 61.7 63.2 96.0 69.6 65.1

Table 7: COMET-Scores of our submissions in WMT2022 general translation task. “Baseline” indicates the
performance of the baseline systems. And “Best Official” denotes the best results of constrained systems in each
direction.

test2021, where the Zh-En model decreases the
BLEU scores (-0.8 BLEU) because the general-
ization FT is designed and tuned for the general
domain test2022.

Table 6 and Table 7 show the final submissions
in terms of SacreBLEU and COMET scores, in-
cluding Zh, De, Cs, Ru and Ja to/from En, listing
the baseline and our final submissions. We also re-
port the best official scores among all constrained
systems “Best Official” as reference. As seen,
SacreBLEU and COMET results show identical
trends, where our Vega-MT outperforms base-
line Transformer-BIG by +11.2/ +38.6 and +14.0/
+52.3 BLEU/ COMET points, showing the effec-
tiveness and universality of our model. Interest-
ingly, we observe that the improvements upon En-
X are more significant than that of X-En, which
will be investigated in our future work. For more
system rankings, please refer Table 8 and Table 9
in Appendix for SacreBLEU and COMET results,
respectively.

5 Conclusion

This paper presents the JD Explore Academy
machine translation system Vega-MT for WMT
2022 shared tasks on general machine translation.
We investigate various frameworks, including au-
toregressive and non-autoregressive Transformer
with BASE, BIG and XL settings, respectively,
to build strong baseline models. Then we push
the limit of bidirectional training by scaling up
two main factors, i.e. language pairs and model
scales, to develop the powerful foundation Vega-
MT model. Also, the popular data augmentation
methods, e.g. cycle translation and bidirectional
self-training, are combined to improve their per-
formance. We carefully design the generalization

adaptation strategies to further improve the multi-
domain performance. Among all participated con-
strained systems, our Vega-MT won 7 champions,
2 runners-up and 1 third place w.r.t sacreBLEU.
And according to the COMET, we won 8 champi-
ons and 2 runners-up.
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pair system id is constrained metric score
En-Cs Lan-Bridge 551 FALSE bleu-B 45.6
En-Cs JDExploreAcademy 829 TRUE bleu-B 41.4
En-Cs CUNI-DocTransformer 800 TRUE bleu-B 39.8
En-Cs CUNI-Bergamot 734 TRUE bleu-B 38.6
En-Cs CUNI-Transformer 761 TRUE bleu-B 37.7
pair system id is constrained metric score

En-De JDExploreAcademy 843 TRUE bleu-A 37.8
En-De Lan-Bridge 549 FALSE bleu-A 36.1
En-De PROMT 694 FALSE bleu-A 36.1
En-De OpenNMT 207 FALSE bleu-A 35.7
pair system id is constrained metric score

En-Ja NT5 763 TRUE bleu-A 42.5
En-Ja DLUT 789 TRUE bleu-A 41.8
En-Ja LanguageX 676 FALSE bleu-A 41.7
En-Ja JDExploreAcademy 516 TRUE bleu-A 41.5
En-Ja Lan-Bridge 555 FALSE bleu-A 39.4
pair system id is constrained metric score

En-Ru JDExploreAcademy 509 TRUE bleu-A 32.7
En-Ru Lan-Bridge 556 FALSE bleu-A 32.6
En-Ru HuaweiTSC 680 TRUE bleu-A 30.8
En-Ru PROMT 804 FALSE bleu-A 30.6
En-Ru SRPOL 265 TRUE bleu-A 30.4

pair system id is constrained metric score
En-Zh LanguageX 716 FALSE bleu-A 54.3
En-Zh HuaweiTSC 557 FALSE bleu-A 49.7
En-Zh JDExploreAcademy 834 TRUE bleu-A 49.7
En-Zh AISP-SJTU 611 TRUE bleu-A 48.8
En-Zh Manifold 336 TRUE bleu-A 48.7

pair system id is constrained metric score
Cs-En JDExploreAcademy 505 TRUE bleu-B 54.9
Cs-En Lan-Bridge 585 FALSE bleu-B 54.5
Cs-En CUNI-DocTransformer 805 TRUE bleu-B 51.9
Cs-En CUNI-Transformer 772 TRUE bleu-B 51.6
Cs-En SHOPLINE-PL 819 TRUE bleu-B 46.8
pair system id is constrained metric score

De-En JDExploreAcademy 809 TRUE bleu-A 33.7
De-En Lan-Bridge 587 FALSE bleu-A 33.4
De-En PROMT 796 FALSE bleu-A 32.5
De-En LT22 605 TRUE bleu-A 26.0
pair system id is constrained metric score

Ja-En NT5 766 TRUE bleu-A 26.6
Ja-En JDExploreAcademy 512 TRUE bleu-A 25.6
Ja-En DLUT 693 TRUE bleu-A 24.8
Ja-En Lan-Bridge 588 FALSE bleu-A 22.8
Ja-En NAIST-NICT-TIT 583 TRUE bleu-A 22.7
pair system id is constrained metric score

Ru-En Lan-Bridge 589 FALSE bleu-A 45.2
Ru-En HuaweiTSC 836 TRUE bleu-A 45.1
Ru-En JDExploreAcademy 769 TRUE bleu-A 45.1
Ru-En SRPOL 666 TRUE bleu-A 43.6
Ru-En ALMAnaCH-Inria 710 TRUE bleu-A 30.3

pair system id is constrained metric score
Zh-En JDExploreAcademy 708 TRUE bleu-A 33.5
Zh-En LanguageX 219 FALSE bleu-A 31.9
Zh-En HuaweiTSC 477 FALSE bleu-A 29.8
Zh-En AISP-SJTU 648 TRUE bleu-A 29.7
Zh-En Lan-Bridge 386 FALSE bleu-A 28.1

Table 8: Ranking of our submissions in terms of SacreBLEU-Score in WMT2022 general translation task.
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pair system id is constrained metric score
En-Cs CUNI-Bergamot 734 TRUE COMET-B 0.960
En-Cs JDExploreAcademy 829 TRUE COMET-B 0.953
En-Cs Lan-Bridge 551 FALSE COMET-B 0.947
En-Cs CUNI-DocTransformer 800 TRUE COMET-B 0.917
En-Cs CUNI-Transformer 761 TRUE COMET-B 0.866
pair system id is constrained metric score

En-De JDExploreAcademy 843 TRUE COMET-A 0.632
En-De Lan-Bridge 549 FALSE COMET-A 0.588
En-De OpenNMT 207 FALSE COMET-A 0.572
En-De PROMT 694 FALSE COMET-A 0.558
pair system id is constrained metric score

En-Ja JDExploreAcademy 516 TRUE COMET-A 0.651
En-Ja NT5 763 TRUE COMET-A 0.641
En-Ja LanguageX 676 FALSE COMET-A 0.621
En-Ja DLUT 789 TRUE COMET-A 0.605
En-Ja Lan-Bridge 555 FALSE COMET-A 0.565
pair system id is constrained metric score

En-Ru JDExploreAcademy 509 TRUE COMET-A 0.696
En-Ru Lan-Bridge 556 FALSE COMET-A 0.673
En-Ru PROMT 804 FALSE COMET-A 0.603
En-Ru SRPOL 265 TRUE COMET-A 0.597
En-Ru HuaweiTSC 680 TRUE COMET-A 0.592

pair system id is constrained metric score
En-Zh LanguageX 716 FALSE COMET-A 0.638
En-Zh JDExploreAcademy 834 TRUE COMET-A 0.617
En-Zh Lan-Bridge 714 FALSE COMET-A 0.614
En-Zh Manifold 336 TRUE COMET-A 0.601
En-Zh HuaweiTSC 557 FALSE COMET-A 0.595

pair system id is constrained metric score
Cs-En JDExploreAcademy 505 TRUE COMET-B 0.747
Cs-En Lan-Bridge 585 FALSE COMET-B 0.718
Cs-En CUNI-DocTransformer 805 TRUE COMET-B 0.706
Cs-En CUNI-Transformer 772 TRUE COMET-B 0.692
Cs-En SHOPLINE-PL 819 TRUE COMET-B 0.611
pair system id is constrained metric score

De-En JDExploreAcademy 809 TRUE COMET-A 0.580
De-En Lan-Bridge 587 FALSE COMET-A 0.565
De-En PROMT 796 FALSE COMET-A 0.518
De-En LT22 605 TRUE COMET-A 0.256
pair system id is constrained metric score

Ja-En NT5 766 TRUE COMET-A 0.420
Ja-En JDExploreAcademy 512 TRUE COMET-A 0.406
Ja-En DLUT 693 TRUE COMET-A 0.372
Ja-En NAIST-NICT-TIT 583 TRUE COMET-A 0.334
Ja-En LanguageX 435 FALSE COMET-A 0.329
pair system id is constrained metric score

Ru-En JDExploreAcademy 769 TRUE COMET-A 0.649
Ru-En Lan-Bridge 589 FALSE COMET-A 0.631
Ru-En HuaweiTSC 836 TRUE COMET-A 0.609
Ru-En SRPOL 666 TRUE COMET-A 0.595
Ru-En ALMAnaCH-Inria 710 TRUE COMET-A 0.268

pair system id is constrained metric score
Zh-En JDExploreAcademy 708 TRUE COMET-A 0.451
Zh-En LanguageX 219 FALSE COMET-A 0.449
Zh-En Lan-Bridge 386 FALSE COMET-A 0.430
Zh-En HuaweiTSC 477 FALSE COMET-A 0.428
Zh-En AISP-SJTU 648 TRUE COMET-A 0.416

Table 9: Ranking of our submissions in terms of COMET-Score in WMT2022 general translation task.
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