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Abstract

We present CUNI-Bergamot submission for
WMT22 General translation task. We compete
in English → Czech direction. Our submission fur-
ther explores block backtranslation techniques. In
addition to the previous work, we measure perfor-
mance in terms of COMET score and named enti-
ties translation accuracy. We evaluate performance
of MBR decoding compared to traditional mixed
backtranslation training and we show possible syn-
ergy when using both of the techniques simultane-
ously. The results show that both approaches are
effective means of improving translation quality
and they yield even better results when combined.

1 Introduction

This work focuses on exploring of two methods
used in NMT in order to improve translation qual-
ity: backtranslation and Minimum Bayes Risk de-
coding using neural-based evaluation metric as a
utility function. The methods used and related
work are presented in the following section. In
next section we describe our experimental setting
and results.

2 Methods

We describe methods we used to build our system
in this section.

2.1 Block backtranslation
The translation quality of NMT depends heavily
on the amount of parallel training data. It has
been shown that the authentic bilingual data can
be partially supplemented by synthetically paral-
lel, machine translated monolingual text (Bojar and
Tamchyna, 2011; Sennrich et al., 2016; Xie et al.,
2018; Edunov et al., 2018). Often the synthetic
and authentic parallel data are mixed in the training
dataset, but previous research shows that simply

mixing the two types of text does not yield optimal
translation quality. We are using block backtrans-
lation (block-BT) in similar configuration to Popel
et al. (2020). This method creates blocks of par-
allel and synthetic data and presents them to the
neural network separately, switching between the
two types during the training. Since in last year’s
WMT, the submission using block-BT by Gebauer
et al. (2021) did not find any improvements, pre-
sumably due to improperly chosen block size, we
decided to verify effectiveness of this method once
again.

Averaging type Previous work on block-BT
shows the importance of averaging the checkpoints
to combine information from different blocks of
training data in order to obtain good performance.
We compare checkpoint averaging with another
method of combining older sets of model’s param-
eters with the current one – exponential smoothing.
After each update u, the current parameters Θu are
averaged (with smoothing factor α) with parame-
ters after the previous update Θu−1:

Θu = αΘu + (1− α)Θu−1

Previous work by Popel (2018) contains experi-
ments with exponential averaging, but only on the
level of already saved checkpoints, not online dur-
ing the training after each update as for our work.

Minimum Bayes Risk Decoding NMT models
predict conditional probability distribution over
translation hypotheses given a source sentence.
To select the most probable translation under the
model (mode of the model’s distribution), an ap-
proximation of MAP (maximum-a-posteriori) de-
coding is used, most commonly the beam search
(Graves, 2012). However, beam search and MAP
decoding in general has many shortcomings de-
scribed in recent work (Stahlberg and Byrne, 2019;
Meister et al., 2020) and other approaches have
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been proposed to generate a high-quality hypothe-
sis from the model.

One of them, MBR (Minimum Bayes Risk) de-
coding (Goel and Byrne, 2000; Kumar and Byrne,
2004), has been proposed as an alternative to MAP.
MBR does not produce a translation with the high-
est probability, rather a translation with the best
value of utility function. This utility function is
usually an automatic machine translation evalua-
tion metric. However, to optimize towards best
utility function value, it would necessary to know
the ideal selection of hypothesis. In case of MT,
that would mean a perfect, best possible translation,
which of course is not known during the translation
process. For this reason, an approximation of the
ideal translation is used, based on the model’s prob-
ability distribution (Bryan and Wilker, 2021). This
can be implemented as generating a list of hypothe-
ses (e.g. using sampling or beam search) and then
computing utility function of each hypothesis us-
ing all the other hypotheses as the ideal translation
approximation (i.e. as references). This approxi-
mation of MBR decoding can be seen as consensus
decoding – the hypothesis that is the most similar
to all the others is chosen.

Even though MBR is able to optimize towards
many metrics and increase the scores, these gains
did not translate into better human evaluation of
the final translations, when using traditional met-
rics based on surface similarities like BLEU. Re-
cent successes in development of novel metrics for
machine translation has renewed interest in this
method. (Amrhein and Sennrich, 2022a; Freitag
et al., 2021; Müller and Sennrich, 2021).

3 Experiments

In this section we present our experimental setup
and results.

3.1 Tools

We tokenize the text into subwords using Fac-
toredSegmenter1 and SentencePiece (Kudo and
Richardson, 2018). We use MarianNMT (Junczys-
Dowmunt et al., 2018) to train the models. BLEU
scores are computed using SacreBLEU (Post,
2018), for COMET scores (Rei et al., 2020) we
use the original implementation2.

1https://github.com/microsoft/
factored-segmenter

2https://github.com/Unbabel/COMET

3.2 Datasets

We train English-Czech NMT models for our exper-
iments. We train our models on CzEng 2.0 (Kocmi
et al., 2020). We use all 3 subsets of CzEng cor-
pus: the originally parallel part, which we call auth,
Czech monolingual data translated into English us-
ing MT (csmono) and English monolingual data
translated into Czech using MT (enmono). We use
newstest2020 (Barrault et al., 2020) as our dev
set and newstest2021 (Akhbardeh et al., 2021)
as our test set.

For experiments concerning translation of named
entities, we used a test set originally designed for
Czech NLG in restaurant industry domain3(Dušek
and Jurčíček, 2019). It contains sentences which in-
clude names of restaurants and addresses in Czech
and their translations in English. We will call this
test set the restaurant test set.

3.3 Models

We train Transformer-base (which we denote base)
and Transformer-big (big 6-6) models with stan-
dard parameters (Vaswani et al., 2017) as pre-
configured in MarianNMT. For the largest model
(big 12-6), we use Transformer-big with 12 encoder
layers and depth scaled initialization (Junczys-
Dowmunt, 2019; Zhang et al., 2019)4. We also
used learning rate of 1e−4 for the 12 layer model
instead of 3e−4, which was used for other models.
We trained all models for at least 1.4M updates.
After that, we computed validation BLEU scores
every 5k updates and we stopped if the score did
not improve for 30 consecutive validations. We
trained the models on heterogenous grid server,
which includes combinations of Quadro RTX 5000,
GeForce GTX 1080 Ti, RTX A4000 and GeForce
RTX 3090 cards. Typical training time on 4 108Ti
of the base models for 1.4M updates was 7 days.

3.4 Block-BT settings

For all our experiments, we create a checkpoint
each 5k updates and we vary only the size of the
blocks during which the training data have the
same type (20k, 40k, 80k and 160k updates). The
size is the same for all block types. We circle
through the block types in the following order:
auth→csmono→auth→enmono.

3https://github.com/UFAL-DSG/cs_
restaurant_dataset

4Training scripts available at: https://github.com/
cepin19/wmt22_general
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For checkpoint averaging, we average 8 check-
points. For exponential smoothing, we use default
Marian configuration (α = 0.001, but there are
some slight modifications based on number of up-
dates since start of the training and batch size).

We also look at the effects of using only back-
translation, or both back- and forward-translation.

3.5 Block-BT results

Training regime and averaging method First,
we compare different training regimes: mixed-BT,
where all the training datasets are concatenated and
shuffled together and block-BT with 40k updates
long blocks and two possible averaging types – ex-
ponential smoothing (exp) or checkpoint averaging
(avg8).

Figure 1 shows behavior of BLEU and COMET
scores on newstest2020 during the training for
these configurations. We opt to present the interval
between 480k and 1280k updates. We chose the
lower bound because the behavior is more stabi-
lized than in the beginning of the training and the
upper bound because all the models were trained
for at least 1400k updates and 1280k is the near-
est lower multiplicative for the largest block size.
40k block curve represents a model without any
averaging, 40k block avg8 is a model trained with-
out exponential smoothing, but each checkpoint
was averaged with 7 previous checkpoints for the
evaluation, 40k block exp model was trained with
continuous exponential smoothing. Finally, we also
experimented with combination of both - trained
with exponential smoothing and averaged after the
training. The combination does not improve over
the separate averaging techniques and we omitted
the curve from the figure to make it more readable.

In both metrics, block-BT with either form of
averaging outperforms mixed-BT training. With-
out any averaging, the advantage of block-BT over
mixed-BT is smaller. Type of averaging does not
seem to play a large role – checkpoint averag-
ing, exponential smoothing and their combination
yield very similar best scores. The best scores on
newstest2020 for each combination of param-
eters are presented in Table 1.

The curves for checkpoint averaging and expo-
nential smoothing behave similarly, with exponen-
tial averaging reacting faster to change of the block.
Additionally, the avg8 models have higher peaks in
enmono (red) blocks, especially for BLEU scores.
The shape of the curves could be tuned by chang-

ing frequency of saving checkpoints and number
of checkpoints to be averaged for checkpoint av-
eraging method, or by changing the α factor for
exponential smoothing.

There are differences in behaviour between
BLEU and COMET score curves. Most notably,
COMET is less sensitive to transition from auth
(green) to csmono (blue) blocks. We hypothesize
this is caused by lower sensitivity of COMET score
to wrong translation of named entities and rare
words (Amrhein and Sennrich, 2022a). We present
further experiments in this direction later.

Block size We asses influence of block size for
both of the two averaging methods. We compare
block sizes of 20k, 40k, 80k and 160k updates. Be-
haviour of COMET and BLEU scores is presented
in Figures 2 and 3 for exponential smoothing and
checkpoint averaging, respectively. The best scores
are again shown in Table 1.

We see that 20k block size yields noticeably
worse results when using checkpoint averaging that
the other sizes. The negative effect of the small
block size is less pronounced when using exponen-
tial smoothing, yet still present. Other block sizes
perform similarly in both metrics. This results is
expected, since for 8-checkpoint averaging with
5k updates checkpointing interval, it is necessary
to have a block size of at least 40k updates to fit
all the 8 checkpoints and thus explore all possible
ratios of auth and mono data.

Reverse direction For the reverse direction,
Czech to English, we performed less extensive
evaluation. We only compare mixed, block-BT
with 40k blocks and either exponential smooth-
ing or checkpoint averaging. Behavior of the met-
rics is shown in Figure 4 and final best scores
on newstest2020 are presented in Table 2.
Block-BT still outperforms mixed training, but by a
smaller margin than in the other direction.

Backtranslation direction We also evaluate in-
fluence of using only backtranslations as additional
synthetic data (monolingual data in target language
to automatically translated to source language) or
adding also forward translations (from source lan-
guage to target target) and we present the results
in Table 3. Interestingly the results show large
gains in both BLEU and COMET when using for-
ward translation. We hypothesize this is caused by
the good quality of the model used to perform the
forward translation. In such case, the translation
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Figure 1: Comparison of different training regimes for EN-CS translation on newstest20 in terms of BLEU (top)
and COMET (bottom). Background colors for block-BT regime show which part of training data was used for
given part of the training. Green means authentic parallel data, blue is CS->EN backtranslation and red is EN->CS
forward translation.

model assumes the role of the teacher in teacher-
>student training and might lead to a good quality
results.

Named entities test sets From anecdotal evi-
dence, we have seen that checkpoints with large
influence of backtranslated data perform worse on
named entities translation and COMET and BLEU
scores might not reflect this drop of accuracy. We
evaluate the models in terms of accuraccy of named
entitiy translation on the restaurant test set.
We selected Czech to English direction, since the
evaluation is easier given lower morphological rich-
ness of target language. Figure 5 shows compar-
ison of behavior of named entities translation ac-
curacy on the restaurant test set and COMET and
BLEU scores on newstest2020 for exponential
smoothing and checkpoint averaging. NE accu-
racy peaks towards the end of auth regions (green).
Both COMET and BLEU scores peak also during
the auth part of the training, but, especially for
COMET, the peak occurs in earlier stages after the

switch to auth. Overall, BLEU curve correlates
better with the NE accuracy curve. We hypothesize
this might be related to the fact that COMET was
found to be insensitive to named entities errors by
Amrhein and Sennrich (2022b).

However, it seems that the shift between the
accuracy and the other two metrics is not too large
in our settings and choosing the best performing
model in terms of either COMET or BLEU should
not hurt NE translation by a large amount. We
further investigate that in Table 4 – we chose the
checkpoint with best COMET (first row) and best
BLEU (second row) on the newstest2020 and
the checkpoint with best NE translation accuracy
on the restaurant test set (third row). We compute
all three metrics for these three models. The best
COMET checkpoint obtains accuracy of 60.7% on
the restaurant test set, the best BLEU checkpoint
reaches accuracy of 62.9%, while the best accuracy
reached by any checkpoint is 63.6%.
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Model size Block size Avg type update (k) BLEU update (k) COMET

base

mixed exp 1340 34.7 1760 0.7337
mixed exp+avg8 1365 34.7 965 0.7326

20k

- 1360 34.6 640 0.7324
exp 410 34.9 725 0.7406

avg8 660 34.8 1385 0.7349
exp+avg8 420 34.9 735 0.7399

40k

- 610 34.8 1415 0.7363
exp 1130 35.3 1290 0.7474

avg8 780 35.5 1420 0.7462
exp+avg8 1150 35.5 1075 0.7466

80k

- 1250 34.9 960 0.7393
exp 1210 35.2 1450 0.7447

avg8 985 35.5 665 0.7474
exp+avg8 585 35.3 1150 0.7455

160k

- 1130 34.9 1210 0.7387
exp 1125 35.3 1285 0.7453

avg8 1135 35.5 1305 0.7467
exp+avg8 1145 35.3 1310 0.7473

big 6-6 40k exp 445 35.4 1125 0.7546
exp+avg8 300 35.4 1310 0.7567

big 12-6 40k exp 130 36.1 1210 0.7848

Table 1: Best COMET and BLEU scores on EN-CS newstest2020 for all the combinations of models size, training
regime and block size. We report the best score and an number of updates after which was this score reached.
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Figure 2: Comparison of how the block size affects behavior of BLEU (top) and COMET (bottom) scores during
the training for block-BT with exponential smoothing of the parameters, without checkpoint averaging, on EN-CS
newstest2020.
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Figure 3: Comparison of how the block size affects behavior of BLEU (top) and COMET (bottom) scores during
the training or block-BT with checkpoint averaging and no exponential smoothing of the parameters, on EN-CS
newstest2020.

Model Block Avg type update (k) best BLEU update (k) best COMET

base

mixed exp 1405 25.2 1220 0.4149
exp+avg8 1430 25.1 1220 0.4114

40k

- 580 25.3 1040 0.4086
exp 755 25.3 570 0.4183

avg8 765 25.4 1060 0.4175
exp+avg8 1080 25.2 1230 0.4186

Table 2: COMET and BLEU scores for Czech to English
directions. The best checkpoints were chosen based on
their performance on newstest2020.

dir regime datasets D BLU T BLU D CMT T CMT

encs

mixed
all 34.7 20.9 0.7337 0.6206

auth+cs 31.5 19.5 0.6904 0.5779
auth+en 34.8 20.6 0.7258 0.6097

block
all 35.3 21.1 0.7474 0.6245

auth+cs 33.9 19.9 0.7232 0.5908
auth+en 35.4 20.7 0.7497 0.6147

csen
mixed all 25.2 - 0.4149 -

block all 25.3 - 0.4183 -
auth+en 24.3 - 0.3682 -

Table 3: Results on newstest2020 and newstest2021
for various dataset combinations. D/T mean dev (new-
stest2020) and test (newstest2021) sets respectivelly,
CMT stands for wmt20-comet-da scores.

Update (k) COMET BLEU Acc

570 0.4183 24.9 0.607
755 0.4038 25.3 0.629
590 0.4099 24.9 0.636

Table 4: Best checkpoints of Czech to English model
trained with 40k blocks and exponential smoothing in
terms of COMET (first row), BLEU (second row) on
newstest2020 and NE translation accuracy on restaurant
test set (third row).

3.6 MBR decoding

We used MBR decoding to rerank concatenation
of n-best lists produced by various checkpoints. In
total, we used 6-best lists from 12 checkpoints. We
divided the checkpoints based on which block of
the training data they were saved in and sorted them
by COMET score on newstest2020. Using dif-
ferent strategies we selected the best performing
checkpoints to provide the n-best lists. We present
the results in Table 5. The first row shows results
for mixed-BT regime, i.e. we concatenated n-best
lists produced by the 12 best performing mixed-BT
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Figure 4: Comparison of different training regimes for CS-EN translation on newstest2020 in terms of BLEU
(top) and COMET (bottom). Background colors for block-BT regime show which part of training data was used
for given part of the training. Green means authentic parallel data, blue is CS->EN forward translation and red is
EN->CS backtranslation.

i auth cs en AVG comet20 MBR comet20 comet21

1 - - - 0.7322 0.7888 0.0885
2 9 2 1 0.743 0.8082 0.0946
3 4 4 4 0.7408 0.8182 0.0972
4 12 0 0 0.7425 0.801 0.0929
5 0 12 0 0.7303 0.8104 0.0949
6 0 0 12 0.7372 0.796 0.0918
7 1 7 4 0.737 0.8232 0.0981
8 0 7 5 0.7361 0.8232 0.098
9 2 7 3 0.7377 0.8231 0.0981

Table 5: Results of MBR decoding on
newstest2020 for different selection of the
hypotheses n-best lists produced by checkpoints from
different training blocks. In total, 12 n-best lists
produced by transformer-base models are concatenated
and the first three columns show how many n-best lists
are used from each block (the checkpoints for each
block are sorted by COMET (wmt20-da model), so
these are produced by the best performing checkpoints).
The AVG COMET20 shows the average wmt20-da
COMET scores for the first hypotheses of each n-best
list that was used, MBR COMET20 shows wmt20-da
score of the final sentences after MBR decoding,
COMET21 shows results of the same sentences from
wmt21-da model.

checkpoints. In the second row, the block-BT train-
ing checkpoints were used to create n-best lists,
selected only based on their COMET scores, with-
out any regard on the block type they were saved in.
In third row, we combine n-best lists from 4 best
performing checkpoints from each type of block.
In rows 4-6, we use best performing checkpoints
from each type of block separately. In the final
row, we show the optimal selection which yielded
the highest score. The results suggest that larger
diversity in terms of block type of the checkpoints
improves MBR results: the combination of n-best
lists produced by checkpoints from diverse block
types provides a better pool of hypotheses for MBR,
even though the average COMET score of these
checkpoints is lower than for the less diverse selec-
tion. This can be observed in rows 2 and 3.

3.7 Submission

Our primary submission is based on the big 12-6
model and MBR decoding. We explored all the
possible combinations of 18 checkpoints from dif-
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Figure 5: Behaviour of BLEU (top), COMET (bottom) on newstest2020 and NE translation accuracy on
restaurant test set for Czech to English translation with block-BT using exponential smoothing.

auth cs en AVG comet20 MBR comet20 comet21

9 2 8 0.7802 0.8566 0.1114

Table 6: Our final submission for the EN-CS general
translation task, based on outputs of the transformer-big
12-6 model. Meaning of the columns is identical to
Table 5.

ferent blocks as described in the previous section.
The results of the best combination are shown in
Table 6. We present the results of the official eval-
uation in our task in Table 7. In total, there were
5 submitted systems (4 constrained) and 5 online
services. Our submission ranked first in COMET
score among the constrained systems and third in
ChrF score.
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Table 7: Results of automatic metrics on wmt22 general
task test set. Constrained submissions are marked by an
asterisk, the best scores among constrained submissions
are bold. COMET-B and COMET-C are COMET scores
for the two different references, ChrF is computed using
both references together.
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