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Abstract

The cornerstone of multilingual neural transla-
tion is shared representations across languages.
Given the theoretically infinite representation
power of neural networks, semantically identi-
cal sentences are likely represented differently.
While representing sentences in the continuous
latent space ensures expressiveness, it intro-
duces the risk of capturing of irrelevant features
which hinders the learning of a common rep-
resentation. In this work, we discretize the en-
coder output latent space of multilingual mod-
els by assigning encoder states to entries in a
codebook, which in effect represents source
sentences in a new artificial language. This
discretization process not only offers a new
way to interpret the otherwise black-box model
representations, but, more importantly, gives
potential for increasing robustness in unseen
testing conditions. We validate our approach
on large-scale experiments with realistic data
volumes and domains. When tested in zero-
shot conditions, our approach is competitive
with two strong alternatives from the literature.
We also use the learned artificial language to an-
alyze model behavior, and discover that using
a similar bridge language increases knowledge-
sharing among the remaining languages.

1 Introduction

A promising potential of multilingual (Dong et al.,
2015; Firat et al., 2016; Ha et al., 2016; Johnson
et al., 2017) neural machine translation (NMT) is
knowledge-sharing between languages. To enable
knowledge-sharing, a prerequisite is the ability to
capture common features of languages, especially
between related ones. Constructed languages such
as Interlingua and Esperanto are excellent exam-
ples of human-designed structures based on the
commonalities of a wide range of related languages.
For data-driven models, however, it is difficult to
leverage such resources due to data scarcity: There
is little parallel data to these constructed languages,
and creating new translation heavily depends on

source sentence | learning a new language
(English) | | oLl
discrete codes 3 609 57 1042
source sentence | belajar bahasa baru
(Indonesian) 1 1 1
discrete codes 3 57 258

Table 1: We aim to learn a sequence of discrete codes to
represent source sentences in multilingual NMT models.
Our goal is to 1) improve inference-time robustness, 2)
have more interpretable intermediate representations.

expert curation. Instead of relying on manually-
created data, we aim to learn an artificial language
in a more unsupervised fashion in parallel with
training the NMT model. Specifically, our goal
is to learn a sequence of tokens to represent the
source sentences, which then serves as context for
the NMT decoder. Table 1 illustrates this idea.

A potential advantage of representing inputs in
discrete tokens is robustness, a property especially
relevant when NMT systems must cope with un-
expected testing conditions. By discretization, we
restrict the continuous latent space to a finite size,
providing the possibility for model intermediate
representations to fall back to a position seen in
training. For instance, in zero-shot translation,
where the model translates directions never seen in
training, the inference-time behavior is often unsta-
ble (Gu et al., 2019; Al-Shedivat and Parikh, 2019;
Rios et al., 2020; Raganato et al., 2021). In practice,
pivoting through an intermediate language typically
gives a strong performance upper bound difficult to
surpass by direct zero-shot translation (Al-Shedivat
and Parikh, 2019; Arivazhagan et al., 2019a; Zhu
et al., 2020; Yang et al., 2021b). Mapping the
source sentences to discrete codes could act as a
pseudo-pivoting step, which we hope to make the
model more robust under zero-shot conditions.

The discrete codes also provide a new way to
interpret model representations. While there are a
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wealth of methods to analyze knowledge-sharing
in multilingual NMT (Aji et al., 2020; Mueller
et al., 2020; Chiang et al., 2022), they mostly ei-
ther measure translation performance as a proxy, or
involve sophisticated post-processing after model
training, e.g. correlation scores between model hid-
den states (Kudugunta et al., 2019; Chiang et al.,
2022), training classifiers to probe linguistic fea-
tures (Liu et al., 2021a), or pruning model submod-
ules (Kim et al., 2021). In contrast, when the model
hidden states are directly associated with discrete
tokens, they are directly more interpretable. This
characteristic is especially relevant in unseen test-
ing conditions, where it is important to pinpoint the
underlying cause of model behavior.

Despite the advantages, discretizing the latent
space of NMT models makes them inherently less
expressive than their fully continuous counterparts.
Maintaining translation performance relative to the
continuous models is therefore a challenge. To
strike a balance between expressiveness and dis-
cretization, we propose a soft discretization ap-
proach: In training, we assign each encoder hidden
state to an entry in a fixed-size codebook. This step
in effect clusters encoder hidden states to one of
the many cluster centers in the latent space. The
codebook where the cluster centers come from is
then trained along with the translation model. To
ensure that the decoder receives sufficient context
information, we make it access both the discretized
or continuous context, as illustrated in Figure 1. In
our experiments on data from the Large-Scale Mul-
tilingual Translation Shared Task (Wenzek et al.,
2021) from WMT21 (Akhbardeh et al., 2021), our
approach is able to learn meaningful discrete codes
and achieve translation performance competitive
with models with continuous latent spaces. Our
main contributions are:

* We propose a framework to learn discrete to-
kens as intermediate representations of multi-
lingual NMT models (§3).

* On large-scale multilingual translation ex-
periments, our approach is competitive with
strong alternatives while offering more inter-
pretable intermediate representations (§5.1).

* We use the learned discrete codes to study
the role of bridging languages. Using two
novel analyses, namely code overlap and code
translation, we discover that using a similar
bridge language facilitates knowledge-sharing
in all languages covered by the model (§5.2).

Decoder sees discretized/continous context based on p

Discretized

context: Ul O Ul

: €1€2 ... BK
‘Continuous

context: i 02 he EH DS

encoder Nearest-neighbor lookup
Input

tokens:

Figure 1: An illustration of our approach, which intro-
duces a codebook for discretizing the encoder output la-
tent space. During training, the decoder sees discretized
and continuous context based on probability p. For in-
ference, we use the continuous context, which have been
well-clustered into a set of cluster centers after training.

2 Related Work

Multilingual Machine Translation Multilingual
translation models are able to multitask over many
language pairs. For this large-scale multi-task
learning problem, training data plays a critical role.
Low-resource directions often need upsampling to
perform well (Arivazhagan et al., 2019b; Tang et al.,
2021), which, meanwhile, brings capacity bottle-
necks (Aharoni et al., 2019) to high-resource lan-
guages. This capacity bottleneck can be eliminated
by dedicated language-specific capacity (Bapna
and Firat, 2019; Philip et al., 2020; Shazeer et al.,
2017; Zhang et al., 2021). When scaling up trans-
lation coverage (Aharoni et al., 2019; Zhang et al.,
2020; Fan et al., 2021), zero-shot directions that
have not seen any parallel training data is more
likely to get encountered. While many dedicated
models or objectives have been proposed to im-
prove the zero-shot performance (Al-Shedivat and
Parikh, 2019; Arivazhagan et al., 2019a; Pham
et al., 2019; Zhu et al., 2020; Son and Lyu, 2020;
Liu et al., 2021a; Yang et al., 2021b; Raganato
et al., 2021), there is in general a tradeoff between
supervised and zero-shot performance.

Robustness in Zero-Shot Conditions Zero-shot
generalization is a widely-discussed direction in
machine learning research (Socher et al., 2013;
Norouzi et al., 2014; Romera-Paredes and Torr,
2015; Xian et al., 2017). In the context of NMT,
early multilingual models already possess some
capability of zero-shot translation of directions un-
seen in training (Ha et al., 2016; Johnson et al.,
2017). However, zero-shot performance has been
shown highly sensitive to, among other factors,
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training data diversity (Rios et al., 2020), language
token strategies (Wu et al., 2021; ElNokrashy et al.,
2022), and dropout configurations (Arivazhagan
et al., 2019a; Liu et al., 2021b). A main cause
of the degraded quality is that the zero-shot infer-
ence generates off-target translation (Zhang et al.,
2020) into a language other than the desired one.
In recent shared tasks (Anastasopoulos et al., 2021;
Libovicky and Fraser, 2021a), generating synthetic
data by back-translation (Sennrich et al., 2016) to
eliminate zero-shot conditions has been a dominant
approach for improving upon pure unsupervised
settings (Pham et al., 2021; Zhang and Sennrich,
2021; Liu and Niehues, 2021; Knowles and Larkin,
2021; Libovicky and Fraser, 2021b). A main mo-
tivating factor for converting zero-shot conditions
to semi-supervised ones is that the latter provides
more robust and consistent inference-time behav-
ior. In this light, to fully realize the potential of
knowledge-sharing in multilingual NMT, improv-
ing zero-shot robustness is an essential task.

Discrete Representations Vector Quantized
Variational Autoencoder (VQ-VAE; van den Oord
et al. 2017) learns discrete tokens for continuous
inputs such as images and audio, and showed its
effectiveness in creating discrete representations
for speech representations on practical tasks (Tjan-
dra et al., 2020; Baevski et al., 2020). Kaiser et al.
(2018) proposed an improvement to VQ-VAE by
slicing, i.e. decomposing to quantization input and
output into several subspaces. The sliced variant
was used in auto-encoding for learning shorter se-
quences, which allows to accelerate the target gen-
eration in auto-regressive decoders. The most re-
lated work to ours is probably that of Escolano
et al. (2021), who used sliced VQ-VAE (Kaiser
et al., 2018) on translation tasks. The main dif-
ference is that our focus is fully parameter shared
multilingual systems while Escolano et al. (2021)
focused on auto-encoding and bilingual systems
using language-specific encoders and decoders.
Therefore, in Escolano et al. (2021) zero-shot trans-
lation only occurs after a subsequent training step
on dedicated encoder for the new language. More-
over, our approach extends sliced VQ-VAE (Kaiser
et al., 2018) by soft codes that utilizes both contin-
uous and quantized encoder hidden states.

3 Learning Discrete Codes

As motivated in §1, we aim to learn to represent
sources sentences with a sequence of discrete codes

/ Discrete codes for xj:

3 853 279 106
Discretized entry 3
context:
-----------------
hi' = a(enc(xj))
fffffffffffffffff
entry 106 ;
Continuous P
context: -
____________ N
hj ‘ \
,,,,,,, i D/4
—
K entries
Codebook (size: K x D)
| Quantization module
nput

tokens: E] E] @ E] E] '-»..,..,n»(_example with 4 S|ICES)

Figure 2: Illustration of the generation of the discrete
codes based on a sliced (Kaiser et al., 2018) codebook.

out of a codebook. To this end, alongisde the trans-
lation objective, we also train our model to par-
tition the continuous latent space of the encoder
output into discrete subspaces. Each of the discrete
subspaces is represented by one of the k entries
(cluster centers) from a trainable codebook, and the
encoder hidden states are assigned to these entries.
To learn a meaningful discretization, the learned
cluster centers must fulfill some requirements: 1)
avoid trivial solutions where all points are assigned
to one or a few codebook entries, 2) carry sufficient
context information for the decoder for the trans-
lation task, despite being less expressive than the
encoder output prior to the discretization step.

3.1 Discretizing Encoder Latent Space

Compared to a standard Transformer (Vaswani
et al., 2017), our model includes a quantization
module between the encoder and decoder. We de-
note the quantization operation as ¢(-). Before be-
ing passed to the decoder, the encoder hidden states
enc(X) for input sequence X first goes through the
quantization module, which runs a nearest neighbor
lookup in an embedding table, i.e. the codebook.
Following the notations from van den Oord et al.
(2017), the codebook e € RX*P has K entries,
each with dimensionality D. In our case, D is
the same as the embedding dimension of the en-
coder, resulting in g(enc(X)) with the same shape
as enc(X).
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For an input token Xj, its quantized represen-
tation is one of the K entries from the codebook
ere[1,K]» Where k is determined by a nearest neigh-
bor search in the embedding space, using the en-
coder output enc(X;) as query:

k = arg min |lenc(X;) — e;]|2, (1)
Sl

where || - ||2 indicates the Euclidean distance.

The quantization step above is vulnerable to in-
dex collapse (Kaiser et al., 2018), where only few
entries from the embedding table are actively used.
On auto-encoding tasks, Kaiser et al. (2018) pro-
posed a countermeasure by breaking down the hid-
den dimension into multiple slices and quantizing
each of them. Specifically, for input token X, its
encoder hidden state enc(X;) is split into S slices:

enc(X;)1 @enc(X;)2--- @denc(X;)s, (2)

where each slice enc(X;);¢(g) is of D/S dimen-
sions. A nearest neighbor search is conducted for
each slice on the corresponding dimensions in the
embedding table. The results are then concatenated
and form the quantized representation:

q(enc(X;)1) @ g(enc(X;)2) - - - @ g(enc(X;)s),
3)
and passed to the decoder as context. Figure 2
illustrates this process.

The slicing mechanism resembles multi-head
attention (Vaswani et al., 2017) in that both split
the embedding dimension into subspaces for richer
representation. Therefore, we will use the same
number of slices as the number of attention heads.

3.2 Soft Discrete Codes

Training Compared to encoder outputs in a con-
tinuous space, the quantization module is an infor-
mation bottleneck. In practice, limiting the amount
of context information passed to the decoder will
likely degrade translation quality. To strike a bal-
ance between discretization and performance, we
make the discrete codes soft, in that the decoder
can still access to the richer information prior to
quantization by a probability. Specifically, during
training, the encoder gives the quantized context
g(enc(X)) by probability p, and the raw context
enc(X) by probability 1 — p. This procedure is
illustrated in Figure 1.

In Equation 1, the lookup of index k is a non-
differentiable operation. When the encoder passes

on the quantized context, in order to train the pa-
rameters below the quantization module, we use
the straight-through estimator (Bengio et al., 2013)
to copy gradients onto the pre-quantization encoder
outputs. For the copied gradients to be useful
for training, the difference between enc(X;) and
q(enc(X;)) should be limited. To achieve this, we
use the codebook loss and commitment loss from
VQ-VAE (van den Oord et al., 2017):

Leodebook = [|sglenc(X)] — g(enc(X))[l2  (4)

and

Ecommitment = ||CIlC(X) - Sg[Q(enC(X))] H27 (5)

where sg[-] denotes the stop gradient operation. In-
tuitively, Equation 4 pushes the codebook entries
closer to the points assigned to them, while Equa-
tion 5 limits the growth of the encoder hidden states
by clipping them to the codebook entries. Each of
the terms has weights codebook aNd Qcommitment tO
control their importance relative to the main trans-
lation objective.

Inference After training with this mechanism,
one can expect that the encoder hidden states are
well-clustered around a set of codebook entries.
At test time, we use the continuous context enc(X )
which still carries more information than the cluster
centers represented by the codebook entries. We
will verify this property in later experiments (§6).

4 Experimental Setup

To experiment on realistic data volumes, we use the
parallel data' from the Large-Scale Multilingual
Machine Translation Shared Task (Wenzek et al.,
2021) from WMT 2021 (Akhbardeh et al., 2021).
We focus on small-task-2 on Southeast Asian lan-
guages. To study model robustness in zero-shot
conditions and the role of language relatedness, we
select parallel data between the two high-resource
languages: Indonesian (id) and English (en) and
three other languages in the Austronesian family:
Javanese (jv), Malay (ms), and Filipino/Tagalog
(t1). This leads to two data conditions:

* Indonesian-bridge (ID-BRIDGE)
* English-bridge (EN-BRIDGE)

As pretrained initialization has been shown ben-
eficial in many submissions last year (Yang et al.,

"https://data.statmt.org/wmt21/
multilingual-task/small_task2_filt_v2.tar.gz
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jv ms tl id en
jv 340K 662K 644K 2,556K
ms 2M 1,L174K  4,060K 12,023K
tl 3M 16M 2,356K  12,348K
en ISM  230M 158M
id 5M 65M 30M

Table 2: Number of sentence pairs (above diagonal)
and target tokens (below diagonal) from bitext for each
languages pair after preprocessing. Data marked with
light gray are used in the main experiments.

2021a; Liao et al., 2021; Xie et al., 2021), we initial-
ize the models with the pretrained M2M-124 model
provided in the shared task (Wenzek et al., 2021). It
is worth noting that M2M-124 has seen parallel data
for our zero-shot directions, hence zero-shot only
describes the condition in our finetuning step. This
setup is motivated by the observation that exist-
ing pretrained models are often trained on massive
amounts of data, which are not always feasible to
access or store. We therefore treat the pretrained
M2M-124 as a given resource, without relying on
all its training parallel data. We use this setup to
especially study if the models can retain the pre-
trained knowledge on directions that are zero-shot
in finetuning.

4.1 Data

The training parallel data (Wenzek et al., 2021) are
compiled from the OPUS platform (Tiedemann,
2012). The specific datasets are listed in Ap-
pendix B. As parts of the training data are crawled
and therefore rather noisy, we follow the filter-
ing steps opened sourced by Fan et al. (2021), in-
cluding length filtering, bitext de-duplication, and
histogram filtering. An overview of the training
data after filtering is in Table 2. Following the
evaluation protocol of the shared task (Wenzek
et al., 2021), we report spBLEU on the FLoRes-
101 (Goyal et al., 2022) devtest set. We additionally
report chrF++ (Popovié, 2017) as another metric.

4.2 Baselines

Besides comparing to directly training on our base-
line model, we also compare to two existing ap-
proaches that encourage language-independent rep-
resentations, both of which have been shown effec-
tive in zero-shot translation:

Language-Independent Objective (Pham et al.,
2019; Arivazhagan et al., 2019a) applies an ad-
ditional loss function that enforces the represen-
tations for the source and target sentences to be

similar. The loss function minimizes the difference
between encoded source and target sentences after
pooling. Details about the implementation are in
Appendix C.1.

Adversarial Language Classifier (Arivazhagan
et al., 2019a) aims to remove source language sig-
nals from the encoder hidden states, and thereby
create more language-independent representations.
A language classifier is trained on top of the en-
coder, and its classification performance is used
adversarially on the encoder through a gradient re-
versal layer (Ganin et al., 2016). Details about the
implementation are in Appendix C.2.

4.3 Training and Inference Details

As motivated in §4, we finetune from the small vari-
ant of M2M-124 with 175M parameters. This model
has a vocabulary size of 256K, 6 layers in both
the encoder and decoder, 16 attention heads, em-
bedding dimension of 512 and inner dimension of
2048. As the training data for different languages
are very unbalanced, we use temperature-based
sampling (Arivazhagan et al., 2019b) with coeffi-
cient 5.0, which heavily upsamples low-resource
directions and is recommended for unbalanced data
conditions (Arivazhagan et al., 2019b; Tang et al.,
2021). Additional details are in Appendix A.

For our codebook approach, we use 10K code-
book entries. Initial trials with a size of 1K gave
worse performance, while 40K heavily reduced
training speed. We choose 16 slices® for the code-
book, the same value as the number of attention
heads. We keep these two values identical as both
slicing and multi-head attention breaks the embed-
ding dimension into multiple subspaces of lower
dimensionality. The scale on the codebook loss
and commitment 10ss (Qcodebook aNd Qcommitment)
are 1.0 and 1.001. We found the model sensitive to
increasing commitment, Where higher values leads
to index collapse’. After exponentially decreasing
it to approach 1.0, we settled at 1.001. For the prob-
ability of seeing the continuous encoder context,
with a search among {0.1, 0.5, 0.7 0.9}, we found
0.9 and 0.5 the best parameters for ID-BRIDGE and
EN-BRIDGE respectively.

We implement our approach and the two base-
lines (§4.2) with FAIRSEQ (Ott et al., 2019)*.

*Initial experiments on smaller datasets showed weaker
translation performance with 2 and 4 slices.

3 A potential reason is the encoder parameters are updated
too aggressively by the commitment loss in these cases.

“Code available at: https://github.com/dannigt/
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ID Model Avg. spBLEU(1) (left) and chrF++(1) (right)
{jv, ms, 1} =X X— {jv, ms, tl} Y&Z Avg. (all dir.)
ID-BRIDGE (X=id)
(1) random initialization 27.5 527 242 494 15.8 415 20.8 46.3
(2) M2M-124 (Fan et al., 2021; Goyal et al., 2022) 20.0 45.7 14.7 38.9 99 343 13.6 383
(3) — parallel data (no data for Y<+Z) 27.1 525 242 49.6 17.7 433 21.7 472
(3.1) + language-independent objective 27.1 524 242 49.6 184 438 220 474
(3.2) + adversarial language classifier 275 529 24.1 49.6 18.4 442 221 477
(3.3) + codebook (ours) 272 524 23.6 49.2 18.3 44.0 219 474
EN-BRIDGE (X=en)
(4) random initialization 27.0 51.1 27.8 51.6 6.8 245 17.1 379
(5) M2M-124 (Fan et al., 2021; Goyal et al., 2022) 19.6 43.6 14.0 37.5 99 343 13.3 374
(6) — parallel data (no data for Y<>Z) 28.1 51.8 27.6 51.8 51 203 165 36.1
(6.1) + language-independent objective 279 51.7 272 514 17.3 42.8 224 472
(6.2) + adversarial language classifier 27.6 515 27.1 51.5 172 428 223 472
(6.3) + codebook (ours) 26.8 50.6 263 509 152 393 209 45.0

Table 3: Translation quality in spBLEU(?) and chrF++(1). “—” indicates finetuning on the parallel data (ID-
BRIDGE or EN-BRIDGE; §4). Pivoting through the bridge language for Y <+ Z directions scores 19.7, 17.5 spBLEU
and 44.9, 42.8 chrF++ for ID-BRIDGE and EN-BRIDGE respectively using the systems in rows (1) and (4).

5 Main Results

We first discuss the translation performance of
our multilingual systems (§5.1), and then use the
learned discrete codes to investigate cross-lingual
knowledge-sharing of the trained models (§5.2).

5.1 Translation Performance

Baseline Conditions To set the upcoming results
in context, we first present the performance of train-
ing without additional improvements in rows (1)-
(3) and (4)-(6) of Table 3. Rows (1) and (4) show
the performance of training with random initial-
ization. This corresponds to a condition where
we have parallel data but no pretrained resources.
On the other side of the spectrum, in row (2) and
(5), we report the results of directly running in-
ference on the pretrained M2M-124 model. This
corresponds to another extreme where we have ac-
cess to pretrained models but cannot additionally
train on parallel data. In rows (3) and (6), we com-
bine the best of two worlds: initializing with pre-
trained model and finetuning on parallel data. For
supervised directions, pretraining mainly improves
—English directions: In the EN-BRIDGE condition,
initializing with M2M-124 gains 1.1 spBLEU over
random initialization, from 27.0 to 28.1 spBLEU.
For other supervised directions, however, we do
not observe gains from pretraining. This could
be related to the pretrained model being particu-
larly strong at decoding English. For zero-shot
directions in our setup (these directions are seen

fairseq/tree/master/examples/quant

in training by the pretrained model), as they are
comparatively low-resource among all the direc-
tions covered in M2M-124, out-of-box translation
quality on these directions is relatively low, with an
average of 9.9 spBLEU. However, when finetuning,
we see a striking difference between ID-BRIDGE
and EN-BRIDGE: there is a large gain from 9.9 to
17.7 spBLEU with the former, but a degradation
from 9.9 to 5.1 spBLEU for the latter. We study
this phenomenon next.

Impact of Bridge Languages For EN-BRIDGE,
the finetuning step causes catastrophic forgetting
of the zero-shot directions (—4.8 spBLEU). On the
other hand, for the ID-BRIDGE condition, pure fine-
tuning leads to substantial improvements in both
supervised and zero-shot directions. The gain from
9.91to0 17.7 spBLEU in the Y <+ Z directions is par-
ticularly noteworthy since the model has not seen
parallel data for these directions in finetuning. This
indicates that the growth in supervised directions
brings zero-shot directions forward too. Moreover,
on these directions, pretraining also gives large gain
of 1.9 spBLEU over random initialization. Over-
all, the observations suggest that incorporating a
similar language as bridge is beneficial to re-using
pretrained knowledge. Furthermore, given that the
amount of parallel data in the EN-BRIDGE condi-
tion is nearly 4 times of that in the ID-BRIDGE
condition, using a similar bridge language also ap-
pears to be more data-efficient. This likely related
to all translation directions being similar, therefore
easing the multilingual learning task.
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Impact of Using Codebooks Compared to pure
finetuning in rows (3) and (6), by incorporating the
codebook we improve zero-shot translation by 0.6
and 10.1 spBLEU for ID-BRIDGE andEN-BRIDGE
respectively. Compared to the two existing ap-
proaches, namely language-independent objective
and adversarial language classifier in rows (x.1)
and (x.2), our approach performs on par with them
for ID-BRIDGE, achieving 18.3 spBLEU for Y <+ 2
directions and 21.9 spBLEU over all directions. In
the more challenging EN-BRIDGE condition, we
fall behind the two other approaches by around 2.0
spBLEU on zero-shot directions. Using a language
identifier’ (Costa-jussa et al., 2022), we found that
the culprit here is still off-target translation, where
some test sentences were translated to an incorrect
language. While our codebook approach reduces
the proportion of off-target sentences from 87.4%
to 13.1% compared to the pure finetuning base-
line in row (6), the figure is still higher than the
4.7% achieved by the two alternative models in
rows (6.1) and (6.2). Despite this gap, an advan-
tage of our approach is easier analyses of learned
representations, which we will now leverage to in-
vestigate why the two data conditions come with
very distinct zero-shot behavior.

5.2 Using Discrete Codes to Interpret Learned
Representations

Since our codebook approach allows easier inter-
pretation of model hidden representations, we take
advantage of this characteristic to answer the fol-
lowing question: why is the ID-BRIDGE data con-
dition more performant despite using less data?

Formalization To this end, we first extract the
discrete codes for all source languages on the test
set®. Given a total of S slices, a sentence with ¢
tokens X, is represented as S sets of discrete to-
kens 77, for slice s, where s€[S]. Between two
sets of semantically identical sentences (e.g. mul-
tiway test sets in two different languages), we can
compare the discrete codes by examining: 1) their
overlap and 2) the difficulty of transforming one
set to another. The results quantify the similarity
between the two sets of codes, and hence the model
representations for the two source languages.

Shttps://github.com/facebookresearch/fairseq/
tree/nllb#lid-model

®The FLoRes-101 test set is multiway. Therefore the se-
mantic meanings of the sentences are the same.
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Figure 3: KL divergence(]) of code distribution for the
ID-BRIDGE (left) and EN-BRIDGE (right) setup. Lower
values indicate a higher degree of sharing. ID-BRIDGE
results in more sharing not only between itself and {ms,
jv, t1} but also among {ms, jv, tl}.

Discrete Code Distribution For each slice, we
normalize the code occurrences into a probability
distribution. The distribution P is defined by:

frequency(c;)

¢;e[c) frequency(c;)’

ple) = 5 (6)

where ¢; is a discrete code from the set [C]. For a
pair of languages ¢ and j, we then compute the KL,
divergence between their code distributions F; and
P;:

Dy’ = (PI|By). )

Figure 3 depicts the KL divergence of code dis-
tribution averaged over all slices. A comparison
of the En- and ID-BRIDGE setup exhibits several
major differences. First, the clearly prominent
first row and column in EN-BRIDGE shows that
its bridge-language is represented very differently
from all other languages ({ms, jv, tl}). For the
ID-BRIDGE counterpart, the difference between
the bridge language and the remaining languages
is much milder. Second, but perhaps more im-
portantly, among the languages used in zero-shot
directions ({ms, jv, tl}), the amount of sharing is
also higher under the ID-BRIDGE setup. This find-
ing is crucial as the raw tokens for {ms, jv, tl} are
identical between the ID-BRIDGE and EN-BRIDGE
setup. Therefore, the higher degree of sharing is
clearly an outcome of the model creating its repre-
sentations differently. Overall, these results show
that the choice of the bridge language not only im-
pacts the knowledge-sharing mechanism between
itself and the remaining languages, but also for the
remaining languages in the model.

Discrete Code Translation The code distribu-
tion analysis above makes a simplified assumption
by considering the discrete codes as a bag of words.
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To additionally assess the structural (dis)similarity
between the code representations for different lan-
guages, we consider the task of translating the
discrete codes of a language to another.

While a constructed language like Interlingua
would create the same representations for the
source sentences with identical meanings, our dis-
crete code representation is not yet invariant to the
source language. Nevertheless, we do expect them
to be more abstracted from the source sentences,
making the translation task easier than directly be-
tween the raw tokens. Here we train a translation
model on the discrete codes and use the test per-
formance to quantify how similarly the source lan-
guages are represented. When the representations
are more different from each other, i.e. language-
specific, the translation quality on the discrete is
expected to be lower.

Specifically, we randomly sample 100K sen-
tence pairs’ for each translation direction in the
experiments of Table 3 extract their discrete codes
assigned by the trained models (rows (3.3) and
(6.3) of Table 3), and train a new Transformer-
base (Vaswani et al., 2017) to translate between
the extracted codes of different languages. We flat-
ten the slices, therefore making each source token
represented by 16 discrete codes. After training
for 200K steps, we report BLEU scores on the test
set, which is also converted to discrete codes. The
results are shown in Figure 4. First, the translation
task is clearly easier on the discrete codes derived
from the ID-BRIDGE system. Second, the scores
differences are especially prominent when translat-
ing out of Malay (ms) and Javanese (jv), which are
more related to Indonesian than Filipino/Tagalog
(t). Along with the results from the code over-
lap, our results show that using a similar bridge
language results in higher knowledge-sharing not
only syntactically but also structurally, especially
between related languages.

6 Analyses on Learned Discrete Codes

Next we further investigate the discrete codes re-
garding its usefulness for the learned representa-
tions (§6.1) as well as the translation task (§6.2).

6.1 How well-clustered are the hidden states?

As motivated in §3, although at inference time we
use the continuous encoder hidden states instead of

"The training data (Table 2) allow us to use 340K sen-
tences. We sampled 100K for faster experiment iteration.

id
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jv ms
jv ms en

214 23.8
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29,2 19.9 10
-0

en ms jv

Figure 4: BLEU(1) scores of translating between dis-
crete codes for the ID-BRIDGE (left) and EN-BRIDGE
(right) setup. Higher values indicate a higher degree
of sharing. In general it is easier to translate the codes
for the ID-BRIDGE setup, indicating more structural
similarity between the representations.
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Figure 5: Our codebook approach creates better-
clustered encoder hidden states, as shown by a much
higher percentage of variance explained by PCA com-
pared to both the baseline and a strong alternative ap-
proach (adversarial language classifier).

the cluster centers, the soft discrete codes will still
enforce encoder hidden states into clusters, thereby
resembling a discrete structure. To verify whether
the encoder latent space indeed becomes more dis-
cretized with our approach, we analyze the encoder
hidden states on the test set using Principle Compo-
nent Analysis (PCA). If the data points representing
the encoder outputs are well-clustered, a larger per-
centage of their variance should be explained by
the learned principle components. As shown in Fig-
ure 5, our approach (marked with green line) con-
sistently leads to higher proportions of explained
variances compared to the baseline M2M-124, as
well as the strong alternative approach with the
adversarial language classifier. These results there-
fore confirm the effectiveness of our soft discrete
code approach in enforcing discrete structures in
the encoder latent space.

6.2 Meaningfulness of Clusters Centers

Recall that at inference time our soft discrete code
model uses the encoder hidden states prior to dis-
cretiztaion, although it does use both pre- and post-
discretization encoder context in training. A main
reason of doing so is that discretizing the encoder
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hidden states to cluster centers creates an infor-
mation bottleneck that limits model expressive-
ness. Despite the expected performance degrada-
tion, we are nonelessness interested in quantifying
how much information is lost by using the clus-
ter centers as context instead. In other words, the
question is how meaningful are the cluster centers
for the translation task? In Table 4, we report the
results of using the cluster centers as context for
the decoder at inference time. Compared to using
the encoder hidden states, we see a degradation
of 4.1 and 1.7 and spBLEU for ID-BRIDGE and
EN-BRIDGE respectively. This indicates that the
cluster centers are still relevant for the translation
task, although much less powerful than the encoder
hidden states prior to discretization. It also rules
out the possibility of the learned codes being triv-
ial repetitions, which would otherwise have been
detrimental to the translation performance.

Avg. spBLEU(1)
—X X— Y&Z Avg.

Encoder States at Inference

ID-BRIDGE (X=id)
encoder states (Tab. 3 row (3.3)) 27.2 23.6 183 21.9
cluster centers 22.8 200 143 17.8

EN-BRIDGE (X=en)
encoder states (Tab. 3 row (6.3)) 26.8 26.3 152 20.9
cluster centers 243 246 139 19.2

Table 4: At inference time, using cluster centers instead
of the clustered encoder states degrades performance
by 1.7-4.1 spBLEU. Despite the degradation, the scores
show that translation from the clusters centers is still
meaningful. This also rules out the possibility of the
learned codes collapsing to trivial repetitions.

7 Analyses on Zero-Shot Translation

Our experiments so far use single-bridge languages
and are evaluated in part on zero-shot directions.
We now study the impact when either of the two
conditions changes: 1) when parallel data is avail-
able for previously zero-shot directions; 2) when
using multiple bridge languages.

7.1 When does zero-shot translation match
the performance on parallel data?

Zero-shot conditions could be avoided by creat-
ing synthetic data from back-translation (Sennrich
et al., 2016; Zhang et al., 2020) or mining addi-
tional parallel data (Fan et al., 2021; Freitag and
Firat, 2020). Both approaches introduce additional
workflows into the pipeline of building translation

systems. We are therefore interested in the follow-
ing question: How much parallel data do we need
to perform better than direct zero-shot translation?

The training corpora from the shared task (§4.1)
provides an oracle condition to answer this ques-
tion. As shown in Table 2, the oracle parallel data
amounts to 2.2M sentences in total (340K for jv-
ms, 662K for jv-tl, and 1.2M sentences for ms-tl).
We take 100%, 10% and 1% of the oracle parallel
data and training systems together with the original
data and train multilingual systems with the same
configuration as rows (3) and (6) of Table 3. The
results are shown in Table 5.

To our surprise, adding 1% oracle bitext (22K
sentence pairs in total) of the previously zero-shot
directions already results in comparable perfor-
mance to the best zero-shot performance (18.4 and
17.3 spBLEU for ID-BRIDGE and EN-BRIDGE re-
spectively). However, this comes with some degra-
dation on supervised directions of 0.4 spBLEU
for ID-BRIDGE and 0.7 for EN-BRIDGE. This is
likely due to the temperature-based sampling ag-
gressively upsampling the extremely low-resource
directions, meanwhile causing the model to de-
prioritize other higher-resource directions. When
increasing oracle bitext to 10% (220K sentence
pairs in total), the system outperforms direct zero-
shot performance. Lastly, the additional gain ap-
pear to diminish when going from 10% to all oracle
data. For ID-BRIDGE, the performance appears
saturated at 10%: adding the remaining 90% par-
allel data does not give additional gain. On the
contrary, For EN-BRIDGE, the system appears to
still improve, especially on Y <+ Z directions (4-0.5
spBLEU). The performance on these directions
nevertheless still falls behind the ID-BRIDGE di-
rection by 0.8 spBLEU (18.9 vs 19.7 spBLEU).
An explanation is that the EN-BRIDGE system re-
quires more data to train as a result of the bridge
language being very distant to the rest, thereby
increasing the difficulty of multitasking over all
the translation directions. This echos with the pre-
vious finding that using related bridge languages
eases the multilingual translation task and increases
knowledge-sharing (§5.1).

7.2 Do multiple bridge languages bring
additional gains?

While the experiments so far are based on single
bridge languages, in practice we often have ac-
cess to multi-bridge parallel data. Indeed, recent
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Oracle Bitext Avg. spBLEU(T)

—X X— Y&Z Avg.

ID-BRIDGE (X=id)
best zero-shot (Tab. 3 row (3.2)) 27.5 24.1 184 22.1

1% 269 239 184 219
10% 273 245 197 228
100% (2.2M bitext) 26.6 248 19.7 227

EN-BRIDGE (X=en)
best zero-shot (Tab. 3 row (6.1)) 27.9 27.2 173 224

1% 27.0 26.8 17.1 220
10% 275 274 184 229
100% (2.2M bitext) 27.7 275 189 232

Table 5: Impact of adding oracle parallel data for the
previously zero-shot directions. Adding 10% parallel
data (roughly 220K sentence pairs in our case) surpasses
the best performance on direct zero-shot translation.

Data Condition Avg. spBLEU(1)

—X X— Y& Z Avg.

X=id 27.0 243 21.9
MULTI-BRIDGE _ 278 277 183 239
Only ID-BRIDGE (Tab. 3 row (3)) 27.1 242 17.7 217
Only EN-BRIDGE (Tab. 3 row (6)) 28.1 27.6 5.1 16.5

Table 6: Results of using multiple bridges (combin-
ing ID-BRIDGE and EN-BRIDGE). Despite substantial
gains over EN-BRIDGE, the multi-bridge system only
gives a mild improvement in zero-shot performance
(Y Z) over the ID-BRIDGE system.

works (Freitag and Firat, 2020; Fan et al., 2021)
have shown success on large-scale fully-connected
models, as well as evidence of multi-bridge outper-
forming the English-bridge condition (Rios et al.,
2020). What remains unclear is whether there is
a synergy when combining the parallel data from
several single-bridge conditions. We investigate
this hypothesis by training a multi-bridge system,
combing the data from our ID-BRIDGE and EN-
BRIDGE setup. As shown in Table 6, for supervised
directions of —X and X —, there is no clear differ-
ence between the performance of the multi-bridge
system and that of the single-bridge ones. For
zero-shot directions (Y <+Z), while multi-bridge
gains substantially over EN-BRIDGE (18.3 from
5.1 spBLEU), there is only a slight gain over ID-
BRIDGE. Given that the multi-bridge model more
than doubles the training time of ID-BRIDGE, the
little performance difference to the multi-bridge
system shows that choosing a bridge language re-
lated to the remaining languages is a data-efficient
way to achieve strong zero-shot performance.

8 Conclusion

In this work, we focus on learning to represent
source sentences of multilingual NMT models by
discrete codes. On multiple large-scale experi-
ments, we show that our approach not only increase
the model robustness in zero-shot conditions, but
also offers more interpretable intermediate repre-
sentations. We leverage the latter property to in-
vestigate the role of bridge languages, and show
that using a more related bridge language leads to
increased knowledge-sharing, not only between the
bridge language and remaining but also between
all other languages involved in training.

A limitation is that the discrete codes only give a
mechanism to compare hidden representations, but
are not directly interpretable by humans. A poten-
tial improvement would be to use an existing code-
book that corresponds to an actual human language.
Besides this, as next steps, we plan to improve the
generation process of the discrete codes. The first
direction is to make the code lookup conditionally-
dependent along the time dimension and learn to
shrink the sequence length of the discrete codes,
thereby creating a more compact representation.
Another direction is to explicitly incentivize more
shared codes between different, and especially re-
lated, languages during training. This would bring
the discrete codes closer to a language-independent
representation.
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A Additional Training and Inference
Details

When training, one optimization step happens after
16384 tokens. We use the Adam optimizer with be-
tas (0.9, 0.98). The learning rate is 0.0001 with the
inverse squared root schedule and 2500 warmup
steps. As for regularization parameters, we use
label smoothing of 0.1, dropout of 0.3, and at-
tention dropout 0.1. The models are trained for
500K updates in total. An exception is the MULTI-
BRIDGE experiment with more training data, where
we trained for 800K updates in total. For inference,
we decode with a beam size of 5.

B Dataset Details

The training parallel data include the following cor-
pora: bible-uedin (Christodoulopoulos and Steed-
man, 2015), (Multi)CCAligned (El-Kishky et al.,
2020), Gnome®, ELRC?, KDE4!°, Global Voices'!,
OpenSubtitles'?, QED (Abdelali et al., 2014), Mul-
tiParaCrawl'3, TED2020'4, Tanzil'®, Tatoeba!®,
Ubuntu'”, WikiMatrix (Schwenk et al., 2021),
wikimedia'®, and TICO-19 (Anastasopoulos et al.,
2020).

C Implementation of Baselines

C.1 Language-Independent Objective

We chose meanpool and L2 distance for the similar-
ity loss since it gave better or more consistent per-
formance in initial experiments. As for the weight
of the language-independent objective, we used 1.0
following Pham et al. (2019).

8https://opus.nlpl.eu/GNOME.php
ghttps://opus.nlpl.eu/ELRC.php
10https://opus.nlpl.eu/KDE4.php
"https://opus.nlpl.eu/GlobalVoices.php
2https://opus.nlpl.eu/OpenSubtitles-v2018.php
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14https://opus.nlpl.eu/TEDZ@ZO.php
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17https://opus.nlpl.eu/Ubuntu.php
18https://opus.nlpl.eu/wikimedia.php

C.2 Adversarial Classifier

We extend the adversarial language classification
approach from Arivazhagan et al. (2019a) for ro-
bust training. Specifically, we use a modified loss
when adversarially training the encoder. Moreover,
we apply the language classification on the token
level to remove the need for selecting a pooling
method. The classifier minimizes the cross-entropy
loss when predicting the language labels:

L
Lclassifier = — Z yclog(pc)7 ()

c=1

where L is the number of classes to predict, y.
is a binary indicator whether the true language la-
bel is ¢, and p. is the predicted probability for the
instance belonging to language c.

Removing source language signals from the en-
coder representations can be achieved by a gradient
reversal layer (Ganin et al., 2016) from the lan-
guage classification. An issue with the standard
classification loss in Equation 8 is that, when the
classifier is performing well, the loss landscape
is rather flat, causing minimal gradient flow to
the encoder. In fact, when the classifier predicts
the source languages accurately, we instead need
large gradients to update the encoder representa-
tions as they contain high amounts of language
signals. Therefore, when updating the encoder pa-
rameters adversarially, we use the modified loss:

L
Eadv_classiﬁer = Z yclog(l - pc)a (9)
c=1
which in effect mirrors Equation 8 by the horizontal
axis and the vertical line defined by z = 0.5. With
the modified loss, the optimization direction does
not change, but the gradient is larger when the
classifier is performing well.
The translation model is then trained with:

Eencoder_decoder = »CMT + Eadv_classiﬁer- (10)

For training stability, we alternate the optimiza-
tion of the classifier (Equation 8) and the main
encoder-decoder parameters (Equation 10). Opti-
mizing them jointly would otherwise lead to co-
adaptation of the parameters of the translation and
classification module and empirically causes train-
ing instability.
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