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Abstract

The University of Edinburgh participated in
the WMT22 shared task on code-mixed trans-
lation. This consists of two subtasks: i) gen-
erating code-mixed Hindi/English (Hinglish)
text generation from parallel Hindi and En-
glish sentences and ii) machine translation from
Hinglish to English. As both subtasks are con-
sidered low-resource, we focused our efforts on
careful data generation and curation, especially
the use of backtranslation from monolingual re-
sources. For subtask 1 we explored the effects
of constrained decoding on English and translit-
erated subwords in order to produce Hinglish.
For subtask 2, we investigated different pre-
training techniques, namely comparing simple
initialisation from existing machine translation
models and aligned augmentation. For both
subtasks, we found that our baseline systems
worked best. Our systems for both subtasks
were one of the overall top-performing submis-
sions.

1 Introduction

Code-mixing is the shift from one language to
another within a single conversation or utterance
(Sitaram et al., 2019). It is an extremely common
and diverse communicative phenomenon world-
wide (Doğruöz et al., 2021; Sitaram et al., 2019),
though one which is currently under-served by
many NLP technologies (Solorio et al., 2021).

One of the most well-known examples of code-
mixing is between Hindi and English, commonly
referred to as Hinglish1. It is extremely common
amongst Hindi-English bilingual speakers in both
speech and text, used across a range of genres and
media (Parshad et al., 2016), and has its own dis-
tinctive features and linguistic forms (Kumar, 1986;
Sailaja, 2011). The process of generating Hinglish
from the written text is non-trivial, as code-mixing

1In the scope of this paper, we designate “hg” as the lan-
guage code for Hinglish.

may happen at the phrase or word level, but Hindi
and English differ substantially syntactically.

As a novel addition to the current code-mixing
NLP research, we investigated lexically constrain-
ing the Hinglish output in subtask 1 to only contain
words from English and Hindi sources. Through
analysis, we demonstrated that transliteration mis-
matches could affect performance.

Another novel approach we explore for this task,
particularly for subtask 2, is a denoising-based pre-
training technique called Aligned Augmentation
(AA) (Pan et al., 2021). AA, which trains MT
models to denoise artificially generated code-mixed
text, was shown by Pan et al. (2021) to boost trans-
lation performance across a variety of languages
- thanks to the enhanced transfer learning brought
about by code-mixed pretraining. In this work, we
explored if this general-purpose approach could be
useful for translating authentic, human-generated
code-mixed text, focusing on Hinglish.

Despite these efforts, we found that for both sub-
tasks our original baselines worked better and con-
stituted our final submissions for this task, which
ranked as one of the top-performing systems for
both subtasks, by both automatic and human evalu-
ation. We hope our methods, particularly Hinglish
data generation, that allowed us to build these sys-
tems would be useful to the community; as would
the findings from our additional research explo-
rations.

2 Related Work

2.1 Code-mixing

Due to an increasing prevalence of code-mixed
data on the Internet, there is a growing body of re-
search into code-mixing, particularly for Hinglish,
in the NLP community. Doğruöz et al. (2021) pro-
vide a comprehensive literature review of code-
mixing in the context of language technologies.
Whilst they highlight several challenges inherent
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in NLP with code-mixed text (such as understand-
ing cultural and linguistic context, evaluation, and
a lack of user-facing applications), the most no-
table obstacle for this shared task is the lack of
data. They note that there are very few code-mixed
datasets, making it challenging to build deep learn-
ing models such as those for NMT. In this work, we
use backtranslation as our main data augmentation
method (Edunov et al., 2020; Barrault et al., 2020;
Akhbardeh et al., 2021, inter alia). This allows
us to leverage the larger amount of monolingual
data for better final model performance. The XLM
toolkit (Lample and Conneau, 2019) seemed an
ideal choice to backtranslate our Hinglish. This is
because it has shown promising results in unsuper-
vised and semi-supervised settings where parallel
data is sparse, but monolingual data is ample. Also
given that Hinglish is closely related to both lan-
guages, we believed Hinglish should be an ideal
language to use in a semi-supervised setting.

2.2 Constrained decoding
Constrained decoding involves applying restric-
tions to the generation of output tokens during infer-
ence. Most implementations have the goal of ensur-
ing that desired vocabulary items appear in the tar-
get side sequence (Hokamp and Liu, 2017; Hasler
et al., 2018; Post and Vilar, 2018). Alternatively,
Kajiwara (2019) paraphrase an input sentence by
forcing the output to not include source words, and
Chen et al. (2020) constrain NMT decoding to fol-
low a corpus built in a trie data structure to find
parallel sentences.

To the best of our knowledge, previous linguis-
tics research investigated and applied the grammati-
cal constraints in code-mixing (Sciullo et al., 1986;
Belazi et al., 1994; Li and Fung, 2013), rather than
the novel method in our work of introducing lexical
constraints.

2.3 Aligned augmentation
Several recent works (Yang et al., 2020a,b; Lin
et al., 2020; Pan et al., 2021) have explored enhanc-
ing cross-lingual transfer learning by pretraining
models on the task of ‘denoising’ artificially code-
mixed text. Methods to create the necessary code-
mixed data vary, and include bilingual or multilin-
gual datasets and word aligners (Yang et al., 2020a,
2021), lexicons (Yang et al., 2020b; Lin et al., 2020;
Pan et al., 2021), or combining code-mixed nois-
ing with traditional masked noising approaches (Li
et al., 2022).

The most successful among these methods is
Aligned Augmentation (AA) (Pan et al., 2021),
which randomly substituting words in the source
sentence with their word-level translations, as ob-
tained from a MUSE (Lample et al., 2018) dictio-
nary. Pan et al. (2021) showed that their technique
can effectively align multilingual semantic word
representations and boost performance across var-
ious languages. However, these methods focus
on training general-purpose MT models. In this
work, we investigate their utility for translating real
human-generated code-mixed text.

2.4 Automatic evaluation metrics

Automatic translation evaluation is usually done
using BLEU (Papineni et al., 2002), yet there is
no comprehensive study on its suitability for code-
switched translation. Specifically in this task, the
organisers announced that the participating sys-
tems will be evaluated using ROUGE-L (Lin, 2004)
and word error rate (WER). Nonetheless, the pack-
ages implementing these metrics were not speci-
fied. Since ROUGE comes with different language,
stemming and tokenisation settings, we instead
used BLEU, ChrF++ (Popović, 2017), translation
error rate (TER), and WER2 for our internal val-
idation. The first three are as implemented with
sacreBLEU (Post, 2018). We stick to the default
configurations, except that the ChrF word n-gram
order is explicitly set to 2 to make it ChrF++. In
addition, the organisers performed a small-scale
human evaluation on 20 test instances for all sub-
missions.

In this work, we advocate for a character-based
metric when evaluating the Hinglish output in sub-
task 1. This is because for the code-switched lan-
guage, there is no formal spelling or defined gram-
mar, and words may have a diverse range of accept-
able transliterations and lexical forms.

3 Subtask 1: Translating into Hinglish

Good quality Hinglish data is hard to come by,
and parallel Hinglish data with Hindi or English
even more frugal. Therefore, for both subtasks
we concentrated our efforts on generating good
Hinglish backtranslation. We planned to use the
model which produced the highest quality Hinglish
for subtask 1 as our backtranslator for subtask 2,
hence we focused our efforts on each subtask se-
quentially.

2https://github.com/jitsi/jiwer
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3.1 Data cleaning and preprocessing

After deduplicating the data, we removed non-
printing characters and normalised the punctuation.
We then ran rule-based filters, removing any sen-
tences with fewer than two or more than 150 words,
where fewer than 40% of the words are written in
the relevant script, or where over 50% of characters
are not letters in the relevant script. For English
and Hindi, we ran fasttext language ID and re-
moved any sentence which was not classified as the
relevant language.3 For Hinglish, we also removed
any sentence with a predicted probability of En-
glish greater than 0.99 in order to remove sentences
that were solely in English. We tokenised English
and Hinglish using Moses scripts (Koehn et al.,
2007) and tokenised Hindi using the indicnlp
library (Kunchukuttan, 2020).

We decided to add explicit preprocessing and
postprocessing capabilities for handling social me-
dia text, given that this was the domain for subtask
2. On both source and target sides, we replaced
URLs, Twitter handles, hashtags and emoticons
each with their own placeholder tokens4, to be re-
placed back from the source after inference. These
placeholders made up 1.7% of the validation set
tokens for subtask 2, far higher than would appear
in general domain data.

3.1.1 The HinGe dataset
The primary dataset for subtask 1 was the HinGe
dataset (Srivastava and Singh, 2021), which con-
sisted of hi-en-hg parallel sentences, with some ex-
amples synthetic and some human-generated. This
was provided to us pre-split into training and de-
velopment sets for both data types. However, we
noticed that these sets were not mutually exclu-
sive, and after deduplication and filtering on the
synthetic data human annotations5, we had 6,727
hi-en-hg examples in total.

3.1.2 Base hi↔en translation models
Firstly, we trained four Transformer-base (Vaswani
et al., 2017) models with different seeds using Mar-
ian (Junczys-Dowmunt et al., 2018) for both hi→en
and en→hi directions, using the data from the hi-en

3Our cleaning scripts are adapted from
those provided by the Bergamot project.
https://github.com/browsermt/students/tree/master/train-
student Specifically, we add support for Hindi and Hinglish
text.

4<URL>, <TH>, <HT> and <EMO> respectively
5We only kept sentences with an average rating greater

than 4, and annotator disagreement less than 5

parallel Samanantar corpus6 (Ramesh et al., 2021).
Given the findings of Ding et al. (2019) with regard
to vocabulary choice for low-resource scenarios,
and that our task inherently contains transliteration,
we opted for a low BPE (Sennrich et al., 2016)
merge size of 4k, resulting in a small joint vocab-
ulary of 7.9k. We used the hi-en FLORES devel-
opment set (Goyal et al., 2022) for validation and
early stopping, and noticed our model produced
surprisingly good quality translations in both di-
rections7. We used these models (along with vo-
cabulary) to both initialise subsequent models and
generate backtranslation for more training data.

3.1.3 Hinglish data
L3Cube-HingCorpus (Nayak and Joshi, 2022) and
CC-100 Hindi Romanized (Conneau et al., 2020a)
are two Hinglish corpora that we wished to back-
translate into both English and Hindi. Given that
we only had a small amount of parallel Hinglish
data, compared to our ‘monolingual’ datasets, we
used the XLM toolkit (Lample and Conneau, 2019)
to train a semi-supervised model (see Appendix A
for details). We then backtranslated the monolin-
gual Hinglish data into both English and Hindi.
However, given the noisy quality of the data and
translations themselves, we decided to evaluate
them using our hi→en and en→hi Marian models.
Specifically, for an en-hi backtranslated (XLM)
sentence pair, we translated the en/hi into hi/en re-
spectively, then evaluated the double translated out-
put using ChrF, with the XLM backtranslations as
the references. We then took a mean of the English
and Hindi ChrF score to get our final confidence
value. We used the resulting hg-en-hi sentence trios
with values at least 0.4, to compromise between
the quality and quantity of data available to use as
training. Most of the sentences scored quite poorly,
and filtering on 0.4 yielded 2.1M sentences, only
about 12% of the original Hinglish monolingual
dataset.

3.1.4 Transliteration
In order to best leverage the Samanantar hi-en par-
allel corpus, we transliterated the Hindi side into
Roman script8, on the word level. Although this

6Each sentence was annotated with the LaBSE (Feng et al.,
2022) Alignment Score (between 0 and 1), so we filtered out
values less than 0.65, resulting in around 10.1M sentences

7sacreBLEU: 33.8 for hi→en and 32.7 for hi→en on FLO-
RES development set

8In the scope of this paper, we use “ht” to denote pure
romanised Hindi transliteration
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Beam Size BLEU (↑) ChrF++ (↑) TER (↓) WER (↓)

Unconstrained
1 17.8 42.8 65.3 81.5
4 18.1 44.0 64.5 85.7
12 18.0 43.8 64.8 86.0
24 18.0 43.7 65.0 85.5
36 17.9 43.5 65.1 85.4
48 18.0 43.6 65.2 85.5

Constrained
1 10.8 33.1 76.1 75.1
2 12.2 35.6 74.9 69.1
4 13.2 36.6 74.2 63.5
6 14.1 37.7 73.5 60.8
12 14.6 38.1 73.7 58.6
24 14.8 38.5 73.5 57.2
36 14.9 38.7 73.6 56.7
48 15.0 38.7 73.6 57.0

Table 1: Experimental results on the validation set with unconstrained and constrained decoding for subtask 1.

forward transliteration was not likely to contain
much code-mixed text, it would still be useful train-
ing data for our model, given that both the Hindi
and English sources are assumed to be either the
original sources or human translationese.

We used the AI4Bharat Indic transliterator (Mad-
hani et al., 2022), to convert (on the word level)
all romanised tokens contained in our monolingual
Hinglish datasets into Devanagari script. This tool
is a neural-based model with beam search capabil-
ities, therefore we generated the top 4 results in
Hindi for each Hinglish token. We used the top
4 instead of the most likely candidate as, upon in-
spection, we found that the correct corresponding
Hindi token was not always predicted first. We also
used a human-generated list of Hinglish-English
pairs form the Xlit-Crowd corpus (Khapra et al.,
2014) which we treated as the gold standard.

To summarise, our training data for our hi→ht
transliterator9 consists of 5.3M Hinglish-Hindi
word pairs (1.3M unique Hinglish words), and 15k
from XlitCrowd, of which we use 1k as a validation
set for early stopping. We train a small transformer
model with Marian on the character-level for both
input and output. When forward transliterating the
Hindi side of the Samanantar corpus, we copied
over non-standard strings (such as numbers, punc-
tuation etc.), or else we looked up the token (if it

9We decided to build our own transliterator as we found
existing tools in this direction to be of poor quality

existed) in our gold standard list. Otherwise, we
used our transliteration model as a final back-off.
In hindsight, one disadvantage of our approach was
that we did not generate multiple candidates for
each Hindi word, to reflect the diversity of possible
romanised candidate tokens.

We also used this transliteration model as part
of our constrained decoding experiments later (see
Section 3.3).

3.2 Baseline (unconstrained decoding)
We decided to use a dual encoder setting given
that we have two inputs in this task, and initialise
our model from our previously trained Marian MT
systems. We used hi→en to initialise the Hindi-
decoder and the English-encoder cross attention
parameters, whereas en→hi was used to initialise
the English-encoder and all other decoder parame-
ters. Our vocabulary was the same as the pretrained
models.

Early stopping with patience 10 on the HinGe
dataset was used for convergence - for all of the
experiments mentioned in this paper. Our training
regime consisted of two stages:

• General domain - The training datasets used
were the backtranslated Hinglish and forward
transliterated Samanantar corpora. We used
all of the HinGe dataset as a validation set.

• Finetuning - We continue training on a sub-
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Figure 1: Validation BLEU and ChrF++ of the constrained and unconstrained outputs scored against English and
transliterated Hindi sources separately.

set of HinGe dataset, using a distinct smaller
subset (1k) of it as a validation set.

3.3 Constrained decoding
After analysing the training data, we hypothesized
that nearly all the output words should either be
from the English source, or as a transliteration of
a word from the Hindi source, with likely little
change in sentence structure. This inspired us to
use the technique of constrained decoding when
generating Hinglish.

Unlike standard constrained decoding where a
model is forced to incorporate certain words in the
output, our proposal is to exclude vocabulary words
that do not exist in English or transliterated Hindi
source sentences. Following Chen et al. (2020)’s
notion, we applied pre-expansion pruning: disal-
lowed word paths are assigned an extremely small
score before hypotheses are ranked and expanded.
Specifically, to obtain Hindi transliteration, we
used our transliteration model described in Section
3.1.4.

We performed beam searches with constrained
decoding and reported automatic scores on the val-
idation set in Table 1. Unfortunately, constrained
decoding does not beat unconstrained decoding. As
a general trend, WER and TER do not change much
as beam size increases, while BLEU and ChrF++
significantly improve.

To better understand the impact of constrained
decoding, we score the validation outputs against
English and transliterated Hindi sources separately,
then plot BLEU and ChrF++ numbers in Figure 1a
and Figure 1b. We observe that with increasing

beam sizes, constrained decoding prefers to gener-
ate English tokens instead of transliterated Hindi.
Unconstrained decoding achieves a much better
balance.

One hypothesis is that the quality of Hindi
transliteration is not perfect, resulting in the model
preferring English tokens from the vocabulary.
Hence, we compute the percentage of words in the
gold reference as well as in the unconstrained (base-
line) output that come from neither the English nor
the transliterated Hindi source. Surprisingly, on av-
erage 45.1% of the total words in the unconstrained
output do not appear in the sources; as for the gold
reference, it is 39.8% which is slightly lower. It
is worth noting that the numbers might be inflated
as we computed the word overlap after outputs are
detokenised. Yet it implies that many of the ref-
erence words do not exactly appear in the lexical
constraints determined from the source senteneces.

Finally, we visualise the first five validation sen-
tences in Table 2. We highlight in red the target
words that do not exist in the source sentences; we
also label the possible corresponding tokens from
the sources in blue. It can be confirmed that most
mismatches are due to differences in Hindi translit-
eration and letter cases. This indicates that the
lexical constraint idea is suitable in theory, but it is
hindered by the error propagation in transliteration.
This may have been alleviated by running multi-
ple transliteration schemes on the Hindi source to
make the constraints more diversified.
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hi source 1995 से 2004 के दौरान औसत धरातलीय तापमान 1940 से 1980 तक के औसत तापमान से िभन्न्न है
hi transliteration 1995 sey 2004 ke Dauran ausat Dharatliya Tapman 1940 sey 1980 tak ke ausat Tapman sey

bhinnn is
en source The average geological temperature of the earth from 1995-2004 is different than that of 1940-

1980 .
constrained The average Dharatliya tapman of the earth from 1995 -tak ke ausat tapman from bhinn.
unconstrained 1995 se pratik dauran average dharatliy temperwof the earth from 1990 se 1980 tak ke ausat

temperwale se bhinn hai.
reference from 1995-2004 ke dauran average geology temperature of earth 1940 se 1980 tak ke ausat

temperature se different hai.

hi source धृतराष्ट्र एवं गांधारी के १०० पुत्राें में सबसे बड़े ।
hi transliteration Dhritrashtra Evan Gandhari ke 100 putron main sabse bade .
en source Dhrudharashtra and Ghandhari ’s eldest among their 200 sons .
constrained Dhrudharashtra among their 200 sons.
unconstrained Dhrudharashtra among their 200 sons.
reference Dhrudharashtra and Ghandhari ke 100 sons mein sabse bade.

hi source इस प्रकार राजस्थान के रेिगस्तान का एक बड़ा भाग शस्य श्यामला भूिम में बदल जायेगा ।
hi transliteration is Prakar rajasthan ke registan ka a badaa bhaag Shasya Shyamala bhumi main cange jayega .
en source In this way a major part of the desert in Rajasthan would become a harvesting and fertile land .
constrained In this way a major part of the desert in Rajasthan would become a harvesting and jayega.
unconstrained In this way a major part of the desert in Rajasthan would become a harvesting and wtile land.
reference is prakar rajasthan ke desert ka ek major part harvesting and fertile land mein badal jayega.

hi source राष्ट्रपित की अध्यादेश जारी करने की शिक्त पे िनयंत्रण
hi transliteration Rashtrapati ki Adhyadesh jaari karne ki shakti pay Niyantran
en source The power of the President to proclaim Ordinance is subject to :
constrained Rashtrapati ki Adhyadesh jaari karne ki
unconstrained Rashtrapati ki adhyadesh jaari karne ki pratiniyantran.
reference President ki ordinance jari karne ki power pr niyantran.

hi source 1000 से अिधक हाथी िनमार्ण के दौरान यातायात हेतु प्रयोग हुए थे ।
hi transliteration 1000 sey Adhik haathi Nirman ke Dauran yatayat hetu pryog huye they .
en source More than 1000 elephants were used during the time of construction for transportation .
constrained Dauran transportation ke time yatayat hetu pryog hue the.
unconstrained 1000 se adhik haathi nirman ke dauran transportation hetu pryog hue the.
reference more than 1000 elephants construction ke dauran transportation hetu prayog hue the.

Table 2: The first five validation instances: English and Hindi sources, as well as constrained, unconstrained and
reference outputs. red denotes the target side words that do not appear in either of the source sentences from a
constrained aspect; blue denotes possible source-target matches in a different surface form.

mismatches are due to differences in Hindi translit-
eration and letter cases. This indicates that the lex-
ical constraint idea is suitable in theory, but it is
hindered by the error propagation in transliteration.
This may have been alleviated by running multi-
ple transliteration schemes on the Hindi source to
make the constraints more diversified.

4 Subtask 2: Hinglish-to-English

4.1 Data cleaning and preprocessing
The primary dataset provided for this task PHINC
(Srivastava and Singh, 2020) is relatively small
at 13.7k English-Hinglish pairs. Therefore, we
aimed to generate domain-specific parallel data us-
ing our baseline model from Subtask 1 on English
monolingual data.

We analysed the source side of the validation
dataset to determine the most frequent content

words (see Table 3) and then selected these words
(and any morphological/spelling variants) from
the English WikiMatrix corpus (Schwenk et al.,
2021). This yielded a total 477k English sentences
and we henceforth refer to this selection of sen-
tences as ToxicWiki. We also used Sentiment140
(Sahni et al., 2017), a dataset of 1.6M tweets in
English, as the domain of our validation set is also
Twitter.

To obtain the Hinglish side of both Senti-
ment140 and ToxicWiki datasets, we backtrans-
lated into Hindi using our en→hi Marian model,
and then used the en-hi pair and our baseline
system for subtask 1 to obtain the correspond-
ing Hinglish. However, many of the placeholders
(such as <HT>) did not occur frequently enough
during the training of subtask 1 for the model to
learn to consistently copy them across; therefore

Table 2: The first five validation instances: English and Hindi sources, as well as constrained, unconstrained and
reference outputs. red denotes the target side words that do not appear in either of the source sentences from a
constrained aspect; blue denotes possible source-target matches in a different surface form.

4 Subtask 2: Hinglish-to-English

4.1 Data cleaning and preprocessing
The primary dataset provided for this task PHINC
(Srivastava and Singh, 2020) is relatively small at
13.7k English-Hinglish pairs. Therefore, we aimed
to generate domain-specific parallel data using our
baseline model from Subtask 1 on English mono-
lingual data.

We analysed the source side of the validation
dataset to determine the most frequent content
words (see Table 3) and then selected these words
(and any morphological/spelling variants) from the
English WikiMatrix corpus (Schwenk et al., 2021).
This yielded a total 477k English sentences and
we henceforth refer to this selection of sentences
as ToxicWiki. We also used Sentiment140 (Sahni
et al., 2017), a dataset of 1.6M tweets in English,
as the domain of our validation set is also Twitter.

Word Validation WikiMatrix

rape 249 23,198
hate 117 16,824
terrorism 24 11,160
khoon (blood) 21 59,526
murder 21 75,066
india 16 291,054

Total - 476,828

Table 3: Frequency of top content words present in
our validation set, and the number of sentences within
WikiMatrix that contained the word (or morphological
variants). The resulting sentences formed ToxicWiki

To obtain the Hinglish side of both Sentiment140
and ToxicWiki datasets, we backtranslated into
Hindi using our en→hi Marian model, and then
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used the en-hi pair and our baseline system for sub-
task 1 to obtain the corresponding Hinglish. How-
ever, many of the placeholders (such as <HT>) did
not occur frequently enough during the training
of subtask 1 for the model to learn to consistently
copy them across; therefore the model was not
able to predict them with a large degree of accu-
racy. Therefore, we ran a postprocessing script
that corrected for placeholders on the backtrans-
lated Hinglish, given the English source, so that
our downstream model would be able to learn to
simply copy these placeholders across. Specifically,
we made sure that the number of each placeholder
type in the backtranslated Hinglish was the same
(and in roughly the same position) as that in the
source sentence.

For the AA experiments described in Section 4.3,
we used monolingual Hindi, English and Hinglish
data. For Hindi and English, we randomly sam-
pled 20M sentences from the News Crawl corpora
(Akhbardeh et al., 2021). For Hinglish, the mono-
lingual corpora described above was used. In or-
der to code-mix these corpora as described in the
AA algorithm, we used MUSE dictionaries for the
Hindi-English pair. For Hinglish-Hindi pairs, we
used the data generated with AA for the translitera-
tion model.

4.2 Baseline systems
We used a hi→en MT to initialise the baseline
hg→en model.

Our training regime consisted of three stages:

1. General - Training on the backtranslated en-
hg internet corpora (with confidence value at
least 0.4), and ht-en side of the Samanantar
corpus, where we treat the transliteration as
Hinglish. We used the PHINC dataset as our
validation set for early stopping.

2. We continued training on Sentiment140 and
ToxicWiki corpus, using the same validation
set as before, until convergence.

3. We continued training on the PHINC dataset,
using a small subset (1k) of it as validation
data for early stopping.

As we had multiple hi→en MT systems, we also
trained an ensemble model of four, where we fol-
lowed the same training regime above with param-
eters initialised from each of our hi→en models.
Our results are shown in Table 4, with our ensemble
model outperforming the single on all metrics.

4.3 Aligned Augmentation for subtask 2

Our Aligned Augmentation (AA) experiments
where implemented with Fairseq (Ott et al., 2019),
and we used the Transformer architecture, with
12 encoder and 12 decoder layers. Our first step
consisted of pretraining these models on Hindi, En-
glish, and Hinglish corpora, with the target being
the “denoised” sentence - thus training the model to
reconstruct the original sentence, following the AA
algorithm. For validation, we randomly sampled
1k sentences from the training corpus.

We then finetuned this model on the Hinglish-
English parallel corpora mentioned above. The ma-
jor AA baselines we trained and their performances
are listed in Table 5 - along with a randomly ini-
tialised baseline that was trained solely on the par-
allel corpora. The data sources we used in our ex-
periments were quite diverse: we started with high-
quality monolingual data for pretraining followed
by parallel datasets of varying domains and qual-
ities, (the Hinglish backtranslated corpora, Senti-
ment140, PHINC and ToxicWiki). We attempted to
explore how best these resources could be utilised.
We started with our default training paradigm: we
finetuned on backtranslated Hinglish, followed by
the ToxicWiki and then a shuffled concatenation of
the social media datasets - the Sentiment140 and
PHINC datasets respectively. This was based on
the intuition that the final model should be most
recently trained on datasets from similar domains
as the test set.

Following this paradigm, we conducted two sets
of experiments: a “validation experiment” that tries
to estimate the best choice of validation sets, and
“training experiments” to verify the importance of
some training sources empirically. The former is a
crucial decision in our experiments given our use
of early stopping. We find that validating on the
official MixMT validation sets released for Subtask
2 ends up performing significantly worse than vali-
dating on a subset of the respective training datasets.
This is surprising given the performances reported
in Table 5 are evaluated on the same validation
sets. This suggests that training and validating the
model on corpora from different domains can help
boost the final performance - even if it does not
improve loss on the final validation set. In the latter
body of experiments, we attempted to determine
the value of the XLM backtranslated corpora on
performance - which seems very noisy on man-
ual inspection, with the target side (English) being
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BLEU (↑) ChrF++ (↑) TER (↓) WER (↓)

Baseline Experiments
Single model 24.5 47.0 65.1 72.0
Ensemble (of 4) 25.5 48.7 62.9 70.5

Table 4: Baseline results for subtask 2 on the MixMT validation set.

generated through backtranslation. Surprisingly,
its inclusion significantly enhances performance,
by +5 BLEU points. This could be due to various
reasons: its sheer size (15M sentences), the pres-
ence of word-level translations between English to
Hinglish in parallel sentences (despite grammatical
errors), the similarity between the source and the
target encouraging “copying" which can sometimes
be beneficial for this task, etc. We also find that the
inclusion of hi-en along with hg-en further boosts
performance, consistent with the findings of pre-
vious works on multilingual MT. We empirically
found that including ‘all’ available hi-en sentences
and ‘all’ available hg-en sentences was more bene-
ficial than splitting our parallel dataset into the two
respective directions – despite the target sentence
being duplicated in the former.

Compared to the Random baselines, our final
AA baselines show consistent improvement for all
given metrics - though the improvement is not very
significant with respect to BLEU o TER. A closer
glance at the validation set and the generated pre-
dictions reveals the potential reason behind this -
there is a significant amount of noise present in the
validation sets due to the social media domain, with
errors in both syntax and semantics. Given that it is
not always easy to comprehend and translate such
sentences well, the gold reference sentences are
sometimes of relatively poor quality - containing
various potential errors such as inaccurate word
form predictions, grammatical errors, misspellings
etc. While word-based metrics may fail to han-
dle these cases; ChrF++, being a character-based
metric, can likely alleviate noise that may have
propagated to reference sentences and might be a
more suitable metric for Subtask 2 as well. It is
encouraging to note AA’s improvement over the
Random baseline in this light.

AA appears to bring about some improvement
qualitatively, especially regarding noisy input - for
instance, it was able to more accurately translate
misspellings and handle grammatical inconsisten-
cies. However, the frequency of sentences where

AA performs better than its randomly initialized
counterparts seems relatively low. One explanation
could be that fine-tuning the model on 18M parallel
sentences could lead it to ‘forget’ the representa-
tions learned during pretraining. This is in line
with the findings of (Pan et al., 2021) that observe
relatively lower improvements for high-resource
languages. While adding large corpora (15M sen-
tences) such as the XLM backtranslated corpora
does lead to net improvements, it is possible opti-
mization in the size of finetuning data used could
lead to even greater gains. Secondly, given that our
dictionaries appear to help in noise resolution, it
might be useful to incorporate various types of mis-
spellings rigorously in the code-mixing lexicons
created - thus enabling the final model to be more
robust. Finally, including training corpora from
other Indo-Aryan languages like Urdu or Marathi
could be beneficial. Although Subtask 2 focuses on
the translation of Hinglish-English, the validation
and test sets (as well as training sets) contain many
examples of code-mixing between related Indo-
Aryan languages and English - most prominently
in Urdu, which is historically and linguistically
similar to Hindi.

In the end, we observe that the AA models we
train are unable to beat our original single-model
baseline, despite having more parameters. Curi-
ously, this is also the case for the randomly initial-
ized baseline in Table 5. Due to time constraints,
we are unable to investigate the reasons behind
these. Possible explanations could include: train-
ing paradigm differences (initializing with hi→en
vs mixing hi→en with hg→en), ensembling, ex-
perimental setting disparities, inherent differences
between training libraries (Fairseq vs Marian). It is
possible that addressing these disparities, as well
as exploring the directions suggested in the previ-
ous paragraph, could enable AA baselines to yield
superior results for code-mixed translation.
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BLEU (↑) ChrF++ (↑) TER (↓) WER (↓)

Validation Experiments
AA (dev = MixMT valid) 20.5 41.2 72.7 78.6
AA (dev = train subset) 23.3 45.7 68.3 74.6

Training Experiments (dev=train subset)
AA (train = all Hg->En minus XLM BT data) 18.3 38.4 78.3 83.4
AA (train = all Hg->En) 23.3 45.7 68.3 74.6
AA (train = all Hg->En + all Hi->En) 24.4 46.2 68.2 74.9

Random 24.3 45.2 68.4 74.6

Table 5: Aligned Augmentation experiments for subtask 2, as evaluated on the official MixMT Subtask 2 validation
set. “Validation experiments" refers to experiments performed to select the best choice of the validation set for early
stopping. ‘MixMT valid’ refers to the same validation set mentioned earlier (that is also used for evaluation), while
‘train subset’ refers to a subset (last 1000 sentences) of the respective training corpus. “Training experiments” seek
to explore various dataset choices during training time, using a subset from the training corpus for validation.

BLEU ChrF++ TER WER ROUGE-L Human Eval. Score

Subtask 1 26.9 52.7 55.2 56.2 57.9 3.85
Subtask 2 28.7 51.2 59.1 61.3 62.5 3.75

Table 6: Final Test Results for the University of Edinburgh’s submissions of MixMT 2022. BLEU, ChrF++ and
TER were evaluated by us while WER and ROUGE-L results are from the official Codalab leaderboard. Human
evaluation (on a scale of 1-5) was provided by the organisers on 20 random sentences and we report the average.

5 Test Results

The final test results for our submissions are listed
in Table 6. For Subtask 1, we used unconstrained
decoding with beam-size 12, and for Subtask 2
we used our baseline ensemble (4) with beam-size
36. We evaluated BLEU, ChrF++ and TER our-
selves, while the other metrics are provided by the
organizers. We ranked second in both subtasks
on the MixMT leaderboard10 although in both the
automatic and human evaluation11, there does not
appear to be a statistically significant difference.
Furthermore, we note that some participants have
an exceedingly high number of test submissions
and would encourage future shared tasks to put in
place measures to avoid this.

6 Conclusion

In this work, we described our various findings
and experiences while building NMT systems that
translated between Hinglish and monolingual En-
glish/Hindi - as part of the WMT22 Code-Mixing
Shared Task. We proposed various corpora that
could be useful for these tasks - many of which

10https://tinyurl.com/codalab-ldbd
11https://tinyurl.com/heval-mixmt

we create as part of this work - and utilizing these,
build high-performing MT systems that, for both
subtasks, constituted one of the leading uncon-
strained models. In addition, we also explored and
analysed some alternative approaches for training
our models like constrained decoding and Aligned
Augmentation (AA) which, despite not beating our
original baselines, yielded findings that are use-
ful for future research. Perhaps the most notable
of these suggests that efforts to create Hinglish
datasets, including using transliterated Hindi as an
approximation, can be fruitful and pivotal to high
performance. While efforts to handle noise in so-
cial media text (such as AA-based pretraining) can
also help, further research is required to establish
the most optimal ways to do the same.
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dalena Biesialska, Ondřej Bojar, Rajen Chatter-
jee, Vishrav Chaudhary, Marta R. Costa-jussa,
Cristina España-Bonet, Angela Fan, Christian Fe-
dermann, Markus Freitag, Yvette Graham, Ro-
man Grundkiewicz, Barry Haddow, Leonie Harter,
Kenneth Heafield, Christopher Homan, Matthias
Huck, Kwabena Amponsah-Kaakyire, Jungo Kasai,
Daniel Khashabi, Kevin Knight, Tom Kocmi, Philipp
Koehn, Nicholas Lourie, Christof Monz, Makoto
Morishita, Masaaki Nagata, Ajay Nagesh, Toshiaki
Nakazawa, Matteo Negri, Santanu Pal, Allahsera Au-
guste Tapo, Marco Turchi, Valentin Vydrin, and Mar-
cos Zampieri. 2021. Findings of the 2021 conference
on machine translation (WMT21). In Proceedings of
the Sixth Conference on Machine Translation, pages
1–88, Online. Association for Computational Linguis-
tics.

Loïc Barrault, Magdalena Biesialska, Ondřej Bo-
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A XLM details

In order to backtranslate the Hinglish data, we
hoped to train a good quality semi-supervised
system using the XLM toolkit (Conneau et al.,
2020b). We use Masked Language Modelling
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(MLM) to pretrain a transformer encoder model
on English, Hindi and Hinglish monolingual data.
The model consisted of 6 layers, 1024 embedding
dimensions, batch size 128, and a 0.1 dropout rate.
We use 16.5M sentences of English WikiMatrix
(Schwenk et al., 2021), 20M of HindiMono (Bojar
et al., 2014) and 18.8M of Hinglish from L3Cube-
HingCorpus (Nayak and Joshi, 2022) and CC-100
Hindi Romanized (Conneau et al., 2020a). Vocabu-
lary and data preprocessing is the same as for the
Marian models (4k BPE merges).

We then initialised a full transformer model with
the pretrained encoder, and further trained with
denoised autoencoding, MLM, machine transla-
tion13, and backtranslation14objectives. We use the
Samanantar corpus (10.1M) for the hi↔en trans-
lation objective, the 6.7k HinGe sentences as val-
idation for hg↔en and hg↔hi directions, and the
hi-en FLORES development set for hi↔en.

13hi↔en directions only
14Only direction involving hg: hi-hg-hi, en-hg-en, hg-hi-hg,

hg-en-hg
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