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Abstract
This paper describes the Stevens Institute
of Technology’s submission for the WMT
2022 Shared Task: Code-mixed Machine
Translation (MixMT). The task consisted
of two subtasks, subtask 1 Hindi/English
to Hinglish and subtask 2 Hinglish to En-
glish translation. Our findings lie in the
improvements made through the use of
large pre-trained multilingual NMT mod-
els and in-domain datasets, as well as back-
translation and ensemble techniques. The
translation output is automatically eval-
uated against the reference translations
using ROUGE-L and WER. Our system
achieves the 1st position on subtask 2 ac-
cording to ROUGE-L, WER, and human
evaluation, 1st position on subtask 1 ac-
cording to WER and human evaluation,
and 3rd position on subtask 1 with respect
to ROUGE-L metric.

1 Introduction
Code-mixing (or code-switching) is the phe-
nomenon when another language like Hindi
is interleaved with English words in the same
sentence. This code-mixed language is mostly
used in social media text and is colloquially
referred to as Hinglish. Despite Hindi being
the fourth most widely spoken language in the
world (Lewis, 2009), research in Hinglish trans-
lation has been a relatively unexplored task.

A major challenge in creating a transla-
tion system for code-mixed text is the lim-
ited amount of parallel data (Ranathunga
et al., 2021). Typical methods use standard
back-translation techniques (Sennrich et al.,
2015a) for generating synthetic parallel data
for training. Massive multilingual neural ma-
chine translation (NMT) models have recently
been shown to improve the translation perfor-
mances for low-resource and even zero-shot set-
tings. We propose using such large multilin-

gual NMT models for our code-mixed transla-
tion tasks.

Previous work has only used smaller
multilingual architectures (Gautam et al.,
2021). We use pre-trained multilingual models
trained in up to 200 language directions. We
finetune these models for the Hindi to Hinglish
and Hinglish to English tasks. One major chal-
lenge when using these massive models is the
GPU memory constraint. Another issue is the
ratio of English and Hinglish words interleaved
for each translation output. We use multiple
state-of-the-art GPUs with model paralleliza-
tion to overcome the memory issue. For the
amount of English in the outputs, we tune
the model parameters including learning rate,
dropout, and the number of epochs to get the
optimal translations.

Along with these pre-trained multilingual
NMT models, we also use additional in-
domain data, back-translation to generate ad-
ditional parallel data, and using multi-run
ensemble to improve the final performance.
All these methods gave us an improvement
of +24.4 BLEU for Hindi to Hinglish trans-
lation (subtask 1) and +28.1 BLEU points
for Hinglish to English translation (subtask 2)
compared to using only the organizer provided
data and the baseline experiment.

In this paper, we discuss our submission for
the WMT 2022 MixMT shared task. We par-
ticipate in both the subtasks and our submis-
sion system includes the following:

• Tune very large pre-trained multilingual
NMT models and finetune on in-domain
datasets;

• Back-translation to create synthetic data
for in-domain monolingual data;

• Multi-run ensemble to combine models
trained on various datasets;
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• Tune model parameters to enhance model
performance.

2 Related Work

Multilingual Neural Machine Transla-
tion (MNMT) Word and subword-level to-
kenizations are widely used in natural lan-
guage processing, including NMT/MNMT.
Morishita et al. (2018) propose to incorpo-
rate hierarchical subword features to improve
neural machine translation. Massively multi-
lingual NMT models are proposed by Aha-
roni et al. (2019) and Arivazhagan et al.
(2019). They are trained on a large number
of language pairs and show a strong and pos-
itive impact on low-resource languages. How-
ever, these models tend to have representa-
tion bottlenecks (Dabre et al., 2020), due to
the large vocabulary size and the large diver-
sity of training languages. Two MNMT sys-
tems (Tan et al., 2019; Xiong et al., 2021)
are proposed to solve this problem by modi-
fying the model architectures, adding special
constraints on training, or designing more com-
plicated preprocessing methods. Xiong et al.
(2021) adopt the contrastive learning scheme
in many-to-many MNMT. Tan et al. (2019)
propose a distillation-based approach to boost
the accuracy of MNMT systems. However,
these word/subword-based models still need
complex preprocessing steps such as data aug-
mentation or special model architecture de-
sign.

Code-mixed NMT The majority of re-
search for code-mixed translation focuses
on generating additional data using back-
translation methods. Winata et al. (2019)
used the sequence to sequence models to gener-
ate such data and Garg et al. (2018) used a re-
current neural network along with a sequence
generative adversarial network. Pratapa et al.
(2018) generated linguistically-motivated se-
quences. Additionally, there have been sev-
eral code-mixed workshops (Bhat et al., 2017;
Aguilar et al., 2018) to advance the field of
code-mixed data.

Hindi or Hinglish NMT Researchers have
worked on machine translation from Hindi
to English (Laskar et al., 2019; Goyal and
Sharma, 2019), however, there has been far

less work for Hinglish. A major issue is the lack
of parallel Hinglish-English data. Additional
parallel data generated by back-translation
is used to improve the performance (Gau-
tam et al., 2021; Jawahar et al., 2021). The
CALCS’21 competition (Solorio et al., 2021)
had a shared task for English to Hinglish for
movie review data.

3 Background

3.1 Task Description

The WMT 2022 CodeMix MT task consists of
two subtasks. Subtask 1 is to use Hindi or En-
glish as input and automatically translate it
into Hinglish. Subtask 2 is to input a Hinglish
text and translate it into English. Participa-
tion in both subtasks was compulsory for the
competition. We use Hindi only as the source
for subtask 1.

3.2 Neural Machine Translation

The Neural Machine Translation (NMT) task
uses a neural network-based model to trans-
late a sequence of tokens from one human
language to another. More formally, given
a sequence of tokens in source language
x = {x1, x2, · · · , xn}, the model outputs an-
other sequence of tokens in target language
y = {y1, y2, · · · , ym}. The input sequence
x is encoded into the latent representation
by a neural network-based encoder module,
and these representations are decoded by the
neural network-based decoder module. We
train transformer-based encoder-decoder mod-
els (Vaswani et al., 2017) to translate the data.
These models use a self-attention mechanism
in their architectures to boost performance.

3.3 Multilingual NMT (MNMT)

Initial NMT systems were only capable of han-
dling two languages. However, lately, there
has been a focus on NMT models which can
handle input from more than two languages
(Dong et al., 2015; Firat et al., 2016; Johnson
et al., 2017). Such models, commonly called
Multilingual NMT (MNMT) models, have
shown improvement in low-resource or zero-
shot Neural Machine Translation settings. In-
stead of translating a sequence of tokens in
source language x to another sequence in tar-
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get language y, the MNMT system uses multi-
ple sources and target languages.

There are two main approaches: (1) use a
separate encoder and decoder for each of the
source and target languages (Gu et al., 2018),
and (2) use a single encoder/decoder which
shares the parameters across the different lan-
guages (Johnson et al., 2017).

The issue with the first approach is that it
requires a much larger memory due to multiple
encoders and decoders (Vázquez et al., 2018).
The second approach is much more memory ef-
ficient due to parameter sharing (Arivazhagan
et al., 2019).

Training a model using the second approach
can be done by adding a language tag to the
source and target sequence. Specifically, when
the decoding starts, an initial target language
tag is given as input, which forces the model
to output in that specific language.

4 Methods

For the initial set of experiments, we use the
baseline transformer model (Vaswani et al.,
2017). For all the other experiments, we use
pre-trained multilingual NMT models and fine-
tuned them for the specific datasets. We can
divide these into three groups based on the
number of parameters. (1) smaller models in-
cluding mBART-50 (Tang et al., 2020) and
Facebook M2M-100 medium model (Fan et al.,
2021) (M2M-100), (2) the medium models in-
clude the Facebook NLLB-200 (Costa-jussà
et al., 2022) (NLLB-200) and Google mT5 XL
(Xue et al., 2021) (mT5-XL), and (3) for large
model we use the Google mT5 XXL model
(Xue et al., 2021) (mT5-XXL). The parameter
count for each of the models and the training
time per epoch for baseline datasets are men-
tioned in Table 1.

For both subtasks, we use Hindi as the
source language tag and English as the target
language tag.

4.1 Pre-trained Models
To train the transformer, mBART-50, and
M2M-100 models, we use the Fairseq toolkit
(Ott et al., 2019), and the larger NLLB-200,
mT5-XL, and mT5-XXL models use the Hug-
gingface toolkit (Wolf et al., 2019). Table 1
lists the parameter count for each pre-trained

multilingual model.

Model Params
mBART-50 611M
M2M-100 1.2B
NLLB-200 3.3B
mT5-XL 3.7B

mT5-XXL 13B

Table 1: Parameter count for each pre-trained mul-
tilingual model.

4.2 Data Augmentation
We use three different ways to add additional
in-domain data for training our models.

Additional in-domain data We use addi-
tional in-domain parallel data and add it to
the training data for accuracy improvement.
Since our focus is on Hindi for subtask 1 and
Hinglish for subtask 2, we tried to look for
data from additional domains with Hindi or
Hinglish as the source. We use Kaggle Hi-
En (Chokhra, 2020) and MUSE Hi-En dictio-
nary (Lample et al., 2017) for subtask 1. For
subtask 2, we use Kaggle Hg-En data (Tom,
2022), CMU movie reviews data (Zhou et al.,
2018), and CALCS’21 Hg-En dataset (Solorio
et al., 2021). We also use selected WMT’14
News Hi-En sentences (Bojar et al., 2014) and
the MTNT Fr-En and Ja-En data (Michel and
Neubig, 2018). Table 2 all lists these datasets.

Back-translation A common technique
used to increase the data size for low-resource
languages is to use in-domain monolingual
data and generate synthetic translations
using a reverse translation system (Sennrich
et al., 2015a). We use google translate
for back-translation. We translate samples
from the English side of Tatoeba Spanish
to the English dataset (Tatoeba, 2022) and
Sentiment140 dataset (Go et al., 2009) into
Hinglish and use the synthetic translations as
additional bilingual data.

4.3 Ensemble
We use a multi-run ensemble (Koehn, 2020)
to combine multiple model’s best checkpoints
to boost the final performance. We average
the probability distribution over the vocabu-
lary for all the models to generate a final prob-
ability distribution and use that to predict the
target sequence.
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Dataset Sentences VR V

HinGE Hi-Hg 2.3K 103K 19K
PHINC Hg-En 13K 302K 55K
HinGE Hg-En 11K 109K 22K
Kaggle Hi-En 11K 220K 31K
Kaggle En-Hg 1.8K 98K 17K
MUSE Hi-En 30K 29K 24K

CMU Reviews Hg-En 8K 180K 24K
CALCS’21 Hg-En 8K 182K 23K

Back-translation Hg-En 8.5K 48K 7K
WMT’14 Hi-En 15K 181K 21K
MTNT Fr-En 10K 16K 14K
MTNT Ja-En 3.5K 120k 8K

Table 2: Datasets provided by the organizers and
additional in-domain and out-of-domain datasets
used for subtask 1 and 2. VR is the number of
running words and V is the vocabulary size.

5 Datasets

The competition provided one dataset for each
of the subtasks, HinGE Hi-Hg (Srivastava and
Singh, 2021) for subtask 1 and PHINC Hg-
En (Srivastava and Singh, 2020) for subtask 2.
The competition also provided the validation
data. In addition to these, we also use addi-
tional in-domain and out-of-domain datasets.

Due to a large overlap of English and
Hinglish vocabulary, we use Hindi-English (Hi-
En) and Hindi-Hinglish (Hi-Hg) datasets for
subtask 1. For subtask 2, we use various
Hinglish-English datasets. All the competition
provided datasets, the additional in-domain
datasets, and the additional out-of-domain
datasets used for both the subtasks are listed
in Table 2. As HinGE En-Hg has multiple
Hinglish translations for a single English sen-
tence. We duplicated the English to increase
the size of the data. For the WMT’14 Hi-En
dataset, we selected the closest 15K sentences,
selected using cosine similarity with source-
side validation data.

To preprocess the data, we tokenize using
the Moses tokenizer (Koehn et al., 2007) or
the model-specific tokenizer provided by Hug-
gingface. Additionally, we apply either Byte
pair encoding (BPE) (Sennrich et al., 2015b)
for the baseline transformer model and sen-
tence piece (Kudo and Richardson, 2018) for
all other models including mBART-50, M2M-
100, NLLB-200, mT5-XL and mT5-XXL to
split words into subwords tokens.

6 Experiments
This section describes the experimental de-
tails, including the toolkits, the parameter set-
tings for the model training and decoding, and
the results.

6.1 Tools & Hardware
For the Models mentioned in Section 4.2, we
train the smaller models on 32GB NVIDIA
Tesla V100 GPUs, and the medium and larger
models require multiple 80GB NVIDIA A100
GPUs. We use a total of 4 V100 GPUs and
16 A100 GPUs. Due to GPU memory usage
(see Section 1), we parallelized the training of
the medium and larger models using the Deep-
Speed package (Rasley et al., 2020).

6.2 Training Details
As an NMT baseline, we use the baseline
transformer model (Vaswani et al., 2017) pro-
vided by the Fairseq toolkit. The model has
half number of attention heads and the feed-
forward network dimension compared to the
Transformer (base) model in Vaswani et al.
(2017). The rest of the network architecture is
the same. We train this model from scratch by
adding additional datasets and finally tuning
it on the validation data.

We use the Fairseq toolkit for training the
baseline transformer from scratch and for fine-
tuning the mBART-50 and M2M-100 models.
For finetuning NLLB-200, mT5-XL, and mT5-
XXL models, we use the Huggingface toolkit.
For the pre-trained multilingual models, we
use the Hindi language encoder and English
language decoder for finetuning and decoding.

As shown in Table 4, we finetune the models
with the listed datasets for each subtask. We
initially fine-tune these models on ID 4 dataset
mentioned in Table 4. Finally, we further fine-
tune the models on the validation datasets pro-
vided by the organizers.

Hyper-parameter settings We train the
Transformer model from scratch and finetune
all the multilingual pre-trained models. We
train Transformer, mBART-50, and M2M-100
models for 10 epochs on the ID 4 datasets and
5 epochs on the validation dataset. We fine-
tune the larger models listed in Table 3, for
a maximum of 3 epochs before tuning on the
validation for 7 epochs for subtask 1 and 4
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Model Train time/epoch
Subtask 1 Subtask 2

mBART-50 2 mins 14 mins
M2M-100 8 mins 33 mins
NLLB-200 16 mins 1.5 hrs
mT5-XL 20 mins 15 hrs

mT5-XXL 5.5 hour 24 hrs

Table 3: Per epoch training time for each of the
models. The training time is for ID 4 datasets in
Table 4.

epochs for subtask 2, respectively. We set the
Adam betas to 0.9 and 0.98 for all the models
and tuned the learning rates between 1e−5 and
9e−5. We opt for higher learning rates for the
initial epochs and use lower learning rates for
the remaining epochs. Finetuning with a high
learning rate for fewer epochs is particularly
helpful as larger models take much more time
per epoch, even with the larger GPU memory.
We also experiment with tuning the dropout
between 0.1 and 0.15, and we get the best per-
formance with the dropout rate set to 0.1. The
batch size is limited to smaller values due to
memory constraints. We set the batch size to
10 or 20 for larger models and 40 or 50 for
medium-sized or smaller models.

Decoding parameters For the decoding
step for both tasks, we set English as the tar-
get language tag for all the models. We tune
the beam size, and the optimal beam size is
17 for both subtasks on the validation set.
We limit the maximum sentence length to 128
only for the medium and larger models like
NLLB-200, mT5-XL, and mT5-XXL. Finally,
we detokenize the translation output as a post-
processing step (Koehn et al., 2007).

6.3 Additional Experiments
We also perform additional experiments that
are helpful but not included in the final sub-
mission due to limited time. These are the
MTNT datasets and the ensemble methods.
Firstly, we use the MTNT dataset as an ad-
ditional bilingual in-domain data set contain-
ing different source languages. We also ap-
ply the multi-run ensemble method to combine
models trained on multiple datasets together
(Koehn and Knowles, 2017). For both tasks,
we train M2M-100 models on the MTNT Fr-
En data and the MTNT Ja-En data before
tuning them on the baseline datasets, respec-

tively. Additionally, we first fine-tune the
WMT’14 News Hi-En data and then fine-tune
the baseline data. Then we ensemble these two
models with the original base model.

7 Results

We evaluate the models with respect to the
BLEU score using sacrebleu. Table 5 shows
the results of the experiments for both tasks
and all the models. In general, we get improve-
ment with larger multilingual models and with
validation finetuning.

Table 4 shows the results of training from
scratch using the transformer model with addi-
tional in-domain datasets. We get a maximum
improvement of 9.3 for subtask 1 and 4.0 for
subtask 2 using the additional datasets. Fi-
nally, tuning on validation gave an additional
boost of +1.1 and +0.2 BLEU for subtasks
1 and 2 respectively. Table 5 shows the re-
sults for using pre-trained multilingual mod-
els on the ID 4 datasets. We get a maximum
improvement of 25.6 and 32.6 for subtasks 1
and 2. This is +14.0 and +23.9 BLEU points
higher than the best transformer model’s re-
sults in Table 4.

Table 6 shows the ensemble results of a
multi-run ensemble of the three models: (1)
The baseline M2M-100 model in Table 5, (2)
The M2M-100 model first trained on MTNT
data and then on the baseline data, and (3)
Training the M2M-model on MTNT data,
then on WMT data, and finally on the baseline
data. We get a slight decrease of −0.3 BLEU
for subtask 1 compared to the baseline. How-
ever, for subtask 2, the performance improves
by +0.8 BLEU points.

8 Analysis

We analyze the translation outputs of NLLB,
mT5-XL, and mT5-XXL models. For subtask
1, the issues we faced were that the sentences
were translated entirely to English and did not
contain any Hinglish words. Some words were
translated partially to Hinglish, and a portion
of the words remained in the Hindi language.
For subtask 2, the issues we faced were that
the names of animal species were not trans-
lated correctly. And idioms lose their mean-
ing in translation. Examples of these issues
are shown in Table 7 & 8.
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ID Datasets Hi-Hg
1 HinGE 1.2
2 [1]+Kaggle 6.4
3 [2]+WMT’14 News 10.3
4 [3]+Facebook MUSE 10.5
5 [4]+val tune 11.6

ID Datasets Hg-En
1 PHINC 4.5
2 [1]+HinGE 5.1
3 [2]+CALCS’21 5.2
4 [3]+Back-translation 8.5
5 [4]+val tune 8.7

Table 4: Adding in-domain datasets. Baseline: Transformer (Vaswani et al., 2017). Evaluation critierion:
BLEU[%]. add citation of the datasets. Training from scratch without pre-trained models. ‘+val tune’
is further finetuning on validation data. All the results are evaluated on the competition’s test data.

Pretrained Multilingual Model subtask 1 subtask 2
baseline +val tune baseline +val tune

mBART-50 16.9 - 18.3 -
M2M-100 18.9 - 23.8 -
NLLB-200 11.5 - 23.8 30.3
mT5-XL 18.8 25.6 24.0 31.7

mT5-XXL 18.5 24.0 24.9 32.6

Table 5: Initialization with pre-trained models. BLEU scores (%) for subtask 1 and 2. ‘baseline’ experi-
ment is finetuning the pre-trained model on the ID 4 datasets in Table 4. ‘+val tune’ is further finetuning
on validation data. All the results are evaluated on the competition’s test data. bold results are the
final submission.

Task Models BLEU

subtask 1 Base 18.9
Base+MTNT+WMT 18.6

subtask 2 Base 23.8
Base+MTNT+WMT 24.6

Table 6: Checkpoint ensemble results for subtask 2
trained on M2M-100 model evaluated on the com-
petition’s test data. The base is the baseline M2M-
100 experiment. MTNT is first training on MTNT
data and then tuning on the baseline. WMT tunes
on MTNT, then WMT, and finally on baseline
data.

Src देश कɃ राष्टर् ीय िक्रकेट टीम ...
NLLB The national cricket team in the country...
mT5-XL desh ki national cricket team...
mT5-XXL country ki national cricket team...
Ref desh ki national cricket team...
Src यह प्रमाʺणत हो चुका है जो एक  चमत्कार है ।
NLLB It has been proven which is a miracle.
mT5-XL yah pramanit ho chuka hai jo ek miracle hai.
mT5-XXL yah pramanit ho chuka hai jo ek चमtkaar hai.
Ref yah pramanit ho chuka hai jo miracle hai.

Table 7: Examples of errors for subtask 1.

9 Conclusion

This paper describes our submitted transla-
tion system for the WMT 2022 shared task
MixMT competition. We train five different
multilingual NMT models including mBART-
50, M2M-100, NLLB-200, mT5-XL, and mT5-
XXL, for both subtasks. We finetune on in-
domain datasets including the validation data

Src lol...gayi bhains paani mein...
NLLB lol... went bhains in water...
mT5-XL lol... animals went in water...
mT5-XXL Lol... Goat got in the water...
Ref lol.. buffalo went in the water...
Src ye video dekh kar to khoon khaul gya
NLLB After seeing this video, blood came out.
mT5-XL seeing this video, my blood bleed.
mT5-XXL Blood boiled after watching this video.
Ref By watching this video, blood boiled.

Table 8: Examples of errors for subtask 2.

and significantly enhance our translation qual-
ity from 1.2 to 25.6 and 4.5 to 32.6 for subtasks
1 and 2 respectively. Additionally, we also
apply data-augmentation techniques including
back-translation, tuning on in-domain data,
and checkpoint ensemble. Our system got the
1st position in subtask 2 for both ROUGE-L
and WER metrics, the 1st position in subtask
1 for WER, and 3rd position in subtask 1 for
ROUGE-L.
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