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Abstract

Code-mixed machine translation has become
an important task in multilingual communities
and extending the task of machine translation
to code mixed data has become a common
task for these languages. In the shared tasks of
WMT 2022, we try to tackle the same for both
English + Hindi to Hinglish and Hinglish to
English. The first task dealt with both Roman
and Devanagari script as we had monolingual
data in both English and Hindi whereas the
second task only had data in Roman script.
To our knowledge, we achieved one of the
top ROUGE-L and WER scores for the first
task of Monolingual to Code-Mixed machine
translation. In this paper, we discuss the use
of mBART with some special pre-processing
and post-processing (transliteration from
Devanagari to Roman) for the first task in
detail and the experiments that we performed
for the second task of translating code-mixed
Hinglish to monolingual English.

1 Introduction

Code Mixing occurs when a multi-lingual
individual uses two or more languages while
communicating with others. It is the most natural
form of conversation for multilinguals. It is
often confused with code-switching but there is
a slight difference between the two. Both these
phenomena include communicating in multiple
languages but code switching usually takes place
within multiple sentences while code mixing
usually refers to words of different languages used
in the same sentence. In code mixing, phrases,
words and morphemes of one language may be

embedded within an utterance of another language.

Code mixing is extensively observed on social
media sites like Facebook and twitter. With the
rapid growth of social media and consequently,
increase in the use of code-mixed data, it becomes
important to develop systems to process such text.

Machine Translation, also known as automated
translation, is the process where a software trans-
lates text from one language to another without
any human involvement. There are multiple forms
of machine translation, however, over the past
few years, neural machine translation has become
extremely popular. The WMT shared task had
two subtasks. The first subtask consisted of the
translation of Hindi-English parallel sentence pairs
to Hindi-English code mixed sentences through
machine translation. The second subtask consisted
of the translation of Hindi-English code mixed
sentences to English.

2 Background

While there is a growing interest in code-mixed
text analysis as a research problem, there is one
bottleneck that has hindered the growth of such
works, and that is the lack of data. Due to this,
there aren’t many robust models for code-mixed
text. To build standardized datasets of code-mixed
text, we need to come up with ways of text genera-
tion of these code-mixed texts. These texts would
be very helpful in training language models for
various code-mixed pairs as language models only
need unsupervised data.

Code Mixed text generation is a relatively new
problem, and so is its initial stage. One of the
recent works in this field (Rizvi et al., 2021) tried
to use linguistic theories to synthetically build code-
mixed text using parallel monolingual corpora of
two languages. The Equivalence Constraint Theory
(Poplack, 1980) says that code-mixing can only oc-
cur at parts of the text where the surface structures
of two languages map onto each other. So in these
parts, the grammatical rules of both languages are
followed. The Matrix Language Theory (McClure,
1995) tries to solve this problem by separating the
two languages into a base language and a second
language. The grammatical rules of the base lan-
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guage are followed, and parts of the base language
are replaced by the corresponding parts of the sec-
ond language whenever it is grammatically feasible
to do so.

Deep Learning and Neural Networks have also
been used to build systems for code mixed genera-
tion. In these systems, the problem of text genera-
tion has been posed as one of machine translation,
where monolingual text is translated to code-mixed
text. Some of the early work involved using the
then state of the art encoder-decoder models like
pointer generator networks(Winata et al., 2019) and
GANs(Chang et al., 2019) to translate two sets of
monolingual corpora into code mixed text. With
the rise of multilingual models like mT5 (Xue et al.,
2020), mBART, indicBART (Dabre et al., 2021),
etc. the task of translation has become much easier
as these models understand both languages and this
has been shown to outperform previous models in
many workshops.

mBART(Liu et al., 2020) is a denoising autoen-
coder which has been trained on a very large dataset
which contains text from 25 languages. It has the
same transformer based architecture and training
objective as BART, a denoising autoencoder which
was shown to be one of the best performing se-
quence to sequence models at the time. It has been
trained to reconstruct original text which has been
corrupted as a way to add noise. It can perform
various downstream sequence to sequence tasks
like machine translation, text summarization, etc.
mBART consists of 12 encoder layers and 12 de-
coder layers. There are 16 heads and a model di-
mension of 1024.

Another solution to circumvent the data problem
is to create translation systems that can translate
code-mixed text to monolingual text. This allows
us to use robust NLP systems for various down-
stream tasks.

While we have the above said top performing mod-
els at the moment, they are very heavy computa-
tional wise due to their large parameter sizes. With
resource constraints, it is tough to replicate their
performance. Helsinki’s OPUS-MT (Tiedemann
and Thottingal, 2020) model was of comparabaly
smaller size and focused on the initiative of support-
ing low-resource languages. It does accordingly
have lower performance. We have attempted at uti-
lizing this model in our case with further training
on provided data to understand whether under the
resource constraints, we can observe competitive

Data Length
Synthetic (Train) 3263
Synthetic (Validate) 396
Human Generated (Train) 1800
Human Generated (Validate) 376

Table 1: Distribution of Sentences in the data

performance.

The model architecture is based on a standard trans-
former setup with 6 self-attentive layers in the en-
coder and decoder network. It has 8 attention heads
in each layer. This is hence comparatively low
compute seeking as compared to the mainstream
models.

3 System Overview

3.1 Task1

In this section we propose our system for Task
1 which is English and Hindi to code-mixed text
translation

3.1.1 Dataset and Data Preparation

The dataset that we used for Task 1 was the HinGE
dataset (Srivastava and Singh, 2021). It is divide
into two parts, the synthetic dataset or the machine
generated dataset and the human generated dataset.
(Table 1) There were 3659 and 2176 sentences
respectively.

3.1.2 Model

In this task we finetune the mBART model on the
data given to us. Since mBART is a very large
model we needed to decrease its size. We do this
by reducing the vocabulary of the model as the
vocabulary adds to the model size by a lot and
we don’t need the vocabulary from the rest of the
25 languages. To reduce the vocabulary we cre-
ate our own vocabulary using the tokens present
in the task dataset, IIT-B English-Hindi parallel
corpus (Kunchukuttan et al., 2018) and the Dak-
shina Dataset (Roark et al., 2020) as we feel the
two datasets were large enough to create a vocabu-
lary extensive enough to solve the given task. We
process the input data from the given task data as
explained above to create our input. Using the
corresponding code-mixed sentences as the gold
output we finetune the mBART model.

3.1.3 Post Processing

The output of our model was in a mixed script
(Roman + Devanagari). So the post processing
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Post Processing

ROUGE-L. WER

Normal Output
With Automated Transliteration

With Automated Transliteration + Dictionary Based Transliteration 0.61667

0.39091 0.81884
0.48376 0.72561
0.63342

Table 2: ROUGE-L and WER scores after different post processing tasks

becomes one of the important step in this task as
we wanted our output Hinglish sentences to be only
in Roman script. We used transliteration function
from indicate library as our first step to see how
good the results will be. There were many instances
where the transliteration done by indicate was not
accurate. So the next step that we did was to create
a dictionary of most common words and numbers
with their corresponding transliterated Roman text.
This dictionary over the automatic transliteration
by indicate was used to get the best output of our
model in the Roman script.

3.2 Task?2

In this section we propose our system for Task
2 which is Hinglish (code-mixed) to English text
translation.

3.2.1 Observations

The data for task 2 are tweets based data. Due to
the tweets nature, we observed that:

e The URLs included tended to be at the end of
the sentences.

e The mentions (of the form
’@<some_user_tag>’ for instance
@LokSabha) at the beginning and the
end of tweets are generally such that the
sentences can be translated without them with
no-low loss of information.

» Hashtags which are added at the end of the
tweets are generally for increasing outreach
and exposure.

Based on the above observations, we found that
the information provided by these tokens to the
translation was not significant as compared to the
loss of information due to incorrect translation of
these units. Hence, we applied heuristics to appro-
priately preprocess the input data to exclusively and
exhaustively split the tweets into sentences (which
will be translated), URLs, mentions and hashtags,
which are then concatenated after the translation in
postprocessing.

3.2.2 Dataset and Data Preparation

The dataset that we used for Task 2 was the PHINC
dataset (Srivastava and Singh, 2020). It contains
13,738 parallel sentences in Hinglish (code-mixed)
and English of which we used a train-val-test split
of 80-10-10. We transliterated the Hinglish sen-
tences from the Roman script to the Devanagiri
script using the Google Transliterate API, to utilise
pre-trained Hindi to English translation models.
This transliterator was used among others due to it
having one of the best performance, it’s similarity
in the vocabulary space with the input dataset as
compared to the other transliterators available and
also that PHINC was jointly created using Google
Translate.

3.2.3 Model

Due to compute constraints, we decided to utilize
pretrained models, that would be efficient for our
dataset. To access better models, we went ahead
with models trained with a task or a subtask of
Hindi to English machine translation. We appro-
priately processed the data for the same. We hence
decided to finetune Salesken.Al’s pretrained model
provided on Huggingface Transformers. They
have finetuned Helsinki’s OPUS-MT model on
Al4Bharat’s Samanantar dataset (Ramesh et al.,
2021), a large indic dataset.

4 Experimental Setup

In task 1, we use the fairseq implementation of
mBART as our base model which has been trained
on 4 Nvidia GeForce RTX 2080 Ti GPUs. The
model has been trained using label smoothed cross
entropy as the loss criterion. The model uses an
Adam optimizer with polynomial decay learning
rate scheduling, dropout = 0.3, learning rate = 3 *
107°,e=1075, 81 =0.9 and 3> = 0.98.

The model was trained on 10000 steps with 2500
warm up steps and a batch size of 512 tokens.

We validate the model on each epoch on a vali-
dation set and at the end we select the model with
the lowest loss.

In task2, for fine-tuning we use the Salesken.AI’s
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pretrained model provided on Huggingface Trans-
formers. The model was trained on Nvidia GeForce
RTX 2080 Ti GPUs.The model has been trained
using label smoothed cross entropy as the loss cri-
terion. The model uses an Adam optimizer with
learning rate = 3 % 10™%, e =107, 31 = 0.9 and
=0.98.

5 Results and Evaluation

The test dataset consisted of 500 sentences. These
sentences also had both English sentence and its
corresponding Hindi sentence. ROUGE-L score
and WER score was considered for evaluation.
ROUGE-L score considers longest common sub-
sequence for its scoring. It counts the longest sub-
sequence which is shared between both reference
and the output. Its different from precision as it
only counts the ratio between longest subsequence
matched and the number of words matched. It does
not take all the words in the reference.

The WER score represents the word error rate. To-
tal errors between the reference and output is con-
sidered for this score. It adds up all the substitution,
addition and deletion required to convert the output
to the reference sentence and treat it as total error
of the output. It can be treated same as calculating
Levenshtein distance.

So our aim was to maximise ROUGE-L score and
minimize WER score. Our score improved as we
translitered the output from Devanagari to Roman
using indicate library. The score increase signifi-
cantly after we created a dictionary of words for
transliterating most common Hindi words and num-
bers. We achieved a ROUGE-L score of 0.61667
and WER score of 0.63342 after both the post pro-
cessing steps.

The test set provided for Task 2 contained 1500
lines, which were processed as mentioned in 5 The
results for the evaluation metrics we obtained for
the test set provided for Task 2 is available in 3.
Using the Google Transliterate API significantly
improved the quality of the input data, and also
the similarity of vocabulary with the dataset as
mentioned earlier. The application of heuristics
also bolstered the approach’s performance.

Based on qualitative evaluation, it was observed
that it struggled to get long sentence translations
which can be attributed to the source of the dataset
being of of tweets which have a noisy and inconsis-
tent structure. This is alongside the lower parame-
ter size and attention heads.

Metric Score
ROUGE-L 0.41493
WER 0.80804

Table 3: Results for Task 2

The model was trained till significant learning on
a wide array of parameters, till resource permits, in
an attempt to provide more opportunities to appro-
priately fine-tune the model, but even though there
was a sign of the model learning, the performance
was observed to be not competitive to the current
top performers.

6 Conclusion

In this paper, we approached code mixed ma-
chine translation problem from both the direction.
We used mBART for our first task of translat-
ing English and corresponding Hindi sentences to
Hinglish sentence. The results were significantly
improved through transliterating the output from
Devanagari script to Roman script. Two different
methods were used for the same. Our model sur-
passed baseline in ROUGE-L and WER scores by
a huge margin.

For the second task of translating Hinglish
sentences to English sentence by fine-tuning
Salesken.Al’s pre trained model. We cleared the
baseline but their is still work to be done in that
field as we think that it can be further improved.
For the future work in this area we would like to
work further on the second task in hand of translat-
ing codemixed language to a monolingual language.
We need to retrieve information about both the lan-
guages from the code mixed sentence and try to
give a output in a mono lingual langauge without
disturbing the word order.
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