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Abstract

The paper describes the University of Cape
Town’s submission to the constrained track of
the WMT22 Shared Task: Large-Scale Ma-
chine Translation Evaluation for African Lan-
guages. Our system is a single multilingual
translation model that translates between En-
glish and 8 South / South East African Lan-
guages, as well as between specific pairs of the
African languages. We used several techniques
suited for low-resource machine translation
(MT), including overlap BPE, back-translation,
synthetic training data generation, and adding
more translation directions during training. Our
results show the value of these techniques, es-
pecially for directions where very little or no
bilingual training data is available.1

1 Introduction

Southern African languages are underrepresented
in NLP research, in part because most of them are
low-resource languages: It is not always possible
to find high-quality datasets that are large enough
to train effective deep learning models (Kreutzer
et al., 2021). The WMT22 Shared Task on Large-
Scale Machine Translation Evaluation for African
Languages (Adelani et al., 2022) presented an op-
portunity to apply one of the most promising recent
developments in NLP — multilingual neural ma-
chine translation — to Southern African languages.
For many languages, the parallel corpora released
for the shared task are the largest publicly available
datasets yet. For some translation directions (e.g.
between Southern African languages), no parallel
corpora were previously available.

In this paper we present our submission to the
shared task. Our system is a Transformer-based
encoder-decoder (Vaswani et al., 2017) that trans-
lates between English and 8 South / South East
African languages (Afrikaans, Northern Sotho,

1Our model is available at https://github.com/Khalid-
Nabigh/UCT-s-WMT22-shared-task.

Shona, Swati, Tswana, Xhosa, Xitsonga, Zulu) and
in 8 additional directions (Xhosa to Zulu, Zulu to
Shona, Shona to Afrikaans, Afrikaans to Swati,
Swati to Tswana, Tswana to Xitsonga, Xitsonga
to Northern Sotho, Northern Sotho to Xhosa). We
trained a single model with shared encoder and de-
coder parameters and a shared subword vocabulary.

We applied several methods aimed at improving
translation performance in a low-resource setting.
We experimented with BPE (Sennrich et al., 2016b)
and overlap BPE (Patil et al., 2022), the latter of
which increases the representation of low-resource
language tokens in the shared subword vocabulary.
We used initial multilingual and bilingual models to
generate back-translated sentences (Sennrich et al.,
2016a) for subsequent training.

First, we trained a model to translate between En-
glish and the 8 Southern African languages. Then
we added the 8 additional translation directions and
continued training. For some of these additional
directions no parallel corpora were available, so we
generated synthetic training data with our existing
model. By downsampling some of the parallel cor-
pora to ensure a balanced dataset, we were able to
train our model effectively in the new directions,
while retaining performance in the old directions.

We describe the development of our model and
report translation performance at each training
stage. Our final results compare favourably to
existing works with overlapping translation direc-
tions. While there is considerable disparity in per-
formance across languages, our model nonetheless
achieves results that indicate some degree of effec-
tive MT across all directions (most BLEU scores
are above 10 and most chrF++ scores are above 40).
We also discuss our findings regarding techniques
for low-resource MT. We found overlap BPE and
back-translation to improve performance for most
translation directions. Furthermore, our results con-
firm the value of multilingual models, which proves
critical for the lowest-resource languages.

1039

https://github.com/Khalid-Nabigh/UCT-s-WMT22-shared-task
https://github.com/Khalid-Nabigh/UCT-s-WMT22-shared-task


2 Background

2.1 Multilingual Neural Machine Translation
(MNMT)

Multilingual models help low-resource languages
(LRLs) by leveraging the massive amount of
training data available in high-resource languages
(HRLs) (Aharoni et al., 2019; Zhang et al., 2020).
In the context of Neural Machine Translation, a
multilingual model can translate between more
than two languages. Current research in MNMT
can be divided into two main areas: training
language-specific parameters (Kim et al., 2019;
Philip et al., 2020) and training a single massive
model that shares all parameters among all lan-
guages (Fan et al., 2020; NLLB Team et al., 2022).
Our work lies in the second category, as we are
building a single multilingual translation system by
exploring back-translation and different vocabulary
generation approaches.

2.2 Back-Translation
Given parallel sentences in two languages A and
B (Ab, Ba), with goal of training a model that
translates sentences from A to B (A → B). Back-
translation works as follows: First, one trains a
(B → A) model using the available (Ab, Ba)
data. Then the Ba sentences are passed to the
model to regenerate Ab. This model’s output (A′

b)
is then considered as additional synthetic parallel
data (A′

b, Ba). The final step of back-translation is
training an (A → B) translation model using (A′

b,
Ba) as parallel data. The motivation behind back-
translation is that the noise added to the A′

b sen-
tences from regeneration increases the model’s ro-
bustness (Edunov et al., 2018). The same approach
can be extended to multilingual models (Liao et al.,
2021).

2.3 Overlap-based BPE (OBPE)
Byte Pair Encoding (BPE) is a vocabulary creation
method that relies on n-gram frequency (Sennrich
et al., 2016b). The starting point is a character-
based vocabulary. At each step, the BPE algorithm
identifies the two adjacent tokens with the highest
frequency, joins them together as a single token,
and adds the new token to the vocabulary. The
dataset is then restructured based on the expanded
vocabulary. In the case of multilingual training, a
single BPE vocabulary can handle all languages
by running the BPE algorithm on the union of the
data from all the languages. However, when con-

Language Pairs WMT22_african
eng-sna 8.7M
eng-xho 8.6M
eng-tsn 5.9M
eng-zul 3.8M
eng-nso 3M
eng-afr 1.6M
eng-tso 630K
eng-ssw 165K
xho-zul 1M
zul-sna 1.1M
sna-afr 1.6M*
afr-ssw 165K*
ssw-tsn 85K
tsn-tso 285K
tso-nso 212K
nso-xho 200K

Table 1: Number of available parallel sentences for all
language pairs. * indicates that no data is available for
these pairs and the number represents the amount of
synthetic data we generated.

Language Family LHRL LLRL

Germanic English(eng) Afrikaans(afr)
Nguni Xhosa(xho) Zulu(zul), Swati(ssw)
Sotho-Tswana Tswana(tsn) Sepedi(nso)
Bantu Shona(sna) Xitsonga(tso)

Table 2: The languages included in our translation sys-
tem, grouped by language family and whether they are
used as LHRL or LLRL for the OBPE algorithm.

structing a multilingual vocabulary, BPE will prefer
frequent word types, most of which are from HRLs,
leaving a smaller proportion of the vocabulary for
words from LRLs.

Overlap-based BPE (OBPE) is a modification to
the BPE vocabulary creation algorithm which en-
hances overlap across related languages (Patil et al.,
2022). OBPE takes into account the frequency of
tokens as well as their existence among different
languages. Given a list of HRLs (LHRL) and LRLs
(LLRL), OBPE tries to balance cross-lingual shar-
ing (tokens shared between HRLs and LRLs) and
individual languages’ representation. The optimal
OBPE vocabulary for a set of languages from differ-
ent families is produced by considering the highest
resource language from each family as LHRL and
the rest of the languages as LLRL.
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3 Datasets

The WMT22 dataset is released along with the
shared task. It contains bitext for 248 pairs of
African languages, referred to as WMT22_african.2

We use WMT22_african for both training and vali-
dation; the first 3 000 sentences from each language
pair is reserved for validation and the rest for train-
ing. Table 1 shows available number of sentences
for each language pair. No data was provided for
Shona-Afrikaans and Afrikaans-Swati, so we gen-
erated synthetic data for these translation directions
(see section 4.2.1). For testing, we used the Flores
dev set, which contains 997 parallel sentences for
each language pair. Additionally, we report the
results of the final translation system as evaluated
by the shared task organizers on a hidden test set.

3.1 OBPE
We trained BPE and OBPE tokenizers using the
eng ↔ LRL data only (the first 8 rows of table
1). The vocabulary size for both BPE and OBPE
is set to 40K. For OBPE, the LHRL contains the
highest-resource language from each language fam-
ily (eng, xho, tsn, sna), while LLRL includes the
rest of the languages (see table 2). We used Patil
et al.’s (2022) implementation for both BPE and
OBPE. This implementation is based on the Hug-
ging Face Tokenizers library.3

4 Methodology

In this work, we only focus on South and South
East African languages, their translation to/from
English, and eight translation directions between
these languages. We divided the training of the
translation system into two stages. In the first
stage, we trained a multilingual model for trans-
lating from all LRLs to English and vice versa.
To incorporate the translation directions between
LRLs into the system, we did further training on
the translation model from stage 1. We divided
the training process into stages instead of training
the model in one session due to computational re-
source constraints. Both stages are explained in
more detail below.

All models were trained with the Fairseq
toolkit (Ott et al., 2019). We used the
transformer-base architecture (Vaswani et al.,
2017) for training all bilingual models. We base

2https://huggingface.co/datasets/allenai/
wmt22_african

3https://huggingface.co/docs/tokenizers

Data ∆

sna-eng 0.1
xho-eng 0.2
tsn-eng −0.2
zul-eng −0.7
nso-eng 0.3
afr-eng 0.0
tso-eng 0.0
ssw-eng 0.3

eng-sna 0.1
eng-xho −0.2
eng-tsn 0.2
eng-zul 0.1
eng-nso −0.2
eng-afr 0.0
eng-tso −0.2
eng-ssw 0.0

Table 3: BLEU score differences between the OBPE
multilingual model (13th epoch) and the BPE multilin-
gual model (10th epoch) on Flores dev set. We stopped
training the BPE model at this point as the OBPE model
is computationally more efficient. The translation direc-
tions are sorted based on the available amount data.

the multilingual models on the BART architecture
(Liu et al., 2020), using Tang et al.’s (2021) imple-
mentation and hyperparameters, including adding
a token to indicate the source language before the
input sentence and a token for the target language
before the output sentence.

4.1 Stage 1: Translation Between LRLs and
English

We used BPE and OBPE vocabularies to train two
multilingual models for all directions between En-
glish and LRLs. Bilingual models were trained
for each translation direction using a single vo-
cabulary for each model. Finally, we performed
back-translation for all directions using the model
with the highest BLEU score in each case.

4.1.1 Multilingual Training
Multilingual models generally have more param-
eters and require more training time and compu-
tational resources than bilingual models. Compu-
tational constraints prevented us from fully train-
ing two multilingual models and then doing back-
translation from them. Subsequently we used BPE
and OBPE vocabularies to train two multilingual
models till the 10th and 13th epochs, respectively.
At this point, we found that the difference in trans-
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Figure 1: The change in the number of tokens in the training set per language when using OBPE instead of BPE.
Less training tokens correspond to better a representation of a language in the shared subword vocabulary, so
negative percentage changes reflect an improvement in low-resource language representation.
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Figure 2: The average number of tokens per sentence pair for all language pairs with English, comparing BPE and
OBPE vocabularies. More tokens lead to slower training.
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lation quality between the two models is negligible
(see table 3). However, the OBPE model is slightly
faster in training and represent LRLs better. A
language l is represented better in vocabulary V1

than V2 if V1 contains more subword tokens from l
than V2. The total number of tokens in l’s training
data will influence its representation in the vocabu-
lary. Reducing the number of tokens in the training
sentences requires increasing the vocabulary capac-
ity. Therefore, fewer tokens in the training data
corresponds to a better vocabulary representation.
We are interested in comparing BPE and OBPE’s
vocabulary representation for all languages. We
used the following formula to measure the relative
change in the number of training tokens when using
OBPE instead of BPE,

changel =
T l

OBPE − T l
BPE

T l
BPE

% (1)

where T l
BPE and T l

OBPE are the total number of to-
kens in language l’s training data when using BPE
and OBPE vocabularies, respectively. Figure 1
shows the change in number of training tokens for
all languages. The negative sign in the figure indi-
cates that OBPE represents the language better than
BPE. It can be clearly seen that OBPE represents
most LRLs better than BPE.

As we are training autoregressive models, the
training speed depends on the number of target to-
kens, which is controlled by the target language
representation in the subword vocabulary. There-
fore we use the average number of tokens per train-
ing example for each language pair (eng-l) as a
proxy for training speed. Fewer tokens leads to
faster training. Both source and target tokens are
included, as we are training the model to translate
in both directions:

AvgTokensVeng−l =
Tokleng−l + Tokengeng−l

Neng−l
(2)

where AvgTokensVeng−l indicates the average num-
ber of tokens in one training example from the
eng − l dataset using V vocabulary. Tokleng−l and
Tokengeng−l represent the total of l and eng tokens,
respectively, in the eng − l dataset, while Neng−l

represents the number of training examples in the
same dataset. Figure 2 shows the average number
of training tokens in each language pair when us-
ing BPE and OBPE vocabularies. We observe that
training with OBPE is slightly faster than training

with BPE. The speed difference is higher for lan-
guages that are better represented by OBPE (see
figure 1).

For these two reasons, and due to time and re-
sources constrains, we chose to continue with train-
ing the OBPE multilingual model only.

4.1.2 Bilingual Training
Multilingual models often harm performance on
high-resource languages compared to their bilin-
gual counterparts (Yang et al., 2022). For back-
translation, we used bilingual models for the subset
of language pairs where this happens. We had two
translation directions for each language (from/to
English) and two vocabulary options (BPE/OBPE)
for each direction. We ended up with 32 bilingual
models.

All bilingual models were trained on either an
Nvidia A100 full card (40GB) or a division of half
a card (20GB) for 45 epochs with a batch size of
12 288 tokens. The training time depends on the
language pairs, but the highest-resource language
pair took three days of training.

4.1.3 Back-Translation
For each translation direction, we choose one of the
following models for generating back-translation
sentences: OBPE bilingual, BPE bilingual, and the
17th epoch checkpoint from the OBPE multilin-
gual model. The selection is based on the models’
performance on the Flores dev set, as measured
by their BLEU score. We generated the back-
translation sentences from the available parallel
data only; no additional monolingual data was used.
Results from table 4 show the performance of those
three models. It can be seen that bilingual mod-
els are performing better in both directions of the
higher-resource language pairs and for eng-afr. We
discuss the results in more details in section 5.

We trained the OBPE multilingual model until
the 17th epoch. That checkpoint was then used
to generate back-translation data for the directions
where the multilingual models outperform bilin-
gual ones. Due to resources and time constraints,
we started training the back-translation multilin-
gual model from the 17th epoch checkpoint of the
OBPE multilingual model. The OBPE multilingual
model continued training regularly from the 17th
epoch.

We ran all multilingual experiments on 2 Nvidia
A100 cards (40GB each). One epoch of back-
translation or OBPE multilingual models took 16
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hours. Both models trained for 45 epochs with
a batch size of 16 384 tokens, leading to a total
training time of 30 days for each model.

After training both multilingual models, we had
four models for each translation direction; two
bilingual and two multilingual models.

4.2 Stage 2: Translation Between LRLs

At this stage we found that our models showed
adequate performance in the English-centric direc-
tions (similar evaluation scores to existing works
with overlapping translation directions). The goal
of the next stage was to add new translation direc-
tions between specific LRLs. Our best multilingual
model at this point (based on BLEU scores in the
English-centric directions) was the OBPE-based
model that was partially trained on back-translated
data. Therefore we selected this model to continue
training in the new directions. The model trained
for an additional 39 epochs on a training set cover-
ing the old and new directions (details in section
4.2.2). This took 9 days on a full Nvidia A100 card
(40GB), at which point validation performance had
stopped improving. This resulting model is the
system we submitted to the shared task.

4.2.1 Synthetic training data
As shown in table 1, the translation directions be-
tween LRLs (new directions) generally had smaller
datasets than the directions from/to English (old di-
rections). In fact, two of the new directions (Shona
to Afrikaans and Afrikaans to Swati) had no par-
allel corpora at all. To add these two directions to
the model, we generated partially synthetic training
data using the available English-centric parallel cor-
pora. Using our multilingual model, we translated
the English sentences in the English-Afrikaans cor-
pus to Shona, and the English sentences in the
English-Siswati corpus to Afrikaans. This pro-
duced parallel corpora for Shona-Afrikaans and
Afrikaans-Siswati, where the target sentences were
real and the source sentences were synthetic.

4.2.2 Balancing parallel corpora
The challenge in adding new translation directions
is to strike a balance between gaining performance
in the new directions, while ensuring that perfor-
mance in the old directions does not deteriorate in
the process. For this stage our model was trained on
parallel corpora in the old and new directions. In-
cluding training data for the old directions ensures
that the model does not lose its translation abilities

for these directions. However, the parallel corpora
for the old directions are on average much larger
than those of the new directions. Therefore training
on such an unbalanced dataset would likely result
in suboptimal performance for new directions.

To counter this, we downsampled the training
data for the old directions to match the correspond-
ing corpora in the new directions in order to balance
the model’s exposure to the old and new directions
during training. For example, to balance Xhosa
to Zulu training (1M sentences), we trained on
1M sentences only from both the English to Zulu
and the Xhosa to English corpora. Therefore the
encoder is trained for Xhosa balancing the Xhosa-
English and Xhosa-Zulu data, while the decoder
is trained for Zulu balancing the English-Zulu and
Xhosa-Zulu setting.

Another potentially better approach is upsam-
pling the training data for new directions. This
technique would ensure that the model is exposed
to all training data of old directions. However, we
did not explore this due to time constraints.

5 Results

We primarily used BLEU score for evaluating all
models on the Flores dev set. The final test set eval-
uation by the shared task organizers additionally
used sentence piece BLEU (spBLEU) and chrf2.

5.1 Translation Between English and LRLs

Table 4 shows our results on the translation between
English and LRLs. For each translation direction,
we selected the best model among the two bilin-
gual models and the 17th epoch checkpoint of the
OBPE multilingual to perform back-translation. Al-
though the multilingual model was trained only for
17 epochs, it outperformed the fully trained bilin-
gual models in some language pairs. Most of these
pairs are resource-poor (eng ↔ nso, tso, ssw).
The exception of this finding was the translations
between English and Afrikaans. These two lan-
guages are from the same family, so we hypoth-
esize that the bilingual models did not need help
from other resource-rich pairs or additional training
examples to translate between the two languages.
The training data of resource-richer language pairs
(eng ↔ xho, zul, tsn) were sufficient to train
good bilingual models.

After we fully trained both OBPE and
OBPE+back-translation multilingual models,
the OBPE model performed better than the
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Data Bi-BPE Bi-OBPE M-OBPE@17 M-OBPE M-OBPE+back M-OBPE-final
sna-eng 19.1 19.6 17.7 19.1 18.1 19.5
xho-eng 26.2 26.9 24.2 26.3 26.5 27.5
tsn-eng 11.8 11.9 18.1 19.2 16.1 20.3
zul-eng 28.7 28.2 26.4 28.6 30.0 30.0
nso-eng 12.9 14.6 23.1 25.5 22.9 26.9
afr-eng 47.5 48.5 41.8 45.0 46.4 44.8
tso-eng 1.1 3.3 17.2 18.8 16.9 20.7
ssw-eng 0.7 0.9 19.4 21.3 18.0 23.0

avg 18.5 19.2 23.5 25.5 24.4 26.6
eng-sna 10.1 9.9 9.3 10.0 10.1 10.3
eng-xho 12.3 12.6 10.9 11.8 12.7 12.1
eng-tsn 10.2 9.6 16.5 17.8 17.8 18.2
eng-zul 14.9 14.3 12.6 14.2 15.1 15.0
eng-nso 9.8 10.4 20.3 22.1 22.3 23.1
eng-afr 37.2 35.8 32.3 34.1 36.2 35.6
eng-tso 0.7 0.9 12.8 14.5 15.0 16.9
eng-ssw 0.7 0.9 6.2 6.9 7.0 7.7

avg 12 11.8 15.1 16.4 17 17.4

Table 4: BLEU scores on Flores dev set for translating between English and LRLs. The translation directions
are sorted based on the available amount data. Bi-BPE and Bi-OBPE are the BPE and OBPE bilingual models,
respectively. M-OBPE@17 is the 17th epoch checkpoints of the OBPE multilingual model, while M-OBPE is
trained for 45 epochs. M-OBPE+back and M-OBPE-final are the OBPE with back-translation multilingual models
before and after continued training for translation between LRL, respectively. underline indicates the model we
used for back-translation. Bold represents the best overall model.

Data M-OBPE+back M-OBPE-final
xho-zul 1.5 11.2
zul-sna 1.9 8.8
sna-afr 1.9 12.2
afr-ssw 1.3 4.9
ssw-tsn 2.0 14.5
tsn-tso 2.1 13.6
tso-nso 2.4 13.2
nso-xho 1.7 8.2

avg 1.8 10.8

Table 5: BLEU scores on Flores dev set for translating
between LRLs. M-OBPE+back and M-OBPE-final are
the OBPE multilingual models with back-translation
before and after continued training for translation be-
tween LRL, respectively. M-OBPE-final is the system
we submitted for the shared task. Bold represents the
best results.

back-translation model in most directions
with English as a target language, namely,
sna, tsn, nso, tso, ssw → eng. However, for the
three eng generation directions where the back-
translation model performed similarly or better
than the OBPE model (xho, zul, afr → eng),

the back-translation data was generated from
the bilingual models, not the OBPE multilingual
model. This synthetic data contains actual English
sentences and synthetic LRLs sentences. These
translation pairs were relatively resource-rich.
In contrast, most of the remaining pairs were
resource-poor, and their back-translation data
was generated from the partially trained OBPE
multilingual model. These results show that
although the 17th epoch checkpoint of the OBPE
multilingual model was better than bilingual
models in resource-poor language pairs, it was not
yet good enough for generating text in LRLs. This
led to a performance drop for the back-translation
model on most of the eng generation directions
compared to the OBPE multilingual model.

On the other hand, the back-translation model
outperformed the OBPE model in all directions
translating into LRLs. These directions require syn-
thetic English sentences and actual LRLs sentences
for back-translation. A plausible explanation for
this is that learning to translate to English is eas-
ier than translating to LRLs for both bilingual and
multilingual models.
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Data BLEU spBLEU CHRF2++ ∆CHRF2++
sna-eng 18.7 22.1 42.9 5.5
xho-eng 24.3 26.8 47.7 5.6
tsn-eng 19.8 22.1 42.6 7.7
zul-eng 26.7 28.5 49.3 6.5
nso-eng 26.5 28 48.1 9.4
afr-eng 44.7 46.4 66 9
tso-eng 20.3 21.8 41.9 8.8
ssw-eng 21.5 23.5 43.8 7.9

avg 25.31 27.4 47.79 7.55

eng-sna 10.3 17.6 41.1 2.9
eng-xho 9.4 18.6 42.5 3.4
eng-tsn 18.8 19.7 43 5
eng-zul 11.9 22.8 46.1 3.4
eng-nso 22.7 24.1 47.8 4
eng-afr 35.9 40.5 62.2 3.6
eng-tso 15.8 17.9 41.5 4.8
eng-ssw 7.6 15.5 38.9 4.4

avg 16.55 22.09 45.39 3.94

xho-zul 8.5 18 41.4 1.9
zul-sna 8.5 15 38.7 1.7
sna-afr 12 15.1 38 3.9
afr-ssw 5.3 11.2 34.3 7.2
ssw-tsn 14.4 15.4 38.9 2.9
tsn-tso 13.2 15.1 38.7 2.1
tso-nso 13.1 12 36.6 5.8
nso-xho 6.6 13.7 36.9 4

avg 10.2 14.44 37.94 3.69

overall avg 17.35 21.31 43.7 5.06

Table 6: The performance of our final system on the
shared task test set. ∆ CHRF2++ is the difference be-
tween the best submission and our system.

5.2 Translation between LRLs

Table 5 shows the performance of the OBPE+back-
translation model before and after continued train-
ing for translation between LRLs. The model’s
performance improved on both the initial language
pairs (in table 4) and the new translation directions.
Moreover, sna → afr and afr → ssw were im-
proved using only synthetic data (see section 4.2.1).
We ascribe the success in improving the model’s
performance in translating between English and
LRLs to the balancing approach (see section 4.2.2),
as we used real training data (not back-translated
sentences) in the continued training.

5.3 Official Results

Table 6 shows the results provided by the shared
task organizers for our system as evaluated on a
hidden test set. The table also compares the best
constrained submission for each translation direc-
tion and our system. Our model did not achieve the
best performance in any direction. However, the
teams whose models performed better all trained
on all languages included in the shared task (not
just Southern African languages).

We hypothesize that this is the main reason for
the gap in performance between our system and
the better performing ones, as those models could
benefit from more training data and increased cross-
lingual transfer. The fact that our model performs
relatively worse when translating into English pro-
vides some evidence for this: the other systems
could benefit learning to translate to English in
many more translation directions and with much
more data in total. Given our computational re-
sources, it would have required a total training time
of 106 days to cover all language directions in the
shared task. Unfortunately this was not feasible
in the time provided for the shared task. The find-
ings paper for the shared task presents more de-
tails about other teams’ submissions (Adelani et al.,
2022).

6 Conclusion

We have presented our multilingual neural MT
model for 8 Southern African languages. Until
recently, it would not have been possible to train
a multilingual model for these languages because
of data scarcity. During model development we
found the benefits of multilingual modelling to
be especially great for the lowest-resourced lan-
guages. Our results show that overlap BPE, back-
translation, and synthetic training data generation
are all valuable techniques for low-resource MT.
More generally, we find multilingual modelling to
be a fruitful approach to Southern African MT. For
future work we would like to investigate further
approaches for training large multilingual models
for low-resource languages with a limited compute
budget.
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