
Proceedings of the WILDRE-6 Workshop @LREC2020, pages 18–23
Marseille, 20 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

18

HindiWSD: A Package for Word Sense Disambiguation in
Hinglish & Hindi

Mirza Yusuf, Praatibh Surana, Chethan Sharma*
Department of Information and Communication Technology, Manipal Institute of Technology, Manipal

Academy of Higher Education, India
mirzayusuf1000@gmail.com, praatibhsurana@gmail.com, chethan.sharma@manipal.edu

Abstract
A lot of commendable work has been done, especially in high resource languages such as English, Spanish,
French, etc. However, work done for Indic languages such as Hindi, Tamil, Telugu, etc is relatively less
due to difficulty in finding relevant datasets, and the complexity of these languages. With the advent of
IndoWordnet, we can explore important tasks such as word sense disambiguation, word similarity, and cross-
lingual information retrieval, and carry out effective research regarding the same. In this paper, we worked
on improving word sense disambiguation for 20 of the most common ambiguous Hindi words by making use
of knowledge-based methods. We also came up with “hindiwsd”, an easy- to-use framework developed in
Python that acts as a pipeline for transliteration of Hinglish code-mixed text followed by spell correction,
POS tagging, and word sense disambiguation of Hindi text. We also curated a dataset of these 20 most used
ambiguous Hindi words. This dataset was then used to enhance a modified Lesk algorithm and more accurately
carry out word sense disambiguation. We achieved an accuracy of about 71% using our customized Lesk al-
gorithm which was an improvement to the accuracy of about 34% using the original Lesk algorithm on the test set.

Keywords: Word Sense Disambiguation, Code-Mixing, Indic Transliteration

1. Introduction
The use of a Hindi-English mix language usually
referred to as Hinglish has been used prominently
since the inception of social media. According to
a recent survey, around 57% of the Indian popula-
tion generally while conversing on any social media
prefer to use Hinglish over Devanagari Hindi or
English1. The popularity of Hinglish arises from
the fact that it is easier than typing in Hindi due
to the unavailability of Hindi characters on a com-
mon keyboard. Wordnets (George A. Miller. 1995)
are used extensively for many NLP-related tasks.
They are generally used for a number of processes
in information systems, including word sense dis-
ambiguation (which from here on we will refer to as
WSD), information retrieval, automatic text clas-
sification, automatic text summarization, machine
translation, and even automatic crossword puzzle
generation2. The Indian languages wordnet origi-
nated from the advent of the Hindi Wordnet (Bhat-
tacharyya et al., 2008). Using this model as de-
fault, the wordnets for other Indic languages were
developed. Eighteen of these languages have word-
nets under a common platform known as the In-
doWordNet (Pushpak Bhattacharyya, 2010). In
Natural Language Processing, WSD is the prob-
lem of determining which sense of a word is being
used in a particular sentence. Given a word, it

1https://www.milestoneloc.com/
guide-to-hinglish-language/

2https://en.wikipedia.org/w/index.php?
title=WordNet&oldid=1069690711

can have multiple possible meanings which makes
it difficult for a reader/system to understand the
meaning of the word by itself. However, when the
word is provided along with the context/sentence it
is a part of, it becomes easier to gauge its meaning.
The process of identifying this contextual meaning
of the word is called Word Sense Disambiguation”.
For
example, the Hinglish sentence Mein sonaa chaahta
hoon translates as I want to sleep, whereas in
the sentence Mein sonaa khareednaa chaahta hoon
translates as I want to buy gold, here the word
sonaa is being used in two different contexts and
hence has two different meanings; the first one be-
ing sleep and the other being gold. The presence
of just 1 extra word was able to change the mean-
ing of the word sonaa. Hence, one can see why it
would be tough for a model to carry out WSD.

2. Related Work
WordNet is a large lexical database of English.
Nouns, verbs, adjectives, and adverbs are grouped
into sets of cognitive synonyms (synsets), each ex-
pressing a distinct concept. Synsets are interlinked
by means of conceptual-semantic and lexical rela-
tions. WordNet is also freely and publicly avail-
able for download. Its structure makes it a use-
ful tool for computational linguistics and natu-
ral language processing. In recent times, it has
been developed in other languages as well such as
French, German, and in our case Hindi as can be
seen with the Hindi WordNet. Word Sense Disam-
biguation has been done for English by utilizing

https://www.milestoneloc.com/guide-to-hinglish-language/
https://www.milestoneloc.com/guide-to-hinglish-language/
https://en.wikipedia.org/w/index.php?title=WordNet&oldid=1069690711
https://en.wikipedia.org/w/index.php?title=WordNet&oldid=1069690711

19

the data from the original Wordnet, which con-
tains a vast amount of relations between words.
Various methods, both supervised, and unsuper-
vised have been used. Apart from this, Banerjee
and Pedersen (2002) also made use of knowledge-
based methods such as the Lesk algorithm (Michael
Lesk, 1986). Seo et al. (2004) made use of unsu-
pervised methods on English data and then eval-
uated their model on Korean datasets. Mihalcea
and Faruque (2004) made use of a supervised ap-
proach with a minimum amount of annotated data
and achieved commendable results on SENSEVAL-
3 (Snyder, Benjamin and Palmer, 2004) in all En-
glish tasks. Supervised and semi-supervised tech-
niques have tended to outperform the knowledge-
based methods as they use machine learning, which
to an extent can identify the semantic structure
of a sentence which knowledge-based methods fail
to. Pal and Saha (2015) also suggest that while
precision is high for knowledge-based approaches,
supervised approaches are best for languages with
rich amounts of data. In the case of Hindi and
Hinglish code mixed data, however, supervised ap-
proaches will only do so well due to some level
of data scarcity. This prompted us to employ
knowledge-based methods for our specific prob-
lem statement. With regards to Hindi, Singh et
al. (2013) carried out WSD by computing sim-
ilarity based on semantics. They were able to
achieve a commendable accuracy of about 60% on
20 polysemous Hindi nouns. Sinha et al. (2004)
also carried out a detailed evaluation of ambiguous
Hindi words and evaluated accuracies of particular
words grouped on the basis of domains. Gautam
and Sharma (2016) used an interesting approach
wherein they made use of bigrams and trigrams to
disambiguate 15 commonly used Verb Hindi words.
They achieved the highest precision of about 53%
on bigram words. All these papers leveraged the
Hindi WordNet. Through our model, we have tried
to focus on Hinglish code mixed as well as Hindi
data. In the case of WSD for Hinglish code mixed
data, the only extra step is the transliteration of
this Hinglish data to Devanagari Hindi post which
we carry on with our usual algorithm as is de-
scribed in the methodology section.

3. Methodology

A pipeline was created to ensure our model
could handle both Hinglish code-mixed as well as
Hindi Devanagari data. Apart from carrying out
WSD on Devanagari Hindi, we also leveraged pre-
existing tools for spell correction, POS tagging,
etc. The following sections describe the algorithm
used for WSD and modifications made to it to fur-
ther improve accuracy.

3.1. Lesk Algorithm
Lesk algorithm is a knowledge-based algorithm for
WSD. It is based on the assumption that words
in a given neighborhood will tend to share the
same topic. Simplified lesk algorithm is used to
compare the dictionary definition of an ambiguous
word with the terms contained in its neighborhood
and take an overlap of them. The highest over-
lap is then processed as the correct meaning. The
pseudo-code is shown in algorithm 1 along with the
flow diagram in Figure 1 and Figure2.

Figure 1: Traditional Lesk algorithm

Figure 2: Traditional Lesk algorithm

3.2. Custom Lesk Algorithm
In addition to the traditional Lesk algorithm, we
employed a modified Lesk algorithm that made use
of a helper dataset, tailored specifically for our task
of disambiguating the most commonly used Hindi
words. An intersection was taken with the input
sentence and the keywords in the helper dataset
to find which meaning for a particular word had
the highest overlap. This was then compared to
the initial lesk overlap, the highest overlap was
then chosen as the meaning of the ambiguous word.
As opposed to the Lesk algorithm that required

20

the POS tags3 for words to be disambiguated, our
custom algorithm leverages the synsets present in
the Hindi WordNet to predict the meanings. The
pseudo-code is as follows along with the flow dia-
gram in Figure 4.

Figure 3: Custom Lesk algorithm

Figure 4: Custom Lesk algorithm

3.3. Library Design and Features
The hindiwsd package is essentially a pipeline that
will carry out the following tasks- Hinglish to Hindi
transliteration Spell correction of Hindi text POS
tagging of Hindi text Word Sense Disambiguation
of Hindi text with the help of IndoWordNet En-
hanced disambiguation using custom Lesk algo-
rithm and custom dataset
A user can give input either as a Hinglish sentence
or as a Hindi sentence to the wordsense function
(see snippet 3.3). The wordsense function prints

3https://nptel.ac.in/courses/106101007

out each word of the sentence along with its dis-
ambiguated word meaning if the respective Hindi
word is present in the IndoWordNet.

3.3.1. Library Design
The hindiwsd package is built on top of a few
scripts taken from other pre-existing libraries with
modifications made to them to make them com-
patible with hindiwsd and modules written by the
authors. With the help of pre-existing libraries,
we were able to ensure the dependable functional-
ity of the pipeline as a whole and provide a well-
compiled multi-faceted model to be used for Hindi
and Hinglish WSD. The pipeline along with the
working of the key features has been explained in
the Features section.

3.3.2. Features
The input can either be a Hindi sentence in its
Devanagari form or a Hinglish code mixed sen-
tence. In any case, the sentence is then converted
to Devanagari Hindi using the indic-transliteration
tool4. After this, spell correction is performed us-
ing Spello5. The resultant sentence is then passed
through a POS tagger and the tags are then con-
densed and converted into 4 simple tags, i.e., noun,
adjective, verb, and adverb. This is done in order
to be able to use pyiwn (Panjwani et al., 2018) and
access the IndoWordNets synsets. Figure 5 shows
the pipeline that the data flows through.

Figure 5: Pipeline for Hindi WSD

4https://github.com/indic-transliteration/
indic_transliteration_py

5https://github.com/hellohaptik/spello

https://nptel.ac.in/courses/106101007
https://github.com/indic-transliteration/indic_transliteration_py
https://github.com/indic-transliteration/indic_transliteration_py
https://github.com/hellohaptik/spello

21

3.3.3. Hinglish to Hindi Transliteration
using indic-transliteration

The indic-transliteration package helps convert the
Hinglish code-mixed data to Hindi by making use
of dictionaries along with rules specified for the
conversion of each set of letters in a word from
Latin script to Devanagari Hindi.

3.3.4. Spell correction using spello
The spello package makes use of two spell cor-
rection models, namely, Phoneme which uses
the Soundex algorithm6, and Symspell7. The
Phoneme model makes use of the Soundex algo-
rithm and suggests spellings based on phonetics.
The Symspell model uses edit distances to suggest
spell corrections. Spello combines both these mod-
els and provides accurate spell correction.

3.3.5. POS tagging with indic_tagger
The indic_tagger package8 is a state-of-the-art
POS tagger and chunker for Indian languages. We
made use of the pre-trained CRF model for chunk-
ing9 and POS tagging. In order to make the tags
compatible and useful for the Lesk algorithm, we
carried out a mapping of the numerous model gen-
erated tags to 4 tags, i.e., noun, adjective, verb,
and adverb to make the tags useful for Lesk algo-
rithm. The POS mappings are shown in Figure 6

Figure 6: POS Mappings

3.3.6. Improved word sense
disambiguation with pyiwn

The pyiwn package is an API developed to access
the IndoWordNet. Using pyiwn, we were able to

6https://en.wikipedia.org/w/index.php?
title=Soundex&oldid=1055316589

7https://github.com/wolfgarbe/SymSpell
8https://github.com/avineshpvs/indic_tagger
9https://www.analyticsvidhya.com/blog/2021/

10/what-is-chunking-in-natural-language-processing/

access the synsets10, glosses, examples, and lexico-
semantic relations11 between synsets. We were
able to perform the Lesk algorithm on our data
successfully. Apart from this, as mentioned ear-
lier, a helper dataset was developed for the most
commonly used Hindi words to further aid our cus-
tom Lesk algorithm and make WSD more robust.

4. Helper Dataset
The Helper dataset is a small dataset that was
manually curated by us for the purpose of en-
hancing Lesk algorithm. It contains 20 of the
more commonly used ambiguous Hindi words and
words which occur frequently with those particular
words. Due to time constraints and limited man-
power, we curated the dataset to only hold the two
most frequent meanings of an ambiguous word de-
spite there being more. The dataset was structured
in a way such that for each meaning of a word, we
provide two sets of keywords generated from ran-
dom sentences consisting of the ambiguous word.
See 7 for a better understanding. In the example in

Figure 7: Helper dataset example

table 1, we try to showcase the meaning of the word
पता in different sentences where the context is dif-
ferent. In the first row the word means got to know,
whereas, in the second row, it means address. To
a native speaker, this is rather straightforward to
identify with the help of the context, that is, the
surrounding or supporting words in the sentence.

5. Results
Table 2 represents the results that we obtained
when we tested a word for a particular meaning.
The synset column in the table signifies the par-
ticular meaning of the word as indicated in the
IndoWordNet. The test set contains sentences
for each meaning along with the ambiguous word
in question. Along with the synset number, the
meaning corresponding to that particular synset is
shown in the meaning column. Finally, the results
of the traditional and modified Lesk algorithms are
displayed.
Figure 8 shows words and their respective mean-
ings along with the results obtained for both Lesk

10https://www.nltk.org/howto/wordnet.html
11https://en.wikipedia.org/w/index.php?

title=Lexical_semantics&oldid=1041088037

https://en.wikipedia.org/w/index.php?title=Soundex&oldid=1055316589
https://en.wikipedia.org/w/index.php?title=Soundex&oldid=1055316589
https://github.com/wolfgarbe/SymSpell
https://github.com/avineshpvs/indic_tagger
https://www.analyticsvidhya.com/blog/2021/10/what-is-chunking-in-natural-language-processing/
https://www.analyticsvidhya.com/blog/2021/10/what-is-chunking-in-natural-language-processing/
https://www.nltk.org/howto/wordnet.html
https://en.wikipedia.org/w/index.php?title=Lexical_semantics&oldid=1041088037
https://en.wikipedia.org/w/index.php?title=Lexical_semantics&oldid=1041088037

22

Figure 8: Results for a few common Hindi words
and their meanings

algorithms that were used. The comparison makes
it evident that our modified Lesk algorithm outper-
forms the normal Lesk algorithm. This was what
we expected as our helper dataset was tailored to
help improve disambiguation for commonly used
Hindi words.
Accuracy = Correctly predicted samples / Total
predicted samples (1) Table 3 shows the final re-

Lesk Modified Lesk
Accuracy (2

meanings of 20
most common
Hindi words)

34.21% 71.05%

sults measured using accuracy as the performance
metric This also shows that instead of maybe ap-
proaching WSD as a broad task, one can break it
down into smaller, more specific, and meaningful
subtasks, allowing for better accuracy and greater
utility.

6. Conclusion and Further Work
Creating a WSD model for a language with a scarce
amount of resources is a cumbersome task. In
this paper, we have tried our best to limit our
problem statement and focus on a task with real-
world applications, hence we chose to go with com-
mon words and dictionary-based methods while
also coming up with utilities that can aid further
research in this domain. The Lesk algorithm is
not the most efficient way to perform WSD since
it is incapable of understanding context or even
the semantics involved. However, this algorithm is
easy to use, quick to make predictions and can be
used to target specific subtasks even within WSD
as was demonstrated in this paper. Due to lim-
ited resources, we did not feel it would be the best
approach to employ supervised methods. Further
work can involve increasing the size of the dataset
and maybe involving machine translation systems
(Appicharla et al., 2021).

7. Bibliographical References
Appicharla Ramakrishna & Gupta, Kamal & Ekbal,

Asif & Bhattacharyya, Pushpak, (2021). IITP-MT at
CALCS2021: English to Hinglish Neural Machine
Translation using Unsupervised Synthetic Code-
Mixed Parallel Corpus. 31-35.
10.18653/v1/2021.calcs-1.5.

Banerjee, Satanjeev & Pedersen, Ted. (2002). An
Adapted Lesk Algorithm for Word Sense
Disambiguation Using WordNet. Computational
Linguistics and Intelligent Text Processing. 2276.
136-145. 10.1007/3-540-45715-1_11.

Chandra Bhal Singh Gautam and Dilip Kumar Sharma.
(2016). Hindi Word Sense Disambiguation Using
Lesk Approach on Bigram and Trigram Words.

 In
Proceedings of the International Conference on
Advances in Information Communication Technology
& Computing (AICTC '16). Association for
Computing Machinery, New York, NY, USA, Article
81, 1–5.

Michael Lesk. (1986). Automatic sense disambiguation
using machine readable dictionaries: how to tell a
pine cone from an ice cream cone. In Proceedings of
the 5th annual international conference on Systems
documentation (SIGDOC '86). Association for
Computing Machinery, New York, NY, USA, 24–26.

Mihalcea, Rada, 1974- & Faruque, Ehsanul.
SenseLearner: Minimally Supervised Word Sense
Disambiguation for All Words in Open Text, paper,
(2004); [Stroudsburg, Pennsylvania], University of
North Texas Libraries, UNT Digital Library.

Pal, Alok Ranjan and Diganta Saha.(2015). “Word
sense disambiguation: a survey.” ArXiv
abs/1508.01346: n. pag

Panjwani, Ritesh and Kanojia, Diptesh and
Bhattacharyya, Pushpak. (2018). pyiwn: A Python-
based API to access Indian Language WordNets. In
Proceedings of the 9th Global Wordnet

23

Bhattacharyya, Pushpak, Prabhakar Pande, and Laxmi

Lupu. (2008). Hindi WordNet LDC2008L02. Web

Download. Philadelphia: Linguistic Data

Consortium.

George A. Miller. (1995). WordNet: a lexical database

for English. Commun. ACM 38, 11 (Nov. 1995), 39–

41.

Pushpak Bhattacharyya. 2010. IndoWordNet
. InProceedings of the Seventh International Conference

on Language Resources and Evaluation (LREC'10).

8. Language Resource References

	Introduction
	Related Work
	Methodology
	Lesk Algorithm
	Custom Lesk Algorithm
	Library Design and Features
	Library Design
	Features
	Hinglish to Hindi Transliteration using indic-transliteration
	Spell correction using spello
	POS tagging with indic_tagger
	Improved word sense disambiguation with pyiwn

	Helper Dataset
	Results
	Conclusion and Further Work
	Bibliographical References
	Language Resource References

