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Abstract

Tracking state-of-the-art (SOTA) results in ma-
chine learning studies is challenging due to
high publication volume. Existing methods for
creating leaderboards in scientific documents
require significant human supervision or rely
on scarcely available LATEX source files. We
propose Table Entity LINker (TELIN), a frame-
work which extracts (task, model, dataset, met-
ric) quadruples from collections of scientific
publications in PDF format. TELIN identifies
scientific named entities, constructs a knowl-
edge base, and leverages human feedback to
iteratively refine automatic extractions. TELIN
identifies and prioritizes uncertain and impact-
ful entities for human review to create a cas-
cade effect for leaderboard completion. We
show that TELIN is competitive with the SOTA
but requires much less human annotation.

1 Introduction

Advances in the field of Machine Learning (ML)
are typically evidenced by producing better em-
pirical results on benchmark datasets. With over
334k AI papers published in 2021 (Zhang et al.,
2022), automated approaches to extract and cate-
gorize empirical results would help practitioners
track progress in the field.

Leaderboard extraction is challenging because
there is no universal lexicon, taxonomy, or structure
for reporting empirical results in ML publications.
New benchmark datasets and tasks are frequently
introduced, and established datasets are updated
or repurposed for new tasks or metrics. For exam-
ple, a publication with a table containing numerical
results on “ImageNet” could refer to any particu-
lar LSVRC challenge year (2010-2017), task (e.g.,
classification, object detection, localization), num-
ber of classes, dataset version, evaluation metric,
etc. These necessary details could be specified
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in table header cells, table captions, paragraphs
referencing the table, or elsewhere in the paper.
Additionally, ML publications are often only avail-
able in PDF format which infrequently explicitly
encodes the underlying document paragraph and
table structures.

Prior work on scientific leaderboard construction
suffer from the following weaknesses:
(1) Unimodal E.g., tables (Singh et al., 2019), ci-
tations (Viswanathan et al., 2021), and knowledge
bases (Chen et al., 2020). Leaderboard construc-
tion can benefit from processing publications holis-
tically rather than as a single data mode.
(2) Requires LATEX source files (Singh et al., 2019;
Kardas et al., 2020). While extracting document
structure is easier from LATEX files than PDF, many
publications are only publicly available in PDF.
(3) Closed Taxonomy (Kardas et al., 2020; Hou
et al., 2019). Assuming that the names of all
datasets, tasks and metrics are known apriori is
unrealistic given the rapid pace of the field.
(4) High Manual Effort. State-of-the-art meth-
ods (Kardas et al., 2020; Hou et al., 2019) use
supervised models that require large and manually-
curated training datasets.
(5) Crowd Sourced. E.g., paperswithcode.
com generally has precise leaderboard entries, but
lack systematic examination of the literature to
ensure leaderboard recall.

This work proposes Table Entity LINker
(TELIN) as a multi-modal framework that extracts
leaderboards from PDF collections of ML pub-
lications. TELIN produces (Task, Dataset, Met-
ric, Score) quadruples associated with each paper,
which can be grouped and sorted to produce a
leaderboard for each (Task, Dataset, Metric) triplet.
First, TELIN extracts textual content and tables
from all input PDFs and utilizes an off-the-shelf
scientific Named Entity Recognition (NER) model,
SpERT (Eberts and Ulges, 2020), to identify sci-
entific Named Entities (NE) in the text. Then,

paperswithcode.com
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TELIN matches NEs to table heading cell text to
infer the meaning of table cell values and extract
quadruples.As additional publications are parsed
and more NEs are recognized, TELIN iteratively
propagates these labels to previously seen tables
and text. TELIN also allows human feedback to
label new NEs in table header text. To facilitate
this, TELIN intelligently selects tables for human
labeling based on their potential for label propaga-
tion.

Our evaluation on the PWCLeaderboards
dataset (Kardas et al., 2020) shows that TELIN
uses significantly less human supervision on PDF
inputs to achieve comparable accuracy with the
state-of-the-art leaderboard extraction system, Ax-
cell (Kardas et al., 2020), which requires LATEX
source file inputs. While their accuracy is similar,
we conclude that TELIN is likely a more practi-
cal tool for leaderboard extraction since it requires
less human annotation and can be applied to any
publication avaiable in PDF.

2 Methodology

Figure 1 illustrates the pipeline of TELIN, whose
objective is to extract empirical result quadruples
(Task, Dataset, Metric, Score) from a PDF col-
lection of ML publications. We designed TELIN
based on the following observations: (1) Many
scores are presented in tables, but not all tables
display scores. (2) In most tables, column header
text (and separately row text) contain NEs of only a
single NE type - e.g., row headers only have model
names while col headers contain only metrics. (3)
NER on individual table cell texts is difficult since
the cell text is often only a few words and the NER
model is trained on full sentences. However, table
cell NEs are lexically the same as or similar to NEs
in the main document text, so NEs recognized by a
pretrained model in the main text can help identify
NEs within cell text. We now explain each step of
the pipeline in detail.

(a) Document Decomposition TELIN first con-
verts an unstructured PDF into a structured doc-
ument using a YOLO-based object detection
model (Redmon and Farhadi, 2018) to identify
paragraphs, section headings, captions, and table
regions. The rows, columns, heading blocks, and
cells are then extracted from each table region us-
ing the SPLERGE model (?) The PDF text can then
be associated with the identified regions to form a
structured document. While there are errors in this

extraction process, we found that the majority of
leaderboard errors are not a result of the extraction
process.

(b) Scientific NER on Text NER models typi-
cally require heavy supervision, so TELIN applies
a pre-trained SpERT (Span-based Entity and Rela-
tion Transformer) model (Eberts and Ulges, 2020)
to the entire main text of each PDF to identify NEs.
SpERT is a BERT-based model for NER that is
pre-trained on the SCiERC dataset (Luan et al.,
2018) of 500 abstracts from 12 AI conference and
workshop proceedings. SpERT classifies scientific
entities into 5 categories: Task, Method, Evalua-
tion Metric, Material (dataset), and General, which
align well with our quadruple schema of (Task,
Metric, Dataset, Score).

Since SpERT is trained on full sentences, it per-
forms poorly on short non-sentence text such as
table header cell text. Therefore, TELIN takes the
NEs from the main text and compares them with
table cell text and propagates NE labels for closely
matching text.

(c) Strings Matching After identifying NEs
from the main text, we perform string matching be-
tween these NEs and the text of each non-numeric
table cell. One challenge is that acronyms are often
used to shorten method, dataset, and metric names.
Another challenge is that exact string matches are
not guaranteed. To overcome these challenges,
TELIN uses a combination of fuzzy search and
short text representations to measure string similar-
ity:

char_s(a, b) = max(t_dist(a, b), dist(a, b))
(1)

score =
char_s+ sim(A,B)

2
(2)

where a, b are the two compared strings, A,B
are their respective Sentence-Bert (Reimers and
Gurevych, 2019) feature vectors, sim() is cosine
similarity, dist() is the length-normalized Lev-
enshtein string distance, and t_dist() computes
the difference between the tokenized strings. 1

The implementation of computing character level
similarity ratio is able to draw comparison be-
tween acronyms. The cosine similarity between

1We use the WuzzyFuzzy https://github.
com/seatgeek/thefuzz library. Specifi-
cally, we use fuzz.ratio() for dist() and
fuzz.token_set_ratio for t_dist(). Higher number
means more similar between strings.

https://github.com/seatgeek/thefuzz
https://github.com/seatgeek/thefuzz
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Figure 1: The TELIN framework consumes a collection of Machine Learning publications in PDF and extracts
reported results as (Task, Dataset, Metric, Value) quadruples.

the sentence representations indicates how close
the strings are semantically.

(d) Table Cells NER SpERT predictions can be
inaccurate, and the same or similar strings can be
predicted as different entity types. To disambiguate
the entity type of a string, we soft-label the string
based on majority vote of all predictions for that
string across the entire collection text. These labels
are then assigned to matching table cell strings.
Next, we assign labels to rows and columns of
table header cells based on our observation that
the type of all cells within a header row/column is
often the same. We do this based on cell majority
vote and propagate this label to all unlabeled cells.
For example, a header row/col with five cells would
be labeled when three cells have the same entity
type. Then, the 2 remaining unlabled cells would
be labeled with this majority type. Finally, the
leaderboards are identified when at least three out
of the four entities (Task, Dataset, Metric, Model)
appear in a table and caption.

(e) Constructing Collection Knowledge We
construct a knowledge base from the identified
leaderboards and use this as shared knowledge to
discover more entities in the documents. The whole
collection goes through a few iterations of updates
before the human review.

(f) Human Review TELIN integrates a guided
human review mechanism to significantly improve
the overall entity prediction and quadruple extrac-
tion. We compute an influence score Ev for each
entity and populate the table with the highest in-
fluence score for human annotations. The design

philosophy is to prioritize uncertain entities and
impactful entities: (1) Uncertain entities have high
entropy distributions for predicted entity type dis-
tributions from SpERT. (2) Impactful entities are
those that can cause a cascade effect for leader-
board completion. A cascade occurs if labeling
a string with an entity type and propagating that
label to all occurrences of that string throughout
the collection would cause a majority labeling of a
table header row/col and therefore trigger the prop-
agation of the label to other strings in that table
header row/col. Such label propagation may then
continue to trigger further cascading of the label.

Note that common entities, such as accuracy (as
metric) and COCO (as dataset), do not automati-
cally belong to this category. The proposed design
of this task is inspired by identifying influential
nodes in a network (Guo et al., 2020; Zhang et al.,
2013; Molaei et al., 2020).

First, we compute the uncertainty of a cell by
calculate the entropy of the predicted entity type
distribution:

Hv =
∑
l

−pl log pl (3)

where pl is the probability of entity type l for string
v. Higher values of Hv indicates higher uncertainty
of the entity type.

Then, we compute the uncertainty of the headers.

Hh =
∑
cl∈Γh

−pcl log pcl (4)

where pcl is the probability of the label l for header
h. This step aims to find headers that almost meet
the threshold for header labeling.
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Next, we construct a heterogeneous network for
the purpose of computing the potential of a cell to
cause a cascade. Each confirmed entity is a node
and edges are formed when two entities appear
in the same table header row/col. The “spreading
ability” (Guo et al., 2020) of a cell is computed as:

Huv = −puv log puv (5)

where puv = du∑
l∈Γvdl

, Γv are the immediate neigh-

bors of node v, and du is the degree of node u. Huv

indicates the spreading ability from node u to node
v.

Finally, the influence score of an entity Ev can
be acquired by:

Ev = Hv + nuv

∑
u∈Γv

Huv +
∑
u∈Γh

Hh (6)

TELIN selects tables including the entities with
the highest influence scores for human review. The
users are able to confirm or correct the types of the
entities on a row/column basis. The user can also
label any useful entities in the caption of the table.

(g) Iterative Update The entity type labels from
human feedback are treated as ground truth and are
used to finetune the SpERT model. The finetuned
SpERT model is then used to provide updated NE
predictions. This process continues for several iter-
ations until convergence.

3 Experiments and Results

We evaluate TELIN’s end-to-end performance on
Task, Dataset, Metric, Score (TDMS) quadruple
extraction on the PWCLeaderboards (Kardas et al.,
2020) task and compare it to the state-of-the-art Ax-
Cell model (Kardas et al., 2020). We select AxCell
as our main competitor due to its superiority against
other existing work (Hou et al., 2019). PWCLeader-
boards include 731 papers and 3,445 leaderboards,
which include the unique TDMS quadruples in ev-
ery paper. We follow Kardas et al. for evaluation
metrics. We also investigate the performance im-
provement from the human feedback phase.

End-to-end Performance Table 1 reports the
extraction results on PWCLeaderboards dataset.
TELIN’s performance is comparable to the state-
of-the-art results from AxCell with fewer annota-
tions. AxCell includes significant supervision in
their pipeline: a table type classification model

Table 1: Extraction results on PWCLeaderboards
dataset for entire quadruple (TDMS), triple with no
score (TDM), and individual entities. The performance
of our model is comparable to the state-of-the-art from
AxCell with less annotations.

Entity
Micro Macro

P R F1 P R F1

Axcell (1400 tables)

TDMS 37.3 23.2 28.7 24.0 21.8 21.1
TDM 67.8 47.8 56.1 47.9 46.4 43.5
Task 70.6 57.3 63.3 60.7 62.6 59.7

Dataset 70.2 48.4 57.3 53.5 52.7 49.9
Metric 68.8 58.5 63.3 58.4 60.4 56.5

Ours (75 tables)

TDMS 38.3 20.8 26.3 26.6 19.2 21.3
TDM 68.2 45.3 56.5 49.7 43.1 42.5
Task 70.3 53.7 59.2 60.5 57.3 57.1

Dataset 70.9 52.8 59.3 54.7 55.2 53.9
Metric 63.2 57.9 60.2 56.3 55.1 55.4

and a table segmentation model. Both models are
trained with 1400 carefully labeled tables. The
labeling of these tables require expertise and is
time-consuming. The guided human mechanism in
TELIN substantially reduces the requirements of
human supervision to achieve similar performance
as the state-of-the-art.

Analysis of Human Review We further investi-
gate the effect of the feedback by the number of
the annotations. Figure 2 shows the impact of the
guided human review system. We see improve-
ment in accuracy over the first 50 annotations with
convergence after 50 annotations. We observe that
the system struggles to identify the 60+ datasets in
Atari Games and all the presentation variations of
the Accuracy metric without human feedback. The
tables with these entities are always among the first
for human review.

Figure 2: Effect of active learning on the performance.
Solid lines are the performance of TELIN on quadruple
(Red) and triple (Blue) extraction. Dashed lines are the
performance of AxCell as a reference. Human feedback
provides performance boost in the first 50 annotations.
The performance converges after 50 annotations.
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4 Discussion

While TELIN presents promising performance, it
still does not exceed the state-of-the-art accuracy
in extracting leaderboards from machine learn-
ing research papers. Our method relies on the
propagation of discoveries from one paper to an-
other. The relatively small data size (731 papers)
of PWCLeaderboard dataset limits the capability
of TELIN. We will investigate whether introducing
more data helps the performance of TELIN. More-
over, unlike existing studies relying on taxonomy
of leaderboards known in advance, TELIN oper-
ates without any assumptions of taxonomy. We are
interested in analyzing the capacity of TELIN for
novel taxonomy discovery.

Extracting leaderboards from the scientific pa-
pers on the web is an example of integrating artifi-
cial intelligence in conceptual modeling (Embley
et al., 1998; Olivé, 2007). Conceptual modeling is
a vessel for humans to transform the noise in the na-
ture to structured or semi-structured presentations.
While automatic machine extraction has been uti-
lized to collect and organize data from a wide va-
riety of sources in conceptual modeling (Embley
et al., 1998; Bork, 2022; Nalchigar and Yu, 2018),
the role of deep learning and artificial intelligence
remains understudied in this field. The design of
TELIN is a demonstration of involving artificial
intelligence to facilitate conceptual modeling. We
hope this effort will invite future studies in this
domain.
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