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Abstract

The increased interest in time-domain astron-
omy over the last decades has resulted in a
substantial increase in observation report publi-
cation leading to a saturation of how astrophysi-
cists read, analyze and classify information.
Due to the short life span of the detected astro-
nomical events, information related to the char-
acterization of new phenomena has to be com-
municated and analyzed very rapidly to allow
other observatories to react and conduct their
follow-up observations. This paper introduces
TDAC: a Time-Domain Astrophysics Corpus.
TDAC is the first corpus based on astrophysical
observation reports. We also present the NLP
experiments we made for named entity recog-
nition based on annotations we made and anno-
tations from the WIESP DEAL shared task.

1 Introduction

Time-domain astrophysics consists in observing
and studying transient cosmic phenomena, i.e. un-
predictable, short-lived, and the most violent phe-
nomena occurring in the Universe, such as super-
novae explosions or gamma-ray bursts (GRBs),
which are highly energetic explosions lasting from
milliseconds to a few hours or days only (Neronov,
2019). The short life span of these events requires a
rapid sharing, analysis and synthesis of the informa-
tion disseminated in observation reports. However,
the increased interest in time-domain astronomy
has led to a significant increase in observation re-
ports, leading to a saturation of how astrophysicists
analyze and classify information in observation re-
ports. As the current manual reading and analyzing
of available information is approaching saturation,
new ways of handling information are necessary.

One of the most promising approaches is to build
Natural Language Processing (NLP) methods that
tackle the challenges of extracting and summariz-
ing information on observation reports by detect-
ing, for example, named entities. Named Entity

Recognition (NER) can identify and extract infor-
mation about an astrophysical object, such as the
date of detection, its coordinates in the Universe,
and numerous information, such as intensity and
magnitude, to let astrophysicists know if they can
trigger a follow-up observation. To train and evalu-
ate an NER system, a corpus must first be created
and annotated.

This paper presents TDAC: a Time-Domain As-
trophysics Corpus for NLP, based on observation
reports. To our knowledge, no existing resources
and studies so far are based on time-domain as-
trophysics observation reports, and therefore there
are no studies characterising the discourse used in
astrophysics. Our objective is twofold: The first
objective of our study, with the creation of this
corpus, is to highlight differences between astro-
physics corpora. What are their properties, and
are they all the same? We provide some elements
characterizing and revealing the specificity of the
formulations used in astrophysics by conducting a
corpus analysis (Section 4). Secondly, we started
building an NER system for the domain. Section 5
presents our annotations and the first NER experi-
ments we conducted on a sub-corpus of TDAC (75
documents). The annotated section of TDAC is the
first annotated and publicly available1 corpus based
on observation reports for named entity recognition
in time-domain astrophysics.

2 Research and Language Resources in
Astrophysics

The vast majority of the limited research performed
so far in NLP for astrophysics studies papers from
the Astrophysics Data System (ADS2). The ADS
is a database for researchers in astronomy with
more than 15 million records covering publications
in astronomy, astrophysics, and general physics.

1https://github.com/AtillaKaanAlkan/
TDAC

2https://ui.adsabs.harvard.edu/

https://github.com/AtillaKaanAlkan/TDAC
https://github.com/AtillaKaanAlkan/TDAC
https://ui.adsabs.harvard.edu/
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Abstracts and full text of astronomy paper publi-
cations are indexed and searchable through ADS,
making it a rich exploitable platform for creating
NLP resources.

2.1 The Astronomy Bootstrapping Corpus
The Astronomy Bootstrapping Corpus (ABC)
(Becker et al., 2005; Hachey et al., 2005) is
one of the unique existing annotated corpora
for astrophysical Named Entity Recognition
(NER). ABC consists of 209 abstracts of astro-
nomical papers extracted from the ADS. The
built corpus aimed to explore an active learning
approach to reduce annotation costs for a NER
task by defining four astrophysical named en-
tities: instrument_name, source_name,
source_type and spectral_feature,
with respectively 136, 111, 499 and 321 instances.
To our knowledge, the corpus is not available.

2.2 The Astro Corpus
Murphy et al. (2006) built a larger corpus than the
ABC for named entities detection by downloading
all the astronomical journal articles and conference
papers (52 658 documents) from the astrophysics
section (astro-ph) of arXiv. The annotated corpus
consists of 7840 sentences (approximately 200 000
words) with an average of 26.1 tokens per sen-
tence. There are 43 astrophysical named entities,
including celestial objects, telescope names and
categories related to astrophysical sources’ proper-
ties. To our knowledge, this corpus is not available
either.

2.3 The DEAL Shared Task Corpus
The Detecting Entities in the Astrophysics Litera-
ture (DEAL) shared task3 consists of developping
a system that identifies named entities in the as-
trophysics literature (Grezes et al., 2022). The or-
ganisers provided a baseline NER system using
astroBERT (Grèzes et al., 2021), a deep contextual
language model pre-trained on 395 499 publica-
tions (3 819 322 591 tokens, 16GB on disk) from
the ADS database. The astroBERT model is not
available yet, but preliminary results (F1-score of
0.902 on an NER task) are exposed in the above-
cited paper. The DEAL corpus comprises full-
text fragments and acknowledgements sections ex-
tracted from ADS papers for the shared task. The
corpus was split into train, development and test

3https://ui.adsabs.harvard.edu/WIESP/
2022/SharedTasks

sets, with 1753, 1366 and 2505 documents, respec-
tively. During the shared task, only the labels for
the training set were provided. We participated in
the shared task and had access to the entire anno-
tated collection4 (train+development+test) at the
end of the shared task. It is, therefore, the only
annotated corpus we have for comparison with our
TDAC corpus. We provide more detailed statistics
on the DEAL corpus in the rest of the paper.

2.4 Other Studies
Information Retrieval and Recommendation
System Kerzendorf (2019) downloaded astro-
physics papers from the arXiv Bulk Data Access to
build a corpus (201.997 articles). Their study aims
to develop a robust text-based similarity tool to
recommend articles given a reference input paper.
Mukund et al. (2018) built and deployed another
information retrieval and recommendation system,
"Hey LIGO", an open access NLP-based web ap-
plication for LIGO and VIRGO observatories (both
aiming to detect gravitational waves). Documents
used are extracted from the open source logbook
data from both observatories. Therefore, to our
knowledge, this is the only study not based on as-
trophysics papers. Data have been recorded since
2010, and the logbook consists of 83.911 entries,
and an automatic check for new data entries is peri-
odically done to update the models regularly.

Anaphora Resolution Kim and Webber (2006)
used astrophysics articles from the Monthly No-
tices of the Royal Astronomical Society (MNRAS)
to constitute a small corpus (it consists of more than
a hundred articles) for anaphora resolution. To con-
clude this literature review, most NLP resources
for astrophysics are mainly created and exploited
using scientific papers. This paper presents TDAC,
the first annotated corpus based on observation re-
ports for named entity recognition in time-domain
astrophysics.

3 Material for the TDAC Corpus

3.1 The resource platforms used
Reports are written and published on mainly three
platforms by an extensive network of professional
observers worldwide (astronomical observatories
and satellites) and are accessible in open source to
the entire research community. In this study, we

4Data are accessible for participants only. We do not know
how organisers will make the collection publicly available so
far.

https://ui.adsabs.harvard.edu/WIESP/2022/SharedTasks
https://ui.adsabs.harvard.edu/WIESP/2022/SharedTasks
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use these platforms to have a good coverage of the
domain.

The Gamma-Ray Burst Coordinates Network
The GCN5 platform is dedicated mainly to
the gamma-ray bursts astrophysicists community,
where observers report their observations and anal-
ysis of GRBs in the form of "GCN Circulars"
(Barthelmy et al., 1995).

The Astronomer’s Telegram This system is
a communication channel6 that allows instanta-
neously sharing and reporting information to the
astrophysicists’ community in the form of as-
tronomer’s telegrams or "ATel" (Rutledge, 1998).
Observers report discoveries regarding a large va-
riety of astronomical sources with no restrictions
on the type of discoveries (black holes, blazars,
neutron stars etc.).

The Transient Name Server The TNS7 is
mainly a dedicated platform for the astronomers’
community interested in confirmed supernovae can-
didates. Astrophysicists report their observations
in the form of "AstroNotes" (Gal-Yam, 2021).

3.2 Collecting the raw corpus

An archive with the complete set of published GCN
circulars in text files is available on the GCN web-
site. Thus, to collect raw data and build up our
corpus, we downloaded it. However, unlike GCN
circulars, there is no direct way to bulk download
all past ATel and AstroNotes. Therefore, we set up
a Python script using the BeautifulSoup package
to perform an automated extraction of the HTML
code of all reports published from 1997 to 2021
and parsed the content into a text file. Figure 1
shows the evolution of reports published annually.

The increase in published reports is due to the
number of observations monitored by various ob-
servers, particularly with the launch of the Swift
telescope in 2004, leading to a significant increase
in GCN circulars regarding GRB detection. How-
ever, we note a slight decrease in the number of
ATel telegrams since 2015. A migration of publi-
cations to the TNS platform could be the reason
for the decrease in the number of ATel published
per year. Another explanation for this decrease

5https://gcn.gsfc.nasa.gov/gcn3_
archive.html

6https://astronomerstelegram.org/
7https://www.wis-tns.org/astronotes/

Figure 1: Number of published reports from 1997 to
2021 (GCN circulars in blue, ATel in red, AstroNotes in
green)

could be that the types of objects processed in the
telegrams have been less observed in recent years.

4 Corpus Analysis

4.1 Statistics
As descibed in Table 1, within the TDAC corpus,
AstroNotes are the least numerous, as the platform
is more recent than GCN and ATel platforms. It
explains the significant difference in the total num-
ber of tokens for each type of document. However,
although AstroNotes are less numerous, they have
the highest lexical diversity. GCN circulars and
ATels seem to be quite similar in terms of vocabu-
lary richness. We notice that the DEAL corpus has
the least lexical diversity. Perhaps the documents in
this corpus are all from the same theme, or all deal
with the same types of astrophysical phenomena.
Among observation reports, GCN circulars are the
longest.

Corpus # Doc # Tokens Lex. Len.
ATel 15 108 3 250 292 0.068 260
GCN 31 964 7 283 252 0.065 319
AstroNotes 741 165 303 0.076 277
DEAL 5624 1815237 0.057 322

Table 1: Astrophysics corpus statistics comparison
(number of focuments, number of tokens, lexical di-
versity, and average length)

4.2 Most Frequent Word N-grams
Before counting the most frequent unigrams and
bigrams characterising the observation reports, we
proceeded to some text preprocessing8. Results in

8We removed stopwords, normalised all digits/numerical
values, and lemmatised each word.

https://gcn.gsfc.nasa.gov/gcn3_archive.html
https://gcn.gsfc.nasa.gov/gcn3_archive.html
https://astronomerstelegram.org/
https://www.wis-tns.org/astronotes/
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TDAC Unigrams Bigrams
ATel num_val, source, observation, atel,

spectrum, flux, telescope, image, x-ray,
transient

atel link, dec num_val, apj num_val, ref-
erence image, num_val mcrab, unfiltered
magnitude, host galaxy, autodetection system,
redshift num_val

GCN num_val, grb, gcn, observation, re-
port, burst, team, kev, swift

grb num_val, gcn num_val, num_val
gmt, num_val kev, light curve, upper limit,
fermi gbm, swift-xrt team, grb observation,
photon index

AstroNotes transient, atlas, survey, object, related,
report, telescope, observation, clas-
sification, search, supernova, system,
galaxy

related files, num_val mpc, grant num_val,
near earth, transient name, iau transient,
num_val arcsec, queens university, zwicky
transient, follow-up observation

Table 2: Most frequent unigrams and bigrams in the TDAC corpus

Table 2 show that more digits and numerical val-
ues (num_val token) exist in the GCNs and ATels
compared to the AstroNotes. We note and identify
different astronomical facilities and objects accord-
ing to the report’s type, such as swift and fermi
telescopes in the GCNs, or even atlas and zwicky
transient facility in the AstroNotes. We note dif-
ferent energy ranges and measurement units (kev,
mcrab, arcsec), or different wavelengths (x-ray) de-
pending on the type of report. Astrophysicists we
are collaborating with confirmed our conclusion:
in astrophysics, each community uses dedicated
platforms according to the discoveries that interest
them. Finally, the main thing we notice when an-
alyzing the bigrams is the strong interconnection
inside ATel and GCN circulars. Indeed, there are
many explicit references between the observation
reports (gcn num_val and atel link) regarding
detected events. Since the information concerning
an astrophysical event is disseminated across sev-
eral linked documents, it is essential to gather all
the documents and aggregate them by the event.

4.3 Syntactic Analysis

Campbell and Johnson (2001) showed the useful-
ness of the Pointwise Mutual Information (PMI)
and the chi-square χ2 distance to compare syntac-
tic complexity between corpora. Thus, we decided
to compute these two metrics to characterise the
discourse used in astrophysics. We computed the
positive PMI (see equation 1) on parts-of-speech
(POS) bigrams between two corpora: our TDAC
corpus composed of observation reports and the

DEAL challenge corpus.

PMI(x, y) = log2

(
P (xy)

P (x) ∗ P (y)

)
(1)

The mutual information allows highlighting the
proximity between two corpora. We also compared
the frequency of occurrence of single POS and POS
bigrams between corpora using the χ2 metric (see
equation 2).

χ2 =
∑(

Observed− Expected

Expected

)2

(2)

We used SciSpacy (Neumann et al., 2019) for POS
tagging after conducting performance tests9 of POS
labelling, and obtaining better performance than
NLTK, TreeTagger, Spacy and Genia tools.

4.3.1 Pointwise Mutual Information of POS
We divided each corpus into ten sections of the
same size in order to ensure stability of results. We
only considered the positive mutual information
and then set the negative values to zero. Table 3
reports the average postitive PMI for POS bigrams.

These results seem to point to a less complicated
syntactic structure in the DEAL corpus compared
to the TDAC one. Indeed, the average PMI value of
the DEAL corpus is slightly higher than the average
PMI score of the TDAC corpus. When looking
inside the TDAC corpus, we notice that compared
to ATels et GCNs, the occurrence of POS bigrams

9To compare tagging performances, we manually anno-
tated 20 documents from the TDAC corpus and compared
performances on POS tagging of 5 different tools to determine
the appropriate one for astrophysics texts.
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Corpus # token/section Avg PMI
TDAC 1 500 000 0.469 (0.028)
– ATel 450 000 0.554 (0.050)
– GCN 960 000 0.524 (0.009)
– AstroNotes 21 000 0.961 (0.044)
DEAL 210 000 0.622 (0.026)

Table 3: Average Positive PMI for POS bigrams (stan-
dard deviation of mean in parentheses)

in AstroNotes seems more dependent than those in
ATels and GCNs, as seen by the higher score in the
positive PMI. The syntactic structure seems to be
less complicated in AstroNotes.

4.3.2 Frequency Distributions of POS
We computed the chi-square metric to calculate the
distances between each corpora. The chi-square
distances for single and POS bigrams comparisons
are reported in Table 4. POS and POS bigrams

Corpus χ2 POS χ2 POS bigram
ATel-GCN 1 075 610.83 1 234 413.99
ATel-AstroNotes 1 594 932.63 1 597 152.56
GCN-AstroNotes 4 017 655.62 4 012 353.21

TDAC-DEAL 3 986 047.13 4 053 795.68

Table 4: χ2 distance comparison for single POS and
POS bigram frequencies.

distributions are relatively different between the
TDAC and DEAL corpus, which explains these
large χ2 values between the two corpora. Within
the TDAC corpus, we can see a high distance be-
tween GCN circulars and the AstroNotes, whereas
it is less marked between the ATel and AstroNotes.
These first results regarding syntactic analysis show
a diversity between the corpora used, but further
analysis is needed to qualify these differences.

5 Named Entity Recognition

5.1 Astrophysical Named Entities
We used the same categories defined in the DEAL
shared task. This annotation guide comprises 31
named entities and covers the entities of interest,
such as astronomical facilities, celestial objects,
coordinates, formulae or observational techniques
contained in observation reports. Detailed tags list
is presented in Table 8 in Appendix. Figure 2 shows
the normalised distribution of annotated named en-
tities on the TDAC and DEAL corpora for compar-
ison purposes.

Figure 2: Normalised distribution of named entities in
the TDAC (orange) and DEAL (blue) corpus.

Classes’ distribution within the two corpora
is not similar. Indeed, in the TDAC corpus,
the most frequent categories e.g. Formula,
CelestialObject, Observatory, or
CelestialRegion. These are particular
categories in the astrophysics domain. Most of
these specific classes are less present in the DEAL
corpus, in which we find mainly the classes of
types: Citation, Organization, Grant or
Person, which seems to be more generic named
entity categories.

5.2 Annotation Procedure

The reports used to build the TDAC corpus for
NER were randomly selected from the extracted
observation reports and annotated in two stages.
First, we used one of the models fine-tuned for the
DEAL shared task to perform an automatic pre-
annotation of 75 observation reports, followed by
a manual correction stage by a PhD student with a
background in astrophysics. The evaluation of the
quality of the pre-annotation using the fine-tuned
model corresponds to experiment 1 presented in
the rest of this article (see Table 5). During the
manual correction phase of the 75 documents, a
double annotation was carried out on 30 documents
(i.e. 7584 double annotated tokens) between the
PhD student and a senior in NLP. The average time
spent per document is about 4.5 minutes for the
PhD student and 5.7 min for the NLP expert. This
double annotation allowed us to calculate an inter-
annotator agreement (IAA) using recall, precision,
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and F1 score; metrics considered adapted for com-
puting IAA in several studies (Grouin et al., 2011).
After a first double annotation of the 30 documents
between the two annotators, we obtained an over-
all F1 score of 0.7839. After a second pass, we
reached an F1 score of 0.8490, high enough for the
PhD student to continue annotating the remaining
documents alone.

5.3 Experiments

The Baseline Model We used one of the models
fine-tuned as part of the DEAL shared task to per-
form an automatic pre-annotation of the TDAC cor-
pus. It corresponds to the PyTorch HuggingFace’s
scibert_scivocab_cased version of SciB-
ERT model (Beltagy et al., 2019). It has been fine-
tuned on the DEAL corpus that we split into train
and development sets. The training set consists
of 1653 annotated documents (542 550 tokens),
and the development set comprises 100 documents
(30 582 tokens). For the shared task, the model has
been tested on 1366 documents (447 366 tokens).
Fine-tuning was performed on 11 epochs, with a
learning rate α = 2.10−5 and a training batch size
of 4. One epoch took approximately 170 seconds.
More information is provided in the corresponding
system description paper (Alkan et al., 2022).

Experiment 1: Testing directly on TDAC This
first experiment evaluates the baseline model fine-
tuned on the DEAL corpus directly to the TDAC
corpus and analyzes whether performances stay
maintained when applying to another type of cor-
pus of the same specialised domain. Thus, we
evaluate the model on the 75 annotated documents.

Experiment 2: Continue Model’s Fine-Tuning
using TDAC We will continue the model’s fine-
tuning on 9 additional epochs in this second ex-
periment using the TDAC corpus. We split the
TDAC corpus into training and test sets (approxi-
mately 80%-20%), i.e. 59 documents for training
(18 ATels, 21 GCNs and 20 AstroNotes) which rep-
resents a total of 15 374 tokens and 16 documents
for evaluation (7 ATels, 4 GCNs, and 4 AstroNotes)
which represents a total of 3638 tokens. Since the
corpus size is still small, one epoch lasts about 6
seconds when fine-tuning on TDAC.

Experiment 3: Fine-Tuning a New Model
From Scratch on TDAC For this third exper-
iment, we fine-tuned from scratch on TDAC the
scibert_scivocab_cased with same hyper-

parameters configuration than the baseline model,
i.e. (epoch = 20, α = 2.10−5, batch = 4). We
used the same training and test sets as experiment 2.

5.4 Results

For evaluation we used both the CoNLL-2000
shared task seqeval10 F1-Score at the entity level
and scikit-learn’s Matthews correlation coefficient
(MCC11) method at the token level.

Experiment 1 For comparison purposes, we also
reminded the performances of the system trained
and tested on the DEAL corpus as part of the shared
task. The performances of the NER system on the
TDAC corpus (75 documents) are given in Table 5.

Corpus P R F1 MCC
DEAL 0.7752 0.8284 0.8009 0.9025

TDAC 0.4993 0.7043 0.5843 0.7760

– ATel 0.5809 0.7325 0.6480 0.8213
– GCN 0.5236 0.7230 0.6074 0.7653
– AstroNotes 0.3952 0.6421 0.4893 0.7474

Table 5: Performance of the baseline NER system fine-
tuned on DEAL (as part of the shared task) and tested
on our TDAC corpus (with details by type of document).
Metrics used are Precision (P), Recall (R), F1-score and
MCC.

Experiment 2 Table 6 shows the performance
of the baseline NER system we fine-tuned on 9
additional epochs.

Corpus P R F1 MCC
TDAC 0.720 0.796 0.756 0.855

– ATel 0.667 0.703 0.684 0.854
– GCN 0.745 0.822 0.781 0.842
– AstroNotes 0.874 0.891 0.882 0.943

Table 6: Performance of the baseline NER system after
fine-tuning on 9 additional epochs using our TDAC
corpus (with details by type of document). Metrics used
are Precision (P), Recall (R), F1-score and MCC.

Experiment 3 Table 7 shows the performance
of the NER system we built and fine-tuned from
scratch on the TDAC corpus.

10https://github.com/chakki-works/
seqeval

11https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.
matthews_corrcoef.html

https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html
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Corpus P R F1 MCC
TDAC 0.693 0.777 0.733 0.814

– ATel 0.672 0.733 0.701 0.846
– GCN 0.728 0.793 0.759 0.796
– AstroNotes 0.684 0.792 0.734 0.877

Table 7: Performance of a NER system after fine-tuning
from scratch on 20 epochs using our TDAC corpus (with
details by type of document). Metrics used are Precision
(P), Recall (R), F1-score and MCC.

6 Discussion and Outlook

Experiment 1 is not comparable to experiments 2
and 3 because the test sample size is not the same.
However, it allows us to first appreciate the base-
line model’s robustness by testing it on our TDAC
corpus. When tested on the TDAC corpus, we no-
ticed a considerable drop in performance (a loss of
0.2166 on the F1 score globally). The results may
appear low or moderate. This could be explained by
a strict evaluation (identical label and border). With
experiments 2 and 3, we notice relatively similar
results. Overall, the model fine-tuned from scratch
performs slightly worse than the baseline model
for which we continued the fine-tuning over nine
additional epochs. Experiment 3 shows that the sys-
tem performs better on the ATels when fine-tuning
from scratch. These preliminary results on this first
small annotated corpus nevertheless show that the
DEAL corpus is a good starting point for building
an entity detection system and can be adapted to
other types of documents in the astrophysical do-
main. However, it is necessary to analyze whether
this behaviour is confirmed on a larger scale.

While the first annotations have been made by
a PhD student with a background in astrophysics
in order to make a proof-of-concept, we are now
experiencing new annotations made by two senior
experts, one in astrophysics, the other in NLP.

Joining the two corpora (DEAL+TDAC) would
be complementary because of the distribution
of classes in the two corpora (Figure 2). We
observe that certain classes of entities are
more present in the TDAC corpus than in
DEAL (e.g. Formula, CelestialObject,
Observatory, or CelestialRegion). The
TDAC corpus thus makes it possible to fill the lack
of specific classes and vice versa. Therefore, join-
ing these two corpora would thus allow for building
a more efficient system for a more significant num-
ber of classes.

7 Conclusion

In this paper, we presented the TDAC corpus, com-
posed of astrophysics textual content from three
sources (ATel, GCN circulars, and AstroNotes).
Our corpus has been manually annoted in named
entity, based on the annotation schema used in the
DEAL corpus. We also presented the experiments
we made in order to make it easier the manual an-
notation process, using a SciBERT-based model
fine-tuned on the WIESP 2022 NLP Challenge.
We observed that a model trained on the DEAL
corpus is not sufficient since it obtained moderate
results, while a quite light fine-tuning (9 additional
epochs) on our TDAC corpus allows us to improve
the performances of our NER system.

In the future, we plan to enrich the corpus
with morpho-syntactic annotations and relations
between named entities. We estimate this corpus
would be a useful resource for NLP applications in
astrophysics.

Once the information extraction system we are
developing is considered reliable enough, we aim
to deploy them in Astro-COLIBRI, a real-time plat-
form that evaluates alerts sent by observers regard-
ing transient sources (Reichherzer et al., 2021).
The deployment of our NLP models in Astro-
COLIBRI will allow both professional and amateur
astronomers to access the most relevant informa-
tion disseminated through GCN circulars, ATels
and AstroNotes instantaneously.
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Category Definition Example
Person A named person or their initials Andrea M. Ghez, Ghez A.
Organization A named organization that is not an

observatory.
NASA, University of Toledo

Location A named location on Earth. Canada
Observatory A, often similarly located, group of

telescopes.
Keck Observatory, Fermi

Telescope A "bucket" to catch light. Hubble Space Telescope, Discovery
Channel Telescope

Instrument A device, often, but not always,
placed on a telescope, to make a mea-
surement.

Infrared Array Camera, NIRCam

Survey An organized search of the sky of-
ten dedicated to large scale science
projects.

2MASS, SDSS

Mission A spacecraft that is not a telescope
or observatory that carries multiple
instruments

WIND

CelestialObject A named object in the sky ONC, Andromeda galaxy
CelestialRegion A defined region projected onto the

sky, or celestial coordinates.
GOODS field, l=2, b=15

CelestialObjectRegion Named area on/in a celestial body. Inner galaxy
Wavelength Portion of the electromagnetic spec-

trum
656.46 nm, H-alpha

ObservationalTechniques Methods/technqiues for observation Spectroscopic, helioseismic
Model Mathematical/Physical model Gaussian, Keplerian
Software Software, IT tool NuSTAR, healpy, numpy
ComputingFacility Server, cluster for computation Supercomputer, GPU
Dataset Astronomical catalogues 3FGL catalog
Database A curated set of data Simbad database
Archive A curated collection of the literature

or data.
NASA ADS, MAST

Identifier A unique identifier for data, images,
etc.

ALMA 123.12345

Citation A reference to previous work in the
literature.

Allen et al. 2012

Collaboration Name of collaboration Fermi LAT Collaboration
Event A conference, workshop or other

event that often brings scientests to-
gether.

Protostars and Planets VI

Grant An allocation of money and/or time
for a research project.

grant No. 12345, ADAP grant 12345

Fellowship A grant focused towards students
and/or early career researchers.

Hubble Fellowship

Formula Mathematical formula or equations. F = Gm1m2/r2, z = 2.3
Tag A HTML tag. <bold>
TextGarbage Incorrect text, often multiple punctu-

ation marks with no inner text.
„,

EntityOfFutureInterest A general catch all for things that
may be worth thinking about in the
future.

Earth-like, Solar-like

URL A link to a website. https : //www.astropy.org/

Table 8: Classification of the named entities in the annotation guideline. The HuggingFace repository containing
the annotated data and the annotation guide is only accessible to participants of the shared task. Thus, we have
reproduced the same list of named entities with their definition.
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