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Abstract

By sharing parameters and providing task-
independent shared features, multi-task deep
neural networks are considered one of the most
interesting ways for parallel learning from dif-
ferent tasks and domains. However, fine-tuning
on one task may compromise the performance
of other tasks or restrict the generalization of
the shared learned features. To address this
issue, we propose to use task uncertainty to
gauge the effect of the shared feature changes
on other tasks and prevent the model from
overfitting or over-generalizing. We conducted
an experiment on 16 text classification tasks,
and findings showed that the proposed method
consistently improves the performance of the
baseline, facilitates the knowledge transfer of
learned features to unseen data, and provides
explicit control over the generalization of the
shared model.

1 Introduction

Multi-task learning (MTL) is a branch of super-
vised learning that strives to improve the general-
ization of the regression or classification task by
leveraging the domain-specific information con-
tained in the training signals of related tasks (Caru-
ana, 1993). MTL has been investigated in vari-
ous applications of machine learning, from natural
language processing (Collobert and Weston, 2008;
Clark et al., 2019) and speech recognition (Deng
et al., 2013; Suthokumar et al., 2020) to computer
vision (Girshick, 2015; Zamir et al., 2018). The
tasks can be defined as applying the same model on
different data (also known as multi-domain learn-
ing) (Nam and Han, 2016; Liu et al., 2017a), or on
various problems (e.g., named entity recognition,
entity mention detection and relation extraction in
HMTL (Sanh et al., 2019)).

When training a multi-task learner, training each
task normally increases its accuracy (fine-tuning)
and, at the same time, provides more information

(a) FS-MTL (b) SP-MTL (c) UFS-MTL

Figure 1: Different architectures for multi-task learn-
ing (MTL) for text classification with the LSTM base-
line. (a) Fully-Shared MTL in which the shared layer
provides a shared feature space and task-layers (TLs)
convert them into final task outputs, (b) Shared-Private
MTL, where tasks jointly learn a shared feature set while
having their own (private) features, (c) Uncertainty-
regularized FS-MTL (proposed) in which the uncer-
tainty of all tasks are measured while fine-tuning for
each task to grant more generalization to the learned
shared features.

for the shared representation that affects the accu-
racy of the rest of the tasks (generalization). Bal-
ancing the finetuning-generalization trade-off has
been the subject of several studies. Kendall et al.
(2018) adjusts tasks’ relative weights in the loss
function in proportion to the task uncertainty. Liu
et al. (2016) divides the feature space into task-
specific and shared spaces and later employs adver-
sarial learning to encourage shared feature space
to contain more common information and no task-
specific information (Liu et al., 2017a). Bousmalis
et al. (2016) proposed orthogonality constraints
to punish redundancy between shared and task-
specific layers. In line with this direction, learning
through hints (Abu-Mostafa, 1990) directly trains
a network to predict the most important features.
Yet, none of those methods explicitly balances the
fine-tuning of the under-training task with its effect
on the other tasks.

Here, we propose a method that considers the

78



generalization of all tasks along with the task-
specific loss function. As a good indicator of how
other tasks are affected by the change of the shared
feature space, we proposed measuring the learner’s
uncertainty on each task. Task uncertainty captures
the relative confidence between tasks and reflects
the inherent uncertainty in each task (Kendall et al.,
2018). Therefore, the objective of the proposed
MTL would be to maximally fine-tune each task
on its corresponding training data while keeping
the uncertainty of other tasks to the minimum. In
other words, the MTL is expected to maintain a
low level of the overall uncertainty and disentangle
the training on the shared layers and task-specific
layers. Our main contributions are

• Exploring task uncertainty to elicit more gen-
eralizable features in the shared layers,

• Conducting extensive ablation experiments to
investigate the effects of different uncertainty
metrics, pre-training, fine-tuning, using aux-
iliary tasks, and semi-supervised learning on
the performance of this method,

• Experimenting on multi-domain and multi-
task learning problems with homogeneous and
heterogeneous tasks.

2 Related Works

Multi-Task Learning: MTL exchanges informa-
tion learned by different tasks to improve overall
performance. Such information may be obtained
by jointly working with adversarial tasks (Ganin
and Lempitsky, 2015), tasks working on different
subsets of a common data pool (Meyerson and Mi-
ikkulainen, 2018), or tasks in a hierarchy (Sanh
et al., 2019). Additionally, some tasks are serving
as facilitators for harder or more complicated ones
in various ways, such as providing hints/attention
map (Yu and Jiang, 2016; Caruana, 1997), learning
base representations (Rei, 2017; Subramanian et al.,
2018) and preventing quick-plateaus during train-
ing (Bingel and Søgaard, 2017). Discovering the
relationship between tasks or dynamically group-
ing them are other ways that MTL promotes the
information transfer between tasks (Ruder et al.,
2017; Zamir et al., 2018; Standley et al., 2019).

When used with deep learning, MTL models
tend to share learned parameters across different
tasks through (i) hard parameter sharing (Caruana,
1993; Kokkinos, 2017) in which the hidden layers
are shared between all tasks, while several task-
specific output layers are fine-tuned for each task,

(ii) soft parameter sharing, in which each task has
its model, and the distance between the parameters
of the models for different tasks are regularized to
encourage the parameters to be similar using, e.g.,
ℓ1 norm (Duong et al., 2015) or trace norm (Yang
and Hospedales, 2017), or (iii) partial parameter
sharing, to avoid task interference and leverage
task commonalities among a subset of the tasks
(Zaremoodi et al., 2018; Rosenbaum et al., 2018).

In the hard parameter sharing architectures,
shared parameters provide a global feature repre-
sentation, while task-specific layers further pro-
cess these features or provide a complementary
set of features suitable for a specific task. Some
MTL approaches are based on the intuition that
learning easy tasks is the prerequisite for learn-
ing more complex ones (Ruder, 2017), hence put
tasks in hierarchies (Søgaard and Goldberg, 2016;
Hashimoto et al., 2017; Sanh et al., 2019) or try to
automatically group similar tasks to dynamically
form shared layers (Liu et al., 2017b).

Task Uncertainty: In an MTL setting, multi-
ple tasks are intermittently trained and modify the
shared parameters to minimize their loss (the losses
can be back-propagated at once as well). This
change affects how other tasks behave in various
ways, one of which is the amount of uncertainty
that each task bears. Uncertainty signals the infor-
mation that the model lacks, or the sort of infor-
mation that cannot be inferred from data (Kendall
and Gal, 2017). There are various ways to mea-
sure uncertainty. Kendall et al. (2015) measures
uncertainty via drop-out sampling. Later, Kendall
et al. (2018) proposed Homoscedastic uncertainty
to measure the uncertainty of entire tasks indepen-
dent of the data. In another attempt, Kampffmeyer
et al. (2016) computes the standard deviation of
softmax outputs and average them to quantify the
uncertainty of all tasks in MTL. Other approaches
that leverage uncertainty to reduce the overfitting
in MTL framework are presented in (Uma et al.,
2020; Fornaciari et al., 2021).

3 Multi-task Classification

Neural text classification has been studied as one of
the fundamental NLP problems. Some researchers
replace hand-crafted features with with word-level
and character-level representations obtained by
CNNs (Kim, 2014; Zhang et al., 2015), others
use RNNs, Convolutional RNNs and Self-attentive
LSTMs for sequence modeling (Liu et al., 2016;
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Lai et al., 2015; Liu and Guo, 2019). To highlight
the effect of the proposed uncertainty regulariza-
tion, here we use a simple LSTM-based text classi-
fier as in (Jozefowicz et al., 2015).

3.1 Baseline Classifier

The text sequence w = {w1, w2, . . . , wT } is con-
verted to a sequence of word embeddings xi and is
given to an LSTM layer. Each unit of LSTM layer
at time t, includes an input gate it, a forget gate ft,
an output gate ot, a memory cell ct and a hidden
state ht. The LSTM implements


c̃t
ot
it
ft


 =




tanh
σ
σ
σ



(
Wp

[
xt

ht−1

]
+ bp

)

ct = c̃t ⊙ it + ct−1 ⊙ ft

ht = ot ⊙ tanh (ct)

(1)

in which σ(.) and tanh(.) are logistic sigmoid and
hyperbolic tangent functions, Wp and bp are the
weights and biases of LSTM (summarized in θp),
and ⊙ represents element-wise multiplication. The
LSTM is then updated as

ht = LSTM(ht−1,xt, θp) (2)

where the output of the last unit hT represents
the whole sequence. This is then fed to the task-
specific output layers. The network is then trained
on a training corpus with N samples (wi, yi) using
cross-entropy loss function

L(ŷ, y) = −
N∑

i=1

C∑

j=1

yji log
(
ŷji

)
(3)

where yji is the groundtruth inside {1..C} and ŷji is
the predicted probability of label j for document i.

3.2 Multi-Task Learning Formalization

MTL aims to promote learning efficiency and over-
all task performances by exploiting commonalities
and shared structures among tasks. In a neural net
MTL, each task shares a portion of its parameters
with a few or all other tasks to benefit from extra
training they might get from those parallel tasks.

In an MTL text classification, the tasks may
share all parameters of certain layers. In this fully-
shared setting (Figure 1(a)), the shared LSTM lay-
ers are shared between all tasks to extract similar
features. MTL training in this setting optimizes
these features such that they are useful for all tasks.
We used this approach in this study. Another way
of parameter sharing is to share a common feature

extractor (shared LSTM), but on top of that, each
task has its own private feature extractor to comple-
ment the shared features (Figure 1(b)) as proposed
in (Liu et al., 2017a).

4 Proposed Method

Let’s assume an MTL with K tasks, in which each
task k has a dataset Dk with Nk samples, where
Dk =

{(
wk
i , y

k
i

)}Nk

i=1
. To obtain a probability dis-

tribution ŷ(k) for labels of task k, the shared fea-
ture h

(k)
T are fed to the final task-specific softmax

layer. We train the network by minimizing the
cross entropy loss between predicted and true label
distributions (ŷ(k) and y(k)) as follows:

Ltask =

K∑

k=1

αkL
(
ŷ⟨k⟩, y⟨k⟩

)
(4)

where αk is the task importance coefficient and
L(ŷ, y) is defined in eq(3).

4.1 Proposed Uncertainty Regularization

Learning model uncertainty can be attributed to the
uncertainty of the model due to the lack of train-
ing data and the information that the data cannot
explain. The latter can be either (i) data-dependent
that is reflected by observing the model output and
(ii) data-independent that varies between different
tasks (Kendall et al., 2018). MTL improves the
learning over single-task learning by drawing on
commonalities between inputs for different tasks
to learn a shared representation, averaging on dif-
ferent task noises (Ruder, 2017), and exploiting the
relations between tasks.

In a fully-shared MTL setting, each task con-
tributes to the loss function based on errors it made,
and since one task is being trained at a time, mini-
mizing this error may negatively change the shared
parameters for other tasks. This is usually alle-
viated by separating task-specific features from
shared features using adversarial training and or-
thogonality constraints, yet the effect of the change
in the shared layers on the performance of other
tasks, while they are not being trained, is ignored.

A good MTL training procedure should be able
to punish the changes in the shared feature space
that increases the uncertainty of the task classi-
fiers while only a single task is being fine-tuned to
have better accuracy. Using uncertainty instead of
task accuracy provides an additional signal to train
the model. This helps by reflecting the internal
state of the classifiers rather than their performance
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on a specific type of data, as the uncertainty sig-
nal includes both data- and task-dependent compo-
nents. Using uncertainty regularization promotes
the emergence of features that are more decisive to
label the samples, and increases the overall perfor-
mance of the classification. Coupled with overall
task accuracy, the summation of uncertainty and
task accuracy brings up features that are more inde-
pendent and decisive, leading to the improvement
of the MTL performance.

To calculate the uncertainty of a multi-class clas-
sifier, uncertainty sampling methods could be used.
Thus, we proposed the uncertainty loss term as

Lunc =
1

K

K∑

k=1

1

Nk

Nk∑

i=1

ζ(xi), (5)

where the uncertainty of all label predictions are
averaged for each task, and ζ(.) can be calculated
using least confidence (Settles and Craven, 2008)

ζLC = 1− Pk

(
ŷ(1)|x

)
, (6)

or margin (Scheffer et al., 2001)

ζM = 1− Pk

(
ŷ(1)|x

)
+ Pk

(
ŷ(2)|x

)
, (7)

or Shanon’s entropy

ζH = −2
∑

j

Pk

(
ŷ(j)|x

)
logPk

(
ŷ(j)|x

)
; (8)

where ŷ(j) is the label with jth largest predicted
probability. The final loss function of the model
can be written as

L = Ltask + λLunc (9)

in which λ is the regularization parameter.

4.2 Semi-Supervised Learning

As seen in eq(5), calculating the proposed uncer-
tainty term Lunc is label-agnostic. This allows for
using unlabeled data along with labeled ones dur-
ing training. Therefore, the training data for each
task can be augmented with synthetic data as well
as data from other datasets (with matching statis-
tics, context, and distribution).

4.3 Implementation Details

In our implementation we used 300D GloVe word
embedding (Pennington et al., 2014) and a 128D
LSTM with temporal dropout (0.5). The net-
work weights are initialized with Xavier initial-
ization, and the learning rate and regularization
coefficients are selected by a grid search in the
range [0.001, 0.1] on the dev set (initial LR=0.01,
λ =0.025). The tasks are trained in a round-robin

order with mini-batches of size 16. For the rest of
the procedure, we followed Søgaard and Goldberg
(2016). We report the average of three indepen-
dent runs of our method in experiment sections,
and we used margin uncertainty (ζM ) unless stated
otherwise in all of our experiments.

5 Experiment

To evaluate our system, we considered two dif-
ferent settings to investigate the performance of
our proposed system in multi-domain and multi-
task settings. In the former case, a similar task is
done on different datasets, while on the latter, sev-
eral heterogeneous but related tasks are performed.
The first experiment comes with extensive anal-
ysis on performance, generalization, uncertainty
regularization, measuring uncertainty, convergence
speed, internal dynamics, and system errors, as
well as leveraging auxiliary tasks, unlabeled data,
pre-training, and task fine-tuning.

5.1 Multiple Domains
In this experiment, we consider a homogeneous
multi-task learning scenario in which 16 text clas-
sification tasks on various datasets are considered.
Each dataset contains several reviews on the differ-
ent products and movies with binary labels. After
joint training on all domains (obtaining vanilla ver-
sion which is the LSTM regularized by uncertainty
loss), to conduct a fair comparison, we incorpo-
rated the additional modules that are also used in
competitive models.Thus, we included fine-tuning,
pre-training, and training on unlabeled data to ob-
tain the final UFS-MTL. It has the state-of-the-art
performance among MTL methods with the same
LSTM baseline (Table 2), while the vanilla version
itself leads to significant improvement in the perfor-
mance as compared to LSTM which indicates the
effectiveness of uncertainty regularization. Here,
we used LSTM as a simple model to demonstrate
the effectiveness of uncertainty, while other archi-
tectures such as RNN, CNN, and transformers can
also use the benefits of this regularization. How-
ever, for the sake of simplicity we used LSTM to
convey that using uncertainty improves the overall
performance of the architecture.

Dataset: We took 14 product review datasets for
different products, each serving as an individual do-
main from (Blitzer et al., 2007), and converted the
labels to positive (> 3⋆) or negative (< 3⋆). We
also take two movie review datasets, IMDB and
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Datasets Train Dev Test Un. Avg.Len Vocab

Books 1400 200 400 2000 159 62K
Electronics 1398 200 400 2000 101 30K
DVD 1400 200 400 2000 173 69K
Kitchen 1400 200 400 2000 89 28K
Apparel 1400 200 400 2000 57 21K
Camera 1397 200 400 2000 130 26K
Health 1400 200 400 2000 81 26K
Music 1400 200 400 2000 136 60K
Toys 1400 200 400 2000 90 28K
Video 1400 200 400 2000 156 57K
Baby 1300 200 400 2000 104 26K
Magazines 1370 200 400 2000 117 30K
Software 1315 200 400 475 129 26K
Sports 1400 200 400 2000 94 30K

IMDB 1400 200 400 2000 269 44K
MR 1400 200 400 2000 21 12K

Table 1: Statistics of 16 datasets for multi-domain text
classification experiment.

MR, with binary labels from (Maas et al., 2011),
and (Pang and Lee, 2005) respectively. Each do-
main has approximately 2000 labeled comments
with 70-10-20 split for train-dev-test dataset and
2000 unlabeled data (Table 1).

Competitor Models: We compared our algo-
rithm with the vanilla LSTM baseline, MT-DNN
(Liu et al., 2015) with bag-of-word representation
and multi-layer perceptrons in which a hidden fully-
connected layer is shared. We also compared it
with MT-CNN (Collobert and Weston, 2008) with
partially shared convolutional layers for different
tasks, FS-MTL with word embedding and shared
LSTM layers, as well as SP-MTL (Liu et al., 2016)
in which a shared LSTM provides a part of fea-
ture representation for all tasks while each task
has its private LSTM. Other comparisons include
SSP-MTL (Chen et al., 2018) that stacks layers of
SP-MTL, ASP-MTL (Liu et al., 2017a) that uses ad-
versarial learning and orthogonality constraints to
prevent the cross-interference of shared and private
latent feature spaces in SP-MTL, and Meta-MTL
(Chen et al., 2018) that uses a shared meta-network
to capture the meta knowledge of semantic compo-
sition and generates the parameters of task-specific
semantic composition models in SP-MTL.

Task-Specific Output Layer: The obtained
shared representation is fed to the task-specific out-
put classifiers composed of a fully connected layer
followed by a softmax layer to predict the label

ŷ⟨k⟩ = softmax
(
W⟨k⟩hT + b⟨k⟩

)
(10)

where W⟨k⟩ and b⟨k⟩ are the weights and biases of
the task layer k and ŷ⟨k⟩ is prediction probabilities.

Task Fine-Tuning: The training procedure se-
lects mini-batches of all tasks intermittently. We
can further optimize each task by freezing the
shared layer and fine-tune each task individually.
The results of this fine-tuning procedure are de-
noted by “+Fine” in Table 2.

Pre-Training: Initializing the shared layers with
an unsupervised pre-training phase is a common
practice. Thus, we initialize it by a language model
(Bengio et al., 2007) which we trained on all of our
dataset. Table 2 shows improvement in “+Pre”.

Adding Auxiliary Task: One of the main chal-
lenges of sequence modeling is to capture semantic
composition functions. Composition models can
be sequential (Sutskever et al., 2014; Chung et al.,
2014), convolutional (Collobert et al., 2011; Kalch-
brenner et al., 2014), syntactic (Socher et al., 2013;
Tai et al., 2015), and functional (Chen et al., 2018;
Singh et al., 2021). Different compositional func-
tions are learned from scratch in different tasks,
while some tasks are more suitable in capturing
them. Additionally, it should be noted that com-
position functions are mainly similar in different
tasks. Therefore, at the end of each training epoch,
we fine-tune our shared layer on the Part-of-speech
Tagging task (a task that explicitly considers com-
positional functions) to enrich our feature space
with potentially missed compositional properties
of the language model. The model is trained on
WSJ dataset with a learning rate of 0.001 and a
CRF as output layer (r.f. experiment 2). The bene-
fits of this compared to the vanilla version is clear
under “+Aux” in Table 2.

Using Unlabeled Data: For each mini-batch, the
uncertainty regularizer calculates the uncertainty
to guide the backpropagation toward features that
reduce task uncertainty. Since the regularization
term does not rely on data labels, we include the
unlabeled data in task uncertainty calculation for
each mini-batch. The positive effects are clear in
“+Semi” in Table 2 compared to vanilla version.

Performance Evaluation: We perform the multi-
task learning on all 16 tasks to compare the task-
specific and overall performance of the proposed
method. All of the extensions are added to the
vanilla version of UFS-MTL, and the final version
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MT- MT- FS- SP- SSP- ASP- Meta- UFS-MTL
Task LSTM DNN CNN MTL MTL MTL MTL MTL Vanilla +Fine +Pre +Aux +Semi All

Books 79.5 82.2 84.5 82.5 81.2 85.3 84.0 87.5 86.9 85.7 85.9 85.5 85.9 87.9
Electronics 80.5 81.7 83.2 85.7 84.7 87.5 86.8 89.5 87.8 89.0 88.0 88.0 87.9 89.8
DVD 81.7 84.2 84.0 83.5 84.0 86.5 85.5 88.0 86.3 87.2 87.1 86.4 86.5 88.4
Kitchen 78.0 80.7 83.2 86.0 85.2 86.5 86.2 91.3 87.8 90.2 89.6 87.9 88.3 91.7
Apparel 83.2 85.0 83.7 84.5 86.5 86.0 87.0 87.0 87.0 89.0 87.2 87.5 86.8 89.0
Camera 85.2 86.2 86.0 86.5 88.0 87.5 89.2 89.7 88.9 89.7 89.0 89.8 89.0 90.0
Health 84.5 85.7 87.2 88.0 87.2 87.5 88.2 90.3 89.3 89.8 89.4 90.0 91.3 90.5
Music 76.7 84.7 83.7 81.2 83.0 85.8 82.5 86.3 83.2 83.9 83.5 84.7 84.1 86.7
Toys 83.2 87.7 89.2 84.5 85.2 87.0 88.0 88.5 87.7 87.9 88.5 87.9 88.1 88.8
Video 81.5 85.0 81.5 83.7 83.2 85.5 84.5 88.3 85.5 87.8 87.7 85.8 86.2 88.7
Baby 84.7 88.0 87.7 88.0 86.7 87.0 88.2 88.0 90.0 90.7 90.3 90.5 91.2 91.2
Magazines 89.2 89.5 87.7 92.5 92.0 88.0 92.2 91.0 92.6 92.7 92.7 92.7 92.8 92.9
Software 84.7 85.7 86.5 86.2 87.0 86.0 87.2 88.5 86.3 86.5 87.4 88.1 88.1 88.7
Sports 81.7 83.2 84.0 85.5 87.2 85.0 85.7 86.7 86.0 86.2 86.3 86.5 86.0 86.8
IMDB 81.7 83.2 86.2 82.5 84.7 84.5 85.5 88.0 84.1 86.8 85.3 84.4 85.4 88.4
MR 72.7 75.5 74.5 74.7 76.0 75.8 76.7 77.0 75.0 75.3 76.9 76.9 77.8 77.9
AVG 81.8 84.3 84.5 84.7 85.1 85.7 86.1 87.9 86.5 87.4 87.2 87.0 87.2 88.6

Table 2: The accuracy of the model on 16 tasks in the dataset (%), compared to its LSTM baseline, and other MTL
text classifiers. First, second, and third rankings are denoted in color. Our method (UFS-MTL) performs best in
most of the tasks.

(“+All”) involves all of these improvements on top
of the vanilla version.

As can be seen from Table 1, except for two
marginal cases, the proposed regularization im-
proves the performance of the FS-MTL up to 5.7%
(for Kitchen domain), and 3.5% on average. Be-
sides, this method outperforms other classifiers in
most of the tasks and, on average, performs the
best. Interestingly, for some of these tasks (such
as Music, Toys, and Baby), the LSTM baseline
does not perform well, and bag-of-word represen-
tation and MLP structure seem more promising.
Another interesting pattern is observed when com-
paring the effect of pre-training and the auxiliary
classifier. While both extensions improve the base-
line performance, their improvements do not com-
pletely stack as they have many commonalities.

Shared Knowledge Transfer: In this study, we
strive to provide a better-shared representation be-
tween tasks that reduces the uncertainty of all tasks
when trained on the data of each of the tasks. We
assume that such representation generalizes better
on other tasks, and this trained shared layer can be
used for other unseen tasks.

To test this hypothesis, we perform a leave-one-
out experiment on all of the tasks in which the
proposed classifier is trained on the remaining 15
tasks. To test the trained model on the left-out
task, we freeze the weights of the shared model,
perform 5-fold cross-validation on the target task,
and report the result in Table 3. Since only the
task-layer of the network for the new task may

affect the results, we provide an over parameterized
version of our model (UFS-MTL+OP) to ensure
that the network can learn the task at hand, given
the shared representation. As the table shows, UFS-
MTL has a better performance than the FS-MTL,
thanks to the uncertainty regularization of the tasks.
Also, the effect of over parameterization on the task
layer was not considerable on the result, indicating
that transferring the trained shared features was the
main contributor to the good results of UFS-MTL.

SP- ASP- Meta- UFS-UFS-MTL
Task LSTM MTL MTL MTL MTL +OP

ϕ (Books) 79.5 82.2 83.2 86.3 86.4 86.7
ϕ (Electronics) 80.5 84.7 82.2 86.0 86.3 86.6
ϕ (DVD) 81.7 85.2 85.5 86.5 86.4 86.2
ϕ (Kitchen) 78.0 85.0 83.7 86.3 86.7 86.9
ϕ (Apparel) 83.2 85.2 87.5 86.0 88.0 88.2
ϕ (Camera) 85.2 86.7 88.2 87.0 88.2 88.5
ϕ (Health) 84.5 85.5 87.7 88.7 88.9 89.2
ϕ (Music) 76.7 80.0 82.5 85.7 86.7 86.8
ϕ (Toys) 83.2 86.2 87.0 85.3 87.0 87.7
ϕ (Video) 81.5 85.7 85.2 85.5 87.1 87.4
ϕ (Baby) 84.7 83.5 86.5 86.0 86.5 86.7
ϕ (Magazines) 89.2 89.5 91.2 90.3 91.2 91.7
ϕ (Software) 84.7 87.0 85.5 86.5 87.7 87.8
ϕ (Sports) 81.7 83.7 86.7 85.7 86.8 87.4
ϕ (IMDB) 81.7 87.2 87.5 87.3 87.6 88.0
ϕ (MR) 72.7 74.0 75.2 75.5 75.3 75.4

ϕ (AVG) 81.8 84.4 85.3 85.9 85.9 86.0

Table 3: Performance of our model tested on unseen
tasks. ϕ(TASK) means that we transfer the knowledge
of the other 15 tasks to the target TASK. Colors show
first, second, and third rankings. By learning a shared
representation that lowers uncertainty of all tasks while
learning from each, we enhanced the overall accuracy
of the MTL classifier by 4.1% compared to the baseline.
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Figure 2: Predicted sentiment score by observing next
word. We depict a true positive (top), a true negative
(middle) and a false positive case (bottom) of our pro-
posed method (UFS-MTL) compared with FS-MTL,
ASP-MTL, and the vanilla version of proposed network,
UFS-MTL-base.

Error Analysis: We found two major groups of
mistakes made by our model: (i) sentences with
complicated structures such as complicated forms
of negation and (ii) sentences that require reasoning
or external references (e.g., to pop culture) that con-
veys a particular sentiment, analogies (e.g., Figure
2 (bottom)) or other types of inferences reaching
out of the dataset’s scope. In the former case, the
use of auxiliary task helps significantly with captur-
ing the essence of the sentences, while the networks
that solely focus on sentiment analysis task faced
difficulty in capturing the overall sentiment of a
complex sentence. In this view, having an auxiliary
task to assist the main task such as framework that
models definitions of emotions as an auxiliary task
while being trained on the primary task of emotion
prediction (Singh et al., 2021)) could benefit the
model to compensate these errors.

To visualize our model, we picked two success-
ful cases and a failed case of sentiment classifi-
cation from our model. We depict the sentiment
score changes when traversing through words of
the sentence by our model and three competing
models. It is evident that the uncertainty regulariza-
tion term guides the network to react to particular
words, phrases, and structures considerably. It is
also evident that adding auxiliary task (UFS-MTL
vs. UFS-MTL-base) boosts the confidence of the
method to capture essential structures for the task.

Speed of Convergence: We compared the aver-
age loss of the proposed method with Meta-MTL,

Figure 3: The train and dev loss of several MTL
schemes. The overall task uncertainty of UFS-MTL
measure by eq(5) on dev data is also shown here.

SP-MTL, and ASP-MTL on train and dev sets of
all tasks. We also calculated the total uncertainty
of each model on dev. set using (5), for each epoch.
As illustrated in Figure 3, our method is more ef-
ficient, performs better on dev splits, and reduces
the overall task uncertainties more effectively.

Effect of Regularization: In this section, we in-
vestigate the effect of regularization on the perfor-
mance of the system. While smaller λ derives the
system toward the vanilla FS-MTL, larger λ empha-
sizes more on the ability of all classifiers to have
less uncertain decision criteria. Such a decrease
in uncertainty is directly attributed to the shared
features since only one of the tasks is trained at
a time. Overemphasizing the regularization, on
the other hand, pushes the task-specific features in
the shared space, as the effect of individual task-
specific layers is diminished by increasing the λ.
Figure 4 shows the effect of changing λ on the sys-
tem performance. As larger values of λ prevent the
MTL classifier from fine-tuning for each task, the
system is prone to catastrophic forgetting result-
ing from over-generalization of the shared layer in
MTL (Subramanian et al., 2018).

Comparing Uncertainty Measures: The choice
of uncertainty measure is important to capture
the source of uncertainty in the classifier. Table
4 shows the effect of different uncertainty mea-
sures on the vanilla UFS-MTL. We denote the av-
erage of the softmax outputs of each task used in
(Kampffmeyer et al., 2016) by ζσ.

While the least confident measure (ζLC) consid-
ers only the most probable class label and tries to
maximize it, it effectively throws away information
about the remaining label distribution. Entropy in
ζH considers the full distributions of the posteriors.
However, task-specific features in the shared fea-
ture space may reduce the entropy for some tasks
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Figure 4: The effect of uncertainty regularization on the UFS-MTL. Small λ reduces the classifier to the FS-MTL,
whereas excessively large values of λ prevent fine-tuning for each task in the multi-task learning framework.

ζLC ζM ζH ζσ

AVG 85.9 86.5 85.3 85.6

Table 4: Comparing average effect of uncertainty mea-
sures on vanilla UFS-MTL performance on all tasks.
ζLC denotes the least confidence uncertainty, ζM refers
to margin uncertainty, ζH indicates the Shanon’s en-
tropy, and ζσ calculates the average of softmax outputs.

while increasing it for others. Margin uncertainty
ζM strives to address the shortcoming in the least
confident strategy by incorporating the posterior of
the second most likely label. Intuitively, instances
with large margins have less uncertainty since the
second best option is not very competitive.

Discussion on Disentanglement: To obtain an
effective shared feature space, while the task-
specific features should be pushed out, task-
independent features should be pulled in, and re-
dundant features should be punished. PS-MTL
explicitly separates the private and shared features,
and ASP-MTL tries to push out private features
from shared space and omit redundancy by using
adversarial training and orthogonality constraint.
Yet, there is no encouragement except the training
loss to have good shared features in this method.
Here, we took an opposite approach and pulled
good shared features in shared space (that promote
the decisiveness of the MTL) while implicitly push-
ing away task-specific and redundant features that
don’t contribute much to overall certainty of MTL.

5.2 Multiple Tasks

In this experiment, we consider a heterogeneous
multi-task learning scenario in which three differ-
ent tasks (part-of-speech tagging, chunking, and
named entity recognition) on various datasets are
considered. After joint training on all domains
(obtaining vanilla version), we include fine-tuning

Datasets Task Train Dev Test

WSJ POS Tagging 912,344 131,768 129,654
CoNLL 2000 Chunking 211,727 - 47,377
CoNLL 2003 NER 204,567 51,578 46,666

Table 5: Statistics of 3 datasets for multi-task sequence
tagging experiment.

Chunking NER POS Tagging
(CoNLL2000) (CoNLL2003) (WSJ)

Single Task Models:
BiLSTM+CRF 93.67 89.91 97.25
Meta-BiLSTM+CRF 93.71 90.08 97.30
(Collobert et al., 2011) 94.32 89.59 97.29

Multi-Task Models:
SSP-MTL + CRF 94.32 90.38 97.23
Meta-MTL + CRF 95.11 90.72 97.45
UFS-MTL + CRF (ours) 96.11 91.12 97.37

Table 6: Accuracy rates of the models for chunking
and NER tasks using F1-score (%) and for POS tagging
using Accuracy (%). First, second, and third rankings of
each task are denoted in color. Our method (UFS-MTL)
outperforms the others in most of the tasks.

and training on unlabeled data to obtain the final
UFS-MTL that has the state-of-the-art performance
among MTL methods with the same LSTM base-
line (Table 6). We excluded pre-training from our
model to provide a fair comparison.

Task-Specific Output Layer: Inspired by (Ma
and Hovy, 2016), the obtained shared representa-
tion is fed to a conditional random field (Lafferty
et al., 2001) to perform sequence tagging.

Dataset: For sequence tagging tasks, we use
Wall Street Journal (WSJ) subset of Penn Treebank
(Marcus et al., 1993), CoNLL 2000 chunking, and
CoNLL 2003 English NER datasets (Table 5).

Competitor Models: We compare our method
with (Huang et al., 2015) which uses a BiLSTM
encoding and CRF output layer. We also compared
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it with stacked SP-MTL, a bidirectional version of
Meta-LSTM (single task), and a Meta-LSTM on
top of an SP-MTL, all proposed in (Chen et al.,
2018), followed by a CRF output layer. We also
compared it with (Collobert et al., 2011).

Results: As shown in Table 6, with the help of un-
certainty regularization, we observe that our model
is consistently outperforming the competitor mod-
els, which shows that our model is very robust
and our shared learned features can generalize well
among related tasks.

6 Conclusion

In this study, we augment the fully-shared multi-
task learning framework with a regularization term
to improve the shared representation by lowering
the classification uncertainty for all tasks while fine-
tuning for each task. The learned representation
increased the overall accuracy of the multi-task
classifier, achieved competitive results compared to
state-of-the-art MTL algorithms, and successfully
transferred the knowledge to the unseen tasks.

References
Yaser S Abu-Mostafa. 1990. Learning from hints in

neural networks. Journal of Complexity, 6(2):192–
198.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and
Hugo Larochelle. 2007. Greedy layer-wise training
of deep networks. In Advances in neural information
processing systems, pages 153–160.

Joachim Bingel and Anders Søgaard. 2017. Identifying
beneficial task relations for multi-task learning in
deep neural networks. In ACL’15, pages 164–169.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
Proceedings of the 45th annual meeting of the asso-
ciation of computational linguistics, pages 440–447.

Konstantinos Bousmalis, George Trigeorgis, Nathan
Silberman, Dilip Krishnan, and Dumitru Erhan. 2016.
Domain separation networks. In NIPS’16, pages 343–
351.

R Caruana. 1993. Multitask learning: A knowledge-
based source of inductive bias.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Junkun Chen, Xipeng Qiu, Pengfei Liu, and Xuanjing
Huang. 2018. Meta multi-task learning for sequence
modeling. In Thirty-Second AAAI Conference on
Artificial Intelligence.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Kevin Clark, Minh-Thang Luong, Urvashi Khandelwal,
Christopher D Manning, and Quoc V Le. 2019. Bam!
born-again multi-task networks for natural language
understanding. arXiv preprint arXiv:1907.04829.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In ICML’08,
pages 160–167. ACM.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of machine learning research, 12(Aug):2493–
2537.

Li Deng, Geoffrey Hinton, and Brian Kingsbury. 2013.
New types of deep neural network learning for speech
recognition and related applications: An overview.
In ICASSP’13, pages 8599–8603. IEEE.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook.
2015. Low resource dependency parsing: Cross-
lingual parameter sharing in a neural network parser.
In ACL-IJCNLP’15, pages 845–850.

Tommaso Fornaciari, Alexandra Uma, Silviu Paun, Bar-
bara Plank, Dirk Hovy, and Massimo Poesio. 2021.
Beyond black & white: Leveraging annotator dis-
agreement via soft-label multi-task learning. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
2591–2597.

Yaroslav Ganin and Victor Lempitsky. 2015. Unsu-
pervised domain adaptation by backpropagation. In
ICML’15, pages 1180–1189.

Ross Girshick. 2015. Fast r-cnn. In ICCV’15, pages
1440–1448.

Kazuma Hashimoto, Yoshimasa Tsuruoka, Richard
Socher, et al. 2017. A joint many-task model: Grow-
ing a neural network for multiple nlp tasks. In
EMNLP’17, pages 1923–1933.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of re-
current network architectures. In ICML’15, pages
2342–2350.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. arXiv preprint arXiv:1404.2188.

86



Michael Kampffmeyer, Arnt-Borre Salberg, and Robert
Jenssen. 2016. Semantic segmentation of small ob-
jects and modeling of uncertainty in urban remote
sensing images using deep convolutional neural net-
works. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops,
pages 1–9.

Alex Kendall, Vijay Badrinarayanan, and Roberto
Cipolla. 2015. Bayesian segnet: Model uncer-
tainty in deep convolutional encoder-decoder archi-
tectures for scene understanding. arXiv preprint
arXiv:1511.02680.

Alex Kendall and Yarin Gal. 2017. What uncertainties
do we need in bayesian deep learning for computer vi-
sion? In Advances in neural information processing
systems, pages 5574–5584.

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018.
Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In CVPR’18,
pages 7482–7491.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP’14, pages 1746–
1751.

Iasonas Kokkinos. 2017. Ubernet: Training a universal
convolutional neural network for low-, mid-, and
high-level vision using diverse datasets and limited
memory. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
6129–6138.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text clas-
sification. In AAAI’15.

Gang Liu and Jiabao Guo. 2019. Bidirectional lstm
with attention mechanism and convolutional layer for
text classification. Neurocomputing, 337:325–338.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang.
2016. Recurrent neural network for text classi-
fication with multi-task learning. arXiv preprint
arXiv:1605.05101.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017a.
Adversarial multi-task learning for text classification.
In ACL’17, pages 1–10.

Sulin Liu, Sinno Jialin Pan, and Qirong Ho. 2017b.
Distributed multi-task relationship learning. In ACM
SIGKDD’17, pages 937–946. ACM.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015. Representation
learning using multi-task deep neural networks for
semantic classification and information retrieval. In
Proceedings of the 2015 Conference of the North

American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 912–921.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
arXiv preprint arXiv:1603.01354.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the associ-
ation for computational linguistics: Human language
technologies-volume 1, pages 142–150. Association
for Computational Linguistics.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank.

Elliot Meyerson and Risto Miikkulainen. 2018. Pseudo-
task augmentation: From deep multitask learning to
intratask sharing—and back. ICML’18.

Hyeonseob Nam and Bohyung Han. 2016. Learning
multi-domain convolutional neural networks for vi-
sual tracking. In ICPR’16, pages 4293–4302.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
43rd annual meeting on association for computa-
tional linguistics, pages 115–124. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP’14, pages 1532–1543.

Marek Rei. 2017. Semi-supervised multitask learning
for sequence labeling. In ACL’17, pages 2121–2130.

Clemens Rosenbaum, Tim Klinger, and Matthew
Riemer. 2018. Routing networks: Adaptive selec-
tion of non-linear functions for multi-task learning.
ICML’18.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein,
and Anders Søgaard. 2017. Sluice networks: Learn-
ing what to share between loosely related tasks. stat,
1050:23.

Victor Sanh, Thomas Wolf, and Sebastian Ruder. 2019.
A hierarchical multi-task approach for learning em-
beddings from semantic tasks. In AAAI’19, vol-
ume 33, pages 6949–6956.

Tobias Scheffer, Christian Decomain, and Stefan Wro-
bel. 2001. Active hidden markov models for informa-
tion extraction. In Advances in Intelligent Data Anal-
ysis, pages 309–318, Berlin, Heidelberg. Springer
Berlin Heidelberg.

87



Burr Settles and Mark Craven. 2008. An analysis of
active learning strategies for sequence labeling tasks.
In EMNLP’08, pages 1070–1079. Association for
Computational Linguistics.

Gargi Singh, Dhanajit Brahma, Piyush Rai, and
Ashutosh Modi. 2021. Fine-grained emotion pre-
diction by modeling emotion definitions. In 2021
9th International Conference on Affective Computing
and Intelligent Interaction (ACII), pages 1–8. IEEE.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Anders Søgaard and Yoav Goldberg. 2016. Deep multi-
task learning with low level tasks supervised at lower
layers. In ACL’16, pages 231–235.

Trevor Standley, Amir R Zamir, Dawn Chen, Leonidas
Guibas, Jitendra Malik, and Silvio Savarese. 2019.
Which tasks should be learned together in multi-task
learning? arXiv preprint arXiv:1905.07553.

Sandeep Subramanian, Adam Trischler, Yoshua Ben-
gio, and Christopher J Pal. 2018. Learning gen-
eral purpose distributed sentence representations
via large scale multi-task learning. arXiv preprint
arXiv:1804.00079.

Gajan Suthokumar, Vidhyasaharan Sethu, Kaavya
Sriskandaraja, and Eliathamby Ambikairajah. 2020.
Adversarial multi-task learning for speaker normal-
ization in replay detection. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6609–6613.
IEEE.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in neural information processing systems,
pages 3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher D Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks.
arXiv preprint arXiv:1503.00075.

Alexandra Uma, Tommaso Fornaciari, Dirk Hovy, Sil-
viu Paun, Barbara Plank, and Massimo Poesio. 2020.
A case for soft loss functions. In Proceedings of
the AAAI Conference on Human Computation and
Crowdsourcing, volume 8, pages 173–177.

Yongxin Yang and Timothy M Hospedales. 2017.
Trace norm regularised deep multi-task learning.
ICLR’2017.

Jianfei Yu and Jing Jiang. 2016. Learning sentence
embeddings with auxiliary tasks for cross-domain
sentiment classification. In EMNLP’16, pages 236–
246.

Amir R. Zamir, Alexander Sax, William Shen,
Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. 2018. Taskonomy: Disentangling task
transfer learning. In CVPR’18, pages 3712–3722.

Poorya Zaremoodi, Wray Buntine, and Gholamreza Haf-
fari. 2018. Adaptive knowledge sharing in multi-task
learning: Improving low-resource neural machine
translation. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 656–661.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS’15, pages 649–657.

88


