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Abstract

Style transfer is the task of paraphrasing text
into a target-style domain while retaining the
content. Unsupervised approaches mainly fo-
cus on training a generator to rewrite input sen-
tences. In this work, we assume that text styles
are determined by only a small proportion of
words; therefore, rewriting sentences via gener-
ative models may be unnecessary. As an alter-
native, we consider style transfer as a sequence
tagging task. Specifically, we use edit opera-
tions (i.e., deletion, insertion and substitution)
to tag words in an input sentence. We train a
classifier and a language model to score tagged
sequences and build a conditional random field.
Finally, the optimal path in the conditional ran-
dom field is used as the output. The results
of experiments comparing models indicate that
our proposed model exceeds end-to-end base-
lines in terms of accuracy on both sentiment
and style transfer tasks with comparable or bet-
ter content preservation.

1 Introduction

Text style refers to the attributes of text written
in a particular form. Style transfer is the task of
paraphrasing text into a target-style domain while
retaining its content. In the domain of natural lan-
guage generation, research on style transfer tasks
(Li et al., 2018; Chawla and Yang, 2020) allows us
to control the attributes of produced utterances.

Recently, sentiment transfer (Fu et al., 2018;
Prabhumoye et al., 2018) has attracted much at-
tention as a subtask of style transfer, an exam-
ple being ’The food here is delicious’ (Positive)
→ ’The food here is gross’ (Negative). A style-
indicative word is a word with a large contribution
to style (Xu et al., 2018). In the above example,
’delicious’ and ’gross’ are style-indicative words.

A critical problem in sentiment transfer is the
lack of available parallel data (Shen et al., 2017;
Luo et al., 2019). As a result, related work has
mainly focused on unsupervised learning. Among

Figure 1: An example of our proposed approach.

unsupervised approaches, those based on word
modification have achieved state-of-the-art perfor-
mance due to their ability to retain content words.

This paper mainly focuses on sentiment trans-
fer and follows two generative models: the TAG
model (Madaan et al., 2020) and LEWIS model
(Reid and Zhong, 2021). The TAG model calcu-
lates term frequency-inverse document frequency
scores to identify style-indicative words and trains
an autoregressive model to substitute those words.
The LEWIS model removes style-indicative words
to extract a content template and trains a generator
to perform edit operations on the template.

However, the aforementioned methods have the
following drawbacks:

(1) It is unnecessary to identify style-indicative
words. The fact that style-indicative words con-
tribute more to a style does not imply that style-
indicative words correspond to the optimal posi-
tions to be modified. For a negative-to-positive
transfer example, the sentence ’Even great restau-
rants have bad days’ should be rephrased as ’Great
restaurants never have bad days’ according to a
human reference. Here, both the deleted word
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’Even’ and inserted word ’never’ are far away
from the style-indicative word ’bad’. Furthermore,
word identification may be less effective for non-
descriptive text. For example, if there are no style-
indicative words in a sentence, such as ’If you are
into sports, this is the place for you’(Positive), then
identification will not be effective.

(2) No rationale is provided for the collocation
of operations used, and models that perform differ-
ent edit operations are treated as different models
(Li et al., 2018; Madaan et al., 2020). However,
we propose that edit operations should be used au-
tomatically in different situations. When multiple
solutions exist, a basis for selecting the solution
should be provided.

(3) It is redundant to rewrite style-independent
words by using purely generative methods, as over-
laps have been reported to be common between the
input and output (Reid and Zhong, 2021). Rewrit-
ing all input words by using an end-to-end model
increases the burden of the model and reduces its
performance. In theory, additional learning of these
words may be more likely to cause text degenera-
tion (Holtzman et al., 2020).

To address the above-mentioned drawbacks, we
propose the following:

(1) Tagging all words instead of identifying spe-
cific words. We employ edit operations to tag every
word in an input sentence. To obtain a tagger with-
out parallel data, we train a style classifier to score
samples and build a conditional random field (CRF)
(Lafferty et al., 2001). We use the classifier to cal-
culate the probability distribution of tag sequences.

(2) Using a language model (LM) to select oper-
ations. If an input sentence has multiple solutions,
we propose that text fluency be the basis for selec-
tion. For example, a negative sentence ’I’m not a
huge fan of them’ can be rephrased as ’I’m a huge
fan of them’ or ’I’m not a small fan of them’. In this
case, the former sounds more natural. To measure
text fluency, we build an LM that scores sentences
based on their perplexity. We use the score function
as a joint feature function of the CRF.

(3) Searching in the CRF instead of rewriting the
entire sentence. As mentioned above, we train a
classifier and LM to build the CRF. By searching in
the CRF, we generate an operation sequence. We
apply the operation sequence to the input sentence
to obtain the output.

In this paper, we first introduce our tagging strat-
egy and a method we employed to implement edit

operations (§ 3.1). Further, we introduce feature
functions of the CRF (§ 3.2) and search strategies
used (§ 3.3). We tested our model for transfer ac-
curacy and content preservation on four data sets
(§ 4) and analysed the experimental results of the
automated evaluation (§ 5.1) and the experimental
results of the manual evaluation (§ 5.2). In addi-
tional analysis (§ 5.3), we discussed the variances
of sentence features in transformation.1

Our contributions are as follows:

• We propose a novel style transfer approach.
To the best of our knowledge, this study is the
first to apply CRFs to style transfer tasks.

• We propose a bias for selecting edit operations.
The calculation of perplexity theoretically pre-
vents generated words from conflicting with
their original context.

• Experimental results show that our proposed
model surpasses baselines in terms of accu-
racy or content retention on four data sets.

2 Related Work

2.1 Style Transfer in Latent Space
A traditional approach to style transfer is to disen-
tangle the style and content in a latent space. For ex-
ample, Shen et al. (2017) proposed a cross-aligned
model that aligns samples at a shared hidden con-
tent distribution level across different corporations.
In other work, Fu et al. (2018) proposed an ap-
proach that uses generative adversarial networks
to extract content representations. These represen-
tations are decoded into a target-style domain as
outputs. Manipulating representations in a latent
space (Hu et al., 2017; Prabhumoye et al., 2018)
is the main method used in the aforementioned
studies. However, it has been reported that extract-
ing style and content representations from a latent
space is very difficult (Elazar and Goldberg, 2018).

2.2 Style Transfer by Modifying Words
Instead of extracting representations in a latent
space, methods have recently been proposed to di-
rectly modify words (Sudhakar et al., 2019; Zhang
et al., 2018). Li et al. (2018) proposed a delete-
retrieve-generate pipeline that transfers samples
based on the retrieval of similar sentences and
performs well in sentiment transfer tasks. How-
ever, retrieval has been reported as an unnecessary

1Code is available on GitHub.
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step (Madaan et al., 2020), and models that apply
edit operations to sentences have produced superior
results (Wu et al., 2019; Reid and Zhong, 2021).
Malmi et al. (2020) proposed to use Masked LMs
to identify tokens to modify. They replace the iden-
tified source tokens with target tokens to transform
text to match the style of the target domain. How-
ever, models (Li et al., 2018; Madaan et al., 2020)
based on end-to-end approaches suffer from text
degeneration (Holtzman et al., 2020). Instead, we
leverage intuitions about style transfer and uses
smaller pieces of machine learning to build a tar-
geted model. In this paper, we follow the second
approach of fine-tuning sentences at a lexical level.

3 Methodology

Instead of training an end-to-end model, we per-
form a search over small edits to an input sentence,
as it provides an interpretable record of the deci-
sions the model made.

To formalize the problem, we consider sentence
set XA = (x

(1)
A , ..., x

(M)
A ) with source style A and

another sentence set XB = (x
(1)
B , ..., x

(N)
B ) with

target style B. The sentences in these two sets are
non-parallel; that is, x(i)A does not correspond to
x
(i)
B . The objective is to generate a new sentence

set X̂ = (x̂(1), ..., x̂(M)) in style B, where x̂(i) is
the result of transferring x

(i)
A into style B.

3.1 Tagger

We use three basic edit operations to tag words in
input sentences. Words that do not need to be mod-
ified are tagged with ’[KEEP]’, signifying that they
will be retained in the output. Tags are presented
in Table 1. We note that for words tagged with
‘[INS]’, we will only insert words in front of them.

We introduce a terminator, denoted ’<EOS>’,
to validate the insertion of words at the end of an
input sentence. The terminator can only be tagged
as ’[INS]’ or ’[KEEP]’; that is, terminators are
retained in the output. For reference, (Wu et al.,
2019) regarded insertion in front of a word and be-
hind the same word as different operations, which
unnecessarily increased the burden on the tagger.

Only one word in an input sentence is modified
in each iteration; that is, we introduce the con-
straint that only one word in each sentence cannot
be tagged with ’[KEEP]’. We refer to this as a one-
word tagging strategy. For example, the sentence
in Figure 1 is repeatedly modified three times to

Tag Operation
[INS] Insert a word in front of the tagged word.
[SUB] Substitute the tagged word with a new word.
[DEL] Delete the tagged word.
[KEEP] Retain the tagged word.

Table 1: Possible tags for a word and their correspond-
ing word operations.

produce the output. The advantage of this method
is that it reduces the modification of content words.

After a sentence is tagged, all words are sub-
jected to the corresponding operations to generate
a new sentence. We employ the Flexible Text Edit-
ing Method (Mallinson et al., 2020) to edit tagged
sentences. For the input sentence in Figure 1, the
first word, ’Nice’, is tagged as ’[SUB]’ in the first
iteration. We replace ‘Nice’ with ’Worst’ and treat
the modified sentence as input to the next iteration.

A difficult case is one in which multiple words
must be inserted before a target word. Here, the
tag of the target word is difficult to determine. In
previous work (Reid and Zhong, 2021), additional
models were introduced to calculate the number
of inserted words, which unnecessarily increased
the burden on the model. As an alternative, we use
the one-word tagging strategy several times. When
the modified sentence has the characteristics of the
target style, we stop the modification process and
output the current sentence. To generate new words,
we fine-tune a Bidirectional Encoder Representa-
tions from Transformers (BERT) model (Devlin
et al., 2019) on the target style corpus as an LM.
Inspired by the pre-training process of BERT, we
employ a mask-based training policy. For each sen-
tence in the target corpus, we randomly replace one
word with a special token, ’<MASK>’, and train
the LM fθ to predict it. The objective function is
expressed as Equation (1):

LLM(θ) = −
∑

j

log p(wLM
j = wj |cj ; θ), (1)

where cj is the context of a masked word wj . wLM
j

is the corresponding prediction of the LM.
The trained LM is used to perform substitutions

and insertions. For a word tagged with ’[SUB]’,
we substitute it with the token ’<MASK>’. For a
word tagged with ’[INS]’, we insert ’<MASK>’ in
front of it. After this is completed, we input the
masked sentence to the LM. The word predicted by
the LM then replaces the mask.
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Figure 2: Proposed transfer approach with greedy search. In this example, there are three modifications between the
input and output. n is the length of the sentence.

By using three edit operations on an input sen-
tence with n words, we can generate 3n + 1 dif-
ferent sentences. We note that this includes the in-
sertion of a word at the end of the sentence. These
new sentences are all at a Levenshtein distance of 1
from the previous sentence. We use 3n+ 1 differ-
ent operations to modify the input sentence in each
iteration. We repeatedly modify the input sentence
until it is transferred into the target style domain.

The body of our method is a random process,
and the sentence output in each iteration is the only
input in the next iteration. We refer to these 3n+ 1
sentence-level operations as states. We consider
a state set S1 = (s11, ..., s

3n+1
1 ), where each ele-

ment represents an operation that is applied to the
current sentence. Furthermore, each use of these
operations represents a step of state transition. Con-
tinuous three-step transition is shown in Figure 2.

We aim at calculating the transfer probabilities
between states. In this random process, a high-
quality output sentence should correspond to a path
of states with higher transition probability.

3.2 Conditional Random Field
As described, we use a style classifier and an LM to
calculate the transfer probabilities between states.
Specifically, the classifier is used to determine
whether the generated sentences have the target
style attributes, while the LM is used to ensure that
these sentences have high fluency.

We train a multilayer perceptron (MLP) as the
classifier to distinguish sentences in two style do-
mains. The features for the MLP classifier fϕ is pre-
trained word embedding vectors (Mikolov et al.,
2013). The loss function is expressed as eq (2):

LCLS(ϕ) = −
∑

j

logP (yj |xj ;ϕ) (2)

where xj is the j-th example in a train set and yj is
the style label for xj .

For concerns about inference speed, we follow
the standard practice (Dai et al., 2019) and train a
5-gram LM by using the KenLM library (Heafield,
2011) instead of a pre-trained neural LM to score
sentences by the probabilities of their occurrence
in the target corpus. The learned models are used
to calculate the transfer probabilities. For sentence
xA, we consider that it passes through path pi =
(xA, s

j1
1 , ..., sjii ) and changes to sentence xpi . If we

use state s
ji+1

i+1 to change sentence xpi to sentence
xpi+1 , the classifier compute score as follows:

Sstyle(s
ji+1

i+1 , pi) = P (B|xpi+1 ;ϕ)− P (B|xpi ;ϕ).
(3)

Here, the score is the difference in the probabilities
that xpi and xpi+1 are classified into target style B.

Similarly, the score function calculated by the
LM is expressed as Equation (4):

Sfluency(s
ji+1

i+1 , pi) = P (xpi+1 |XB)− P (xpi |XB).
(4)

To calculate the transfer probabilities, we use the
two score functions as feature functions to build
a CRF (Lafferty et al., 2001). The joint score
STotal(si+1,j |si,t) is the weighted sum of the two:

STotal(s
ji+1

i+1 , pi) = µ1Sstyle(s
ji+1

i+1 , pi)

+µ2Sfluency(s
ji+1

i+1 , pi),
(5)

In each iteration, we convert all the scores into
probabilities using Equation (6). That is, we in-
put these scores to a softmax layer to compute the
normalised probability distribution:

P (pi+1|pi) =
STotal(s

ji+1

i+1 , pi)∑
pt
STotal(s

ji+1

i+1 , pt)
, (6)

where pi+1 = (xA, s
j1
1 , ..., s

ji+1

i+1 ), and pt is a path
that contains the initial sentence xA and i states.

The probabilities reflect the quality of the trans-
ferred sentences. Here, we transform the style trans-
fer problem into a path search problem. For path
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Category Sentiment transfer Formality transfer

Data set
Amazon Yelp IMDb GYAFC

Positive Negative Positive Negative Positive Negative Formal Informal
Train set 266,041 177,218 277,228 277,769 178,869 187,597 51,967 51,967
Dev. set 2,000 2,000 985 1,015 2,000 2,000 2,247 2,788
Test set 500 500 1,000 1,000 1,000 1,000 1,019 1,332

Table 2: Statistics of the used data sets. ‘Dev.’ denotes ‘development’. The Yelp, Amazon and IMDb data sets are
used for sentiment transfer. The GYAFC data set is used for formality transfer.

pi = (xA, s
j1
1 , ..., sjii ) representing consecutive i

modifications, the probability of transfer from xA
to xpi is the product of all probabilities in the path:

P (pi|xA) = P (p1|xA)
i∏

k=2

P (pk|pk−1). (7)

If xpi is classified into the target style domain,
we stop searching and output that sentence.

3.3 Viterbi Search and Greedy Search

To find the global optimal solution, we employ the
Viterbi algorithm (Viterbi, 1967). For the i-th itera-
tion, we have 3n+ 1 paths from the corresponding
states. We suppose that the end of a path pji is state
sji , where j is a variable. For path pji in the set of
paths (p1i , ..., p

3n+1
i ), sji may be transferred to sti+1

in the next iteration. We define a function of the
transfer probability from xA to sti+1 as follows:

fxA→sti+1
(pji ) = P (pti+1|pji ) · P (pji |xA), (8)

where t is an integer between 1 and 3n+ 1.
We select the path with the highest value of

fxA→sti+1
as the optimal path to state sti+1. In other

words, we retain only one path to each state:

pti+1 = (argmaxfxA→sti+1
(pji ), s

t
i+1). (9)

For a modification with i steps, we find
the optimal path (xA, s

j1
1 , ..., sjii ) from path set

{p1i , ..., p3n+1
i }. This signifies that sentence xA is

modified using the operation sequence (sj11 , ..., sjii )
and is output as the solution x̂A. Because we can-
not confirm the sentence length during the search-
ing, we consider all possible states, that is, the
number of states is incremented by one with the
number of iterative steps. Therefore, the model
has a time complexity of O(n2). The time cost is
T (n) = 9kn2 + 6kn + k, where k is the number
of iterations.

For our model to have the same time complexity
as a generative model, we also use greedy search as
an alternative to the Viterbi algorithm. We define
the following function:

g
xA→sji+1

(sti+1) = p(sti+1|pi), (10)

where pi = (xA, s
j1
1 , ..., sjii ).

We transfer to the state that has the highest trans-
fer probability from the current state sjii :

pi+1 = (pi, argmaxg
xA→sji+1

(sji+1)). (11)

In this case, there is only one sentence as input
in each iteration. Therefore, the model has linear
time complexity, O(n). The time cost is T (n) =
3kn+ k, where k is the number of iterations.

4 Experiments

4.1 Data Sets Used
The statistics of the used corpora are provided in
Table 2.

Yelp The Yelp data set consists of reviews from
Yelp users and is provided by the Yelp Dataset
Challenge. Each sample is a sentence labelled as
having either positive or negative sentiment.

Amazon Similar to Yelp, the Amazon data set
(He and McAuley, 2016) consists of labelled re-
views from Amazon users. We used the latest ver-
sion provided by (Li et al., 2018).

IMDb The IMDb Movie Review (referred to as
IMDb) contains positive and negative reviews of
movies. We used the latest version provided by Dai
et al. (2019), which was created based on previous
work (Maas et al., 2011).

GYAFC Grammarly’s Yahoo Answers Formality
Corpus (GYAFC) (Rao and Tetreault, 2018) is a
parallel corpus of informal and formal sentences.
To achieve unsupervised learning, we shuffled all
of the used sentences in training.
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Model
Amazon Yelp IMDb

ACC. s-BLEU r-BLEU ACC. s-BLEU r-BLEU ACC. s-BLEU
DRG (Li et al., 2018) 52.2% 57.89 ± 2.19 32.47 ± 12.68 84.1% 32.18 ± 2.05 12.28 ± 1.33 55.8% 55.40 ± 1.79
StyTrans (Dai et al., 2019) 67.8% 82.07 ± 1.56 32.88 ± 2.47 92.1% 52.40 ± 2.14 19.91 ± 2.01 86.6% 66.20 ± 1.55
DGST (Li et al., 2020) 59.2% 83.02 ± 1.25 42.20 ± 22.37 88.0% 51.77 ± 2.41 19.05 ± 1.89 70.1% 70.20 ± 1.42
TAG (Madaan et al., 2020) 79.4% 58.13 ± 1.46 25.95 ± 1.86 88.6% 47.14 ± 2.23 19.76 ± 1.45 N/A N/A
DIRR (Liu et al., 2021) 62.7% 66.63 ± 2.51 32.68 ± 2.25 91.2% 56.56 ± 1.89 25.60 ± 2.33 83.5% 65.96 ± 1.12
LEWIS (Reid and Zhong, 2021) 71.8% 65.53 ± 1.44 30.61 ± 1.57 89.4% 54.67 ± 1.62 23.85 ± 1.57 N/A N/A
Ours + Greedy Search 72.7% 53.20 ± 1.51 27.32 ± 1.91 92.1% 57.71 ± 1.80 25.26 ± 2.23 90.4% 59.97 ± 1.29
Ours + Viterbi Search 74.3% 65.30 ± 1.33 30.14 ± 1.23 93.0% 59.30 ± 1.72 25.70 ± 2.23 91.1% 63.40 ± 0.82

Table 3: The test results on 3 data sets (sentiment transfer) with 0.95 confidence level. “ACC.” stands for Accuracy,
“s-BLEU” stands for self-BLEU and “r-BLEU” stands for ref-BLEU. We report the results of baselines by following
their official codes and outputs.

4.2 Baselines

We selected six style transfer models for sentiment
transfer comparison and two additional models
for formality transfer comparison. These baseline
models can be broadly divided into two categories.
Models in the first category transfer sentences in
a latent space and include the cross-align model
(Shen et al., 2017), the style-transformer model
(Dai et al., 2019), the DualRL model (Luo et al.,
2019), the DIRR model (Liu et al., 2021) and the
DGST model (Li et al., 2020). Models in the sec-
ond category are based on the substitution of words
and include the DRG model (Li et al., 2018), the
TAG model (Madaan et al., 2020) and the LEWIS
model (Reid and Zhong, 2021).

4.3 Automated Evaluation Metric

Transfer accuracy and content preservation are cur-
rently the most important aspects in evaluating
style transfer models (Huang et al., 2021; Fei et al.,
2021). Following standard practise, we considered
the following metrics.

Transfer Accuracy Accuracy is an important
evaluation metric (Cao et al., 2020; Zhou et al.,
2020) and represents the rate of successful trans-
fer. We trained an attention-based convolutional
neural network as the evaluation classifier fω to
calculate the accuracy. For each corpus, this clas-
sifier is trained on the corresponding train set to
distinguish sentences with two different styles. The
accuracy is the probability that the generated sen-
tences X̂A are judged to possess the target style B.
The computation of accuracy is as follows:

Accuracy = P (B|X̂A;ω) (12)

It should be noted that to avoid information leak-
age, the evaluation classifier is completely different
from the one used in the training period (i.e. fϕ).

Content Preservation The Bilingual Evaluation
Understudy (BLEU) score (Papineni et al., 2002)
measures the similarity between two sentences at
the lexical level. In recent studies (Lample et al.,
2019; Sudhakar et al., 2019), two BLEU scores
were computed: self-BLEU, which is the BLEU
score between the input and output, and ref-BLEU,
which is the BLEU score between the output and
human reference sentences. We used the Natural
Language Toolkit (NLTK) (Bird et al., 2009) to
calculate these sentence BLEU scores.

4.4 Architecture Details

We pre-processed the input data into mini-batches
with a batch size of 64. The MLP used had four
layers with 768 neurons per layer. The activation
function used was the hyperbolic tangent function.
We added a linear layer with 768 neurons after
a BERT to fine-tune it. For training, the Adam
algorithm (Kingma and Ba, 2015) with a learning
rate of 0.0001 was employed to update the models.
All loss functions were based on cross-entropy.

5 Results and Discussion

5.1 Analysis

Table 3 presents the results of sentiment transfer on
the three used data sets. On the Amazon data set,
our model had an accuracy of 74.3%, a self-BLEU
score of 65.30 and a ref-BLEU score of 30.14. In
terms of accuracy, our model surpassed the LEWIS
model, which had similar content retention to that
of our model. The accuracy of our model was lower
than that of the TAG model by 5%; however, the
self-BLEU and ref-BLEU scores of our model were
higher by 7 and 4 points, respectively. The DGST
and StyleTrans models had higher BLEU scores
than the scores of our model; however, examining
the output sentences revealed that many were sim-
ply copied from the input to the output, which was
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not considered a successful transformation.

On the Yelp data set, our model achieved state-of-
the-art performance in all metrics. Even the greedy
search version of our model with linear time com-
plexity outperformed the baselines. The accuracy
and BLEU score of our model were approximately
1% and two points higher, respectively than those
of the StyleTrans and DIRR models.

On the IMDb data set, our model achieved a high
accuracy of 91.1%. In the absence of reference,
only the results of the self-BLEU measurement are
provided. Further, because sentences in the IMDb
dataset are relatively long, a low self-BLEU score
may not directly reflect semantic content retention.

Because the GYAFC data set pertains to formal-
ity transfer, it is listed in Table 4. The accuracy and
self-BLEU score of our model were approximately
7% and 10 points higher, respectively, than those
of the baselines. In terms of the ref-BLEU score,
our proposed model and the StyleTrans model had
comparable results (within 1% error). Therefore,
we can conclude that our model had the highest
overall performance among all compared models.

Data set GYAFC
ACC. self-BLEU ref-BLEU

CrossAlign(Shen et al., 2017) 68.1% 3.77 ± 0.26 2.85 ± 0.20
DualRL(Luo et al., 2019) 72.6% 53.10 ± 1.86 19.27 ± 1.18
StyleTrans(Dai et al., 2019) 74.1% 65.95 ± 1.61 22.11 ± 1.35
DGST(Li et al., 2020) 60.5% 62.62 ± 1.21 15.72 ± 1.13
Ours + Greedy Search 80.7% 76.17 ± 0.90 20.95 ± 1.00
Ours + Viterbi Search 81.0% 76.53 ± 0.90 21.30 ± 1.03

Table 4: The test results on the GYAFC (formality trans-
fer). The confidence level of BLEU is 0.95.

5.2 Manual Evaluation

To further evaluate the performance of our model,
we randomly sampled outputs from of the most
well-performed models (i.e., the TAG model and
the LEWIS model) to perform a human evaluation
on the Amazon and Yelp data set (the two most
commonly used data sets).

Seven individuals participated in the evaluation.
By following (Dai et al., 2019), for each review,
we displayed one input sentence and three trans-
ferred samples to a reviewer. The reviewers were
instructed to separately select the best sentence in
terms of three aspects: the target style, content
preservation and fluency. We also offered the op-
tion ’No preference’ to allow for objectivity.

Model
Amazon Yelp

Style Content Fluency Style Content Fluency
TAG 11.4% 25.7% 22.1% 17.9% 11.4% 24.3%
LEWIS 15.0% 35.0% 37.1% 22.9% 27.1% 28.6%
Ours 30.7% 27.9% 30.0% 35.0% 38.6% 31.4%
No preference 42.9% 11.4% 10.7% 24.3% 22.9% 15.7%

Table 5: Results of human evaluation of sentences pro-
duced by three different models in terms of style, con-
tent and fluency. Following standard practice (Dai et al.,
2019; Madaan et al., 2020), we randomly selected 100
sentences for evaluation.

As illustrated in Table 5, our proposed model
comprehensively outperformed the baselines on
the Yelp dataset. On the Amazon dataset, our
method achieved the highest style transfer rate;
however, the proposed model had slightly poorer
performance than the LEWIS model in terms of
content preservation and fluency.

5.3 Additional Analysis
Current studies focus on how to carefully design
loss functions to train a generator for style trans-
formation (Luo et al., 2019; Lee, 2020). However,
they neglect to analyse the sentence features before
and after the transformation. Therefore, we analyse
the following questions:

1. What is the difference between transforma-
tions in two opposite directions?

2. Do the models retain semantic information?

For the first question, we counted the number of
edit operations used by our model. We calculated
these numbers as percentages to visually compare
the differences for different transfer directions. The
results are presented in Figure 3.

For sentiment transformation, we detected
greater use of the ‘[DEL]’ operation in transfor-
mations from negative-to-positive sentiment. We
supposed that this was due to the presence of more
negations in the negative sentences. By directly
deleting negations, sentences can become posi-
tive. In contrast, positive-to-negative transitions
rely more on the use of ‘[SUB]’ operations. This
signifies that replacing positive adjectives with neg-
ative adjectives is closer to natural human expres-
sion than inserting negations.

We note that the proportion of deletions was
always greater than the proportion of insertions.
According to the scoring rules of the statistical
LM, shorter sentences had a higher probability of
appearing in the target corpus. Thus, shorter sen-
tences were more likely to score higher than longer
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Figure 3: Percentage of the used three edit operations. The results are based on models with Viterbi searching.

Data set Amazon Yelp
TAG (Madaan et al., 2020) 53.51 ± 1.97 57.71 ± 1.94
LEWIS (Reid and Zhong, 2021) 55.32 ± 1.98 63.54 ± 1.87
Ours + Greedy Search 58.10 ± 2.00 64.37 ± 1.95
Ours + Viterbi Search 59.46 ± 1.99 64.86 ± 1.89

Table 6: SBERT scores (0.95 confidence level) between
an output and the corresponding human reference.

Data set Amazon Yelp
TAG (Madaan et al., 2020) 87.64 ± 0.23 90.38 ± 0.32
LEWIS (Reid and Zhong, 2021) 87.96 ± 0.24 91.73 ± 0.32
Ours + Greedy Search 87.69 ± 0.24 91.91 ± 0.35
Ours + Viterbi Search 87.83 ± 0.23 91.96 ± 0.35

Table 7: BERTScores (0.95 confidence level) between
an output and the corresponding human reference.

sentences. In other words, we suppose that shorter
sentences were more likely to be judged as fluent
than longer sentences.

For the second question, we performed anal-
ysis on the data sets that had human references
(i.e. Amazon and Yelp data sets). We calculated
Sentence-BERT (SBERT) scores (Reimers and
Gurevych, 2019) and BERTScores (Zhang et al.,
2020) to reflect the semantic content preservation.
The results are presented in Table 6 and Table 7.
We selected the two best performing models (i.e.
TAG and LEWIS models) for comparison.

The results demonstrate that our models outper-
formed the baselines in terms of semantic similar-
ity to human references. On the Amazon dataset,
our model improved the SBERT score by ap-
proximately four points while obtaining similar

BERTScores with the LEWIS model.
For the Yelp data set, our model improved

the SBERT score by approximately one point
and improved the BERTScore obtaining similar
BERTScores with the LEWIS model.

6 Case Study

To further demonstrate the superiority of our model,
We randomly sampled some positive and negative
sentences from the outputs of our model and base-
lines for comparison, as shown in Table 8.

For the human reference outputs, although the
hired workers were not asked to make minimal
changes to change the sentiment of input sentences,
we noticed that overlaps are commonly between
inputs and human references. In other words, peo-
ple naturally tend to retain content words from an
input sentence when rewriting it.

An interesting thing is that, for the Amazon data
set, comments with 1 or 2 stars are considered to
be negative and comments with 4 or 5 stars are
considered to be positive. However, looking at the
data, not all low scoring reviews contain only nega-
tive sentiment, while not all high scoring reviews
contain only positive sentiment. Furthermore, the
human reference of the Amazon data set is not al-
ways effective. For example, a negative reference
sentence “because it might not be worth full price
.” is labelled as positive. Cases of mislabeling may
be the reason why the models did not perform well
on the Amazon data set.

Comparing the two different search strategies,

300



Yelp Positive to negative Negative to positive
Input it is a cool place , with lots to see and try . unfortunately , it is the worst .
Human nothing to see there , not a nice place . fortunately , it is the best .
TAG it is a shame , not to see and try . great food , great service and the staff is friendly .
DGST it is a sad place , with lots to see and try . overall , it is the best .
DIRR it is a cold place , with no to see and try . fortunately , it is the best .
LEWIS it is a very busy place , with lots to see and try . cajun food , it is the best !
Ours + GS it is a place , with nothing to see and try . seriously , it is the best .
Ours + VS it is a mess , with nothing to see and try . seriously , it is the best .
Amazon Positive to negative Negative to positive
Input for my purpose this is the perfect item . because it is definitely not worth full price .
Human for my purpose this is the worst item. because it might not be worth full price .
TAG for my purpose this is the worst item . because it is definitely not worth full price .
DGST for my purpose this is the perfect item . because it is definitely not worth full price .
DIRR for my purpose this is the same thing . because it is definitely worth full price .
LEWIS for my purpose this is the best game ever made . because it is definitely well made and worth full price .
Ours + GS for my purpose this is the item . because it is definitely well worth full price .
Ours + VS for my purpose this is the worst item . because it is definitely well worth full price .
IMDb Positive to negative Negative to positive
Input i rate this movie 8/10 . please , do n’t see this movie .
StyTrans i rate this movie 4/10 . please , do also see this movie .
DGST i rate this movie 1/10 u , do n’t see this ”
DIRR i rate this movie 1/10 . please , see this movie .
Ours + GS i rate this movie 1/10 . please , do n ’ t miss this movie today .
Ours + VS i rate this movie 1/10 . please , do n ’ t miss this movie .

Table 8: Sentences sampled from sentiment transfer data set. ‘Human’ denotes manual reference. ‘GS’ denotes
‘Greedy Search’ and ‘VS’ denotes ‘Viterbi Search’. Red text stands for failed style transformation, brown text stands
for poor content preservation and blue text stands for suitable transformation.

our model using the Viterbi search generate more
fluent sentences than our model using the greedy
search. However, the model using Viterbi search
has a time complexity of O(n2) and the number
of states linearly increased with the number of it-
erative steps. Further, we find that models using
different search strategies have the same output in
approximately half of the cases.

For the method based on transformation in latent
space (i.e., DGST), it always copies sentences with-
out transferring them into correct style domains.
For this same reason, the DGST model obtained
high BLEU values on all of the used data sets.

For the method based on the modification of
words (i.e., TAG and LEWIS), they will retain the
majority of input words. However, recognition of
style-indicative words may result that part of style-
indicative words are retained and content words are
deleted, that is, examples listed in Table 8.

7 Conclusion

In this study, we proposed a probabilistic model for
sentiment and style transfer on non-parallel data.
We used a classifier and an LM to construct a CRF.
Using dynamic programming search algorithms,

we generated a tag sequence to modify the input
sentences. The experimental results revealed that
our proposed model outperformed the baselines in
terms of accuracy by approximately 2%.

Our future work will focus on the simplification
of the search process. By using the policy gradient
(Williams, 1992) of reinforcement learning, we
might be able to speed up the transfer model.
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