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Abstract

NatiQ is end-to-end text-to-speech system
for Arabic. Our speech synthesizer uses an
encoder-decoder architecture with attention.
We used both tacotron-based models (tacotron-
1 and tacotron-2) and the faster transformer
model for generating mel-spectrograms from
characters. We concatenated Tacotron1 with
the WaveRNN vocoder, Tacotron2 with the
WaveGlow vocoder and ESPnet transformer
with the parallel wavegan vocoder to synthesize
waveforms from the spectrograms. We used
in-house speech data for two voices: 1) neu-
tral male “Hamza”- narrating general content
and news, and 2) expressive female “Amina”-
narrating children story books to train our mod-
els. Our best systems achieve an average Mean
Opinion Score (MOS) of 4.21 and 4.40 for
Amina and Hamza respectively.The objective
evaluation of the systems using word and char-
acter error rate (WER and CER) as well as
the response time measured by real-time fac-
tor favored the end-to-end architecture ESP-
net.NatiQ demo is available online at
https://tts.qcri.org.

1 Introduction

Text to speech (TTS) is among the technolo-
gies that enables many solutions across different
sectors. In the current pandemic time, education
system is challenged with the new norm of distance
and remote education. Teachers are not able to pro-
vide needed attention and support for every student;
more precisely for lower elementary schools where
students are very dependent on the teacher’s guid-
ance to follow the instructions. TTS can elevate
some of this burden by allowing the young children
to hear the content and have it read to them in a
very fluent and pleasing voice. Advances in Neu-
ral technology allow achieving more natural voice
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compared to previous technologies (Kons et al.,
2019).

We present NatiQ, an end-to-end speech system
for Arabic. The system is composed of two inde-
pendent modules: i) the web application and ii) the
speech synthesizer. The web application uses Re-
act Javascript framework to handle dynamic User
Interface and MangoDB to handle session related
information. The system is built upon modern web
technologies, allowing it to run cross-browsers and
platforms. Figure 1 presents a screenshot of the
interface.

Our best synthesizer is based on ESPnet Trans-
former TTS (Li et al., 2019) architecture that
takes input characters in an encoder-decoder frame-
work to output mel-spectograms. The interme-
diate form is then converted into wav form us-
ing the Generative Adversarial Networks vocoder
WaveGAN (Donahue et al., 2019; Yamamoto et al.,
2020). We explored additional architecture includ-
ing Tacotron1 (Wang et al., 2017) and 2 (Shen et al.,
2018) and for vocoders WaveRNN (Kalchbrenner
et al., 2018) and WaveGlow (Prenger et al., 2018)
to synthesize waveforms from the decoded mel-
spectograms.

We built two in-house speech corpora Amina
– a female speaker with expressive narration and
Hamza – a male speaker with neutral narration. The
former is targeted towards education and the latter
is more suitable to broadcast media.

Given that Arabic is typically written with no
short vowels, this required to include additional
processing to the text before exploiting it in the
training. In addition to the short vowels restoration,
diacritization, the pre-processing steps involves seg-
mentation, transcript matching, voice normaliza-
tion and silence reduction. We will further describe
the pipeline and the architecture in detail. The re-
sulting systems were evaluated using both objective
and subjective approaches employing automatic
metrics such as CER and WER; and using MOS.

394

https://tts.qcri.org


Lastely, the systems were assessed with Real-time
Factor to evaluated decoding speed of each model.

Figure 1: NatiQ system in action

Figure 2: NatiQ Architecture.

2 System Architecture

Our NatiQ system is a web-based demonstration
that is composed of two main components:

2.1 Web Application
The web application has two major components;
the frontend and the backend. The frontend is cre-
ated using the React Javascript framework to han-
dle the dynamic User Interface (UI) changes such
updates in generation. The backend is built using
NodeJS and MongoDB to handle sessions, data as-
sociated with these sessions, communication with
models, request inference and authentication. The

frontend presents the user with an input text box
and choice of speakers to choose from. Figure 1
shows a screenshot for the frontend. The responses
from the backend will be presented to the user in a
wave form that the user can listen to or download.

2.2 Speech Synthesis
Now we will describe the overall architecture of
our synthesis model. Figure 2 shows the system
architecture. The preprocessing module involves
converting the numbers, abbreviations and dates
into their vocalized form using linguistic and cus-
tom rules. Next the text is vowelized using Farasa
(Abdelali et al., 2016), which diacritize and restore
short vowels using the syntactic structure of the
sentence.

The synthesizer is an encoder-decoder model
cascaded with a vocoder to generate the wave-
forms. The former converts the preprocessed text
into a mel-spectrum. The latter convert the mel-
spectogram representation into a wave form. Below
we describe different components of our model:

2.2.1 Data
We acquired high quality speech data recorded at
a sampling rate of 44kHz from two speakers. A
female speaker Amina was recorded reading se-
lected passages mainly from children books in
Modern Standard Arabic. The data contains 3964
segments and 50,714 words in total. The style
for this recording is expressive. The second data
Hamza was recorded by a male speaker and in neu-
tral style. This data contains 6005 segments and
80,409 words in total. Figure 3 shows the segments
length distribution for each of the speakers. For
both of the speakers, the average length of the seg-
ments is around 7 seconds or around 12 words per
segment.

Figure 3: Distribution of segments lengths per speakers

2.2.2 Preprocessing
Data preprocessing steps involve: i) diacritization,
ii) speech transcript matching, iii) segmentation,
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and iv) vowel normalization and silence reduction.
Diacritization Arabic has two types of vowels;

namely long vowels, which are explicitly written
in the text, and short vowels (aka diacritics) which
are typically omitted in modern writings as native
speakers can infer them based on contextual infor-
mation. In order to read Arabic words properly,
readers need to restore the missing diacritics and
this is important for machines to pronounce the
text correctly. We diacritized the text using Farasa
(Abdelali et al., 2016). Although Farasa gives an
accuracy above 94% the automatic diacritized data
was, neverthless, reviewed by a language expert to
ensure the accuracy of the annotations. This is im-
portant as some cases (for example named entities
and foreign words) are often even challenging for
a native speaker let alone for the automatic system.
It’s worth mentioning that we built a text normal-
ization layer to convert digits, abbreviations, and
special symbols to words to be fully diacritized by
Farasa. Due to Arabic complexity and ambiguity,
this conversion was not trivial in many cases.

Speech Transcript Matching Although native
speakers don’t require short vowels to correctly pro-
nounce a word, in some rare cases they may make
mistake of pronouncing a word with a wrong vowel.
Rather than correcting the speaker which might re-
quire going back to the studio and re-record the
segment again, we opted to change the transcript
in such cases to reflect what was spoken. This
will save both time and efforts required from the
speaker and the recording studio.

Segmentation Due to the limitation of neural
architectures to handle long audio samples (Shen
et al., 2018), the data is sampled into frames of
10 seconds in average. The segmentation has to
consider the sentence boundaries and not to break
nor the context or the prosody. In general cases,
long silences between segments is a good indicator
but exception were found when related context or
supplemental material that is still considered a part
of the sentence still comes after a long pause.

Text Normalization This includes spelling
out numbers, fractions, abbreviations and ti-
tles into their textual format such as “16.43”
to “ �é
JÖÏ @ 	áÓ Z 	Qk. 	á�
�KC�Kð �éªK. P



@ð Qå��« �é�J�” (stp Ecr wOr-

bEp wvlAvyn jzC mn AlmQp)1 or “Yg. AÓ . X .


@ ÈA�̄ð”

(wqAl O. d. mAjd) to “Yg. AÓ Pñ�J»YË@ 	XA�J�


B@ ÈA�̄ð”

(wqAl AlOstAV Aldktwr mAjd).

1Using Safe Buckwalter Arabic encoding

2.2.3 Models

We trained three models based on Tacotron-1
(Wang et al., 2017), Tacotron-2 (Shen et al., 2018)
and Transformer TTS (Li et al., 2019) recipes. The
choice of these models was driven mainly by: Real-
time decoding and high-quality voice.

Model Tacotron1 builds on top of RNN
sequence-to-sequence architecture. It includes an
encoder, an attention-based decoder, and a post-
processing module. The former takes text as char-
acters and generates a mel-spectrogram. The post-
processing module then generates waveform from
the mel-spectogram. Tacotron1 uses a CBHG-
based encoder which consists of a bank of 1-D con-
volutional filters, followed by highway networks
and a bidirectional gated recurrent unit (GRU). The
decoder is a content-based tanh attention decoder
that generates an 80-band mel-scale spectrogram
as the target. Finally we use WaveRNN (Kalch-
brenner et al., 2018) on top to generate waveforms
from the generated mel-spectograms. WaveRNN is
a single layered RNN network that generates raw
audio samples.

Model Tacotron2 follows the same recipe as
Tacotron1 i.e. RNN-based sequence-to-sequence
encoder-decoder architecture, it consists of a bi-
directional LSTM-based encoder and a unidirec-
tional LSTM-based decoder with location sensi-
tive attention (Zhang et al., 2018). Additionally,
the models employs different vocoder to generate
waveforms. We used the WaveGlow (Prenger et al.,
2018), a flow-based network capable of generating
high quality speech from melspectograms. WaveG-
low is a generative model that generates audio by
sampling from zero mean spherical Gaussian distri-
bution. It uses 12 coupling layers and 12 invertible
1× 1 convolutions.

Model ESPnet Transformer TTS Inspired by
Neural Machine Translation, Transformer TTS (Li
et al., 2019) adapts multi-head self-attention mecha-
nism and feed forward strategy to build an encoder-
decoder model that would convert a sequence of
inputs characters into an output sequence of acous-
tic features (log Mel-filter bank features), the model
provide an adventage over the former models in the
training speed as it uses a feed forward network
compared to recurrent network based-models. Sim-
ilarly to Tacotron1 and Tacotron2 models, Trans-
former TTS requires a vocoder to further convert
the Mel features into wave form. We used Par-
allel WaveGAN (Yamamoto et al., 2020) a non-
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autoregressive WaveNet that uses generative ad-
versarial network to convert the Mel-filter bank
sequences to a waveform.

3 Evaluation

To evaluate the performance of each of the models,
We built an evaluation test set composed of 100
sentences of varying lengths, collected from six
domains including: Culture, Economy, Literature,
Politics, Sports, and Technology. The sentences
were collected between Jan 1st to Jan 20th, 2022.
They include excerpts from current topics and news.
We decoded each sentence using the models and for
each of the voices. This resulted in a pool of 600
audio files to evaluate. We carried automatic and
manual (subjective) evaluations described below:

3.1 Automatic Evaluation
We used state-of-the-art Arabic ASR system (Hus-
sein et al., 2022) to decode the audio files generated
by our TTS models. The ASR system gives state of
the art performance on a number of standard data
sets such as MGB-3 (Ali et al., 2017) and MGB-
5 (Ali et al., 2019). We then compare the generated
transcripts against the input sentences for which
TTS outputs are generated. As the ASR system
generates unvowelized text, we strip short vowels
from the reference original text to allow a fair com-
parison. We used standard evaluation metrics Word
Error Rate (WER) and Charecter Error Rate (CER).
Table 1 shows the results using the automatic ap-
proach. The system built using ESPnet2 gave the
lowest WER and CER. Additionally, the neutral
voice “Hamza” achieved a lower error rate when
compared to the expressive “Amina”. This high-
lights the challenges dealing with non-monotonic
voices which are typically richer and has more fea-
tures that the network needs to capture (Valle et al.,
2019). For Amina, Tacotron1 results are not worse
than the leading ESPnet2 system; which potentially
means that Tacotron1 is better at handling richer
features. Tacotron2 suffers more from deletion, and
substitution errors, this is the main cause for the
CER/WER to be higher than other models.

3.2 Qualitative Evaluation
We recruited 14 individuals (7 females and 7 males)
to carry the manual subjective evaluation. The
participants were instructed to listen to the au-
dio and give their opinion on the speech qual-
ity using a scale from 1 to 5; The five-category
MOS scale (Guski, 1997): 5 = excellent, 4 =

Amina Hamza
CER WER CER WER

ESPnet2 17.47 40.42 8.01 24.87
Tacotron1 22.51 43.98 27.48 46.12
Tacotron2 40.76 64.80 82.38 93.62

Table 1: CER and WER evaluation results.

Amina Hamza
ESPnet2 3.57 4.40
Tacotron1 4.21 4.38
Tacotron2 3.49 2.34

Table 2: MOS evaluation results for the three systems.

good, 3 = fair, 2 = poor, 1 = bad. Each par-
ticipants was presented with a set of 15 random
samples from the pool. The overall results pre-
sented in Table 2 shows that the participants fa-
vored ESPNet:Hamza and Tacotron1:Amina. The
results of ESPNet:Hamza are very comparable to
the Tacotron1:Hamza. The results also shows that
participants preferred the neutral voice over expres-
sive one. Literature also reports that typically evalu-
ators prefer neutral over expressive and expressivity
is better perceived when the samples have a high
quality (Tahon et al., 2017). The qualitative results
are closely aligned with automatic evaluation, the
differences in CER/WER between ESPNet:Amina
and Tacotron1:Amina are less pronounced when
compared to Hamza.

3.3 Speed

Lastly, another metric to evaluate the system, we
used Real-time Factor (RTF): the ratio of the
speech generation time to the utterance duration.
Such measure is very crucial and essential in the
deployment of any system, especially for real-time
use. For a system to be considered real-time, RTF
should be <= 1 (Pratap et al., 2020). Having a
low RTF, will ensure that the system latency is
reasonable and acceptable and indicate that the sys-
tem can be used in real-time applications. Table 3
shows the average RTF for the three systems run-
ning on a 4 Cores Intel(R) Xeon(R) CPU E5-2640
v4 @ 2.40GHz and 32Gb of RAM and powered by
NVIDIA Tesla V100 SXM2 32Gb GPU. The end-
to-end ESPnet2 system, is the clear winner with
a an RTF equal to 0.09 which is 1.5 and 17 times
faster than Tacotron2 and Tacotron1 respectively.
None of the systems run real-time on CPU. Our
fastest system ESPnet2 runs at a speed of 4.24xRT.
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RTF
Model GPU CPU
ESPnet2 0.09 4.24
Tacotron1 1.66 -
Tacotron2 0.14 -

Table 3: Realtime Factor evaluation results.

4 Conclusion

We presented NatiQ Arabic text-to-speech system,
a system based on end-to-end framework that com-
bines Transformer encoder-decoder and WaveGAN
vocoder. The system was evaluated using subjec-
tive metric, Mean Opinion Score and objective
Speed, WER and CER. The system achieved a
MOS of 4.35 and 4.72 for Amina and Hamza re-
spectively. Such performance is very comparable
to English systems (Wang et al., 2017; Shen et al.,
2018) . For the expressive speaker, the performance
of the system still lags behind the neutral one. This
is due to the complex and rich features encoded in
expressive voice. We plan to explore different tech-
niques that exploits the additional features in the
voice such as (Liu et al., 2020) which aim to com-
bine frames and style information as two objective
functions to optimize while training the model.
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