
Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP), pages 381 - 387
December 8, 2022 ©2022 Association for Computational Linguistics

Beyond Arabic: Software for Perso-Arabic Script Manipulation

Alexander Gutkin† Cibu Johny† Raiomond Doctor‡∗ Brian Roark◦ Richard Sproat⊛
Google Research

†United Kingdom ‡India ◦United States ⊛Japan
{agutkin,cibu,raiomond,roark,rws}@google.com

Abstract

This paper presents an open-source software
library that provides a set of finite-state trans-
ducer (FST) components and corresponding
utilities for manipulating the writing sys-
tems of languages that use the Perso-Arabic
script. The operations include various lev-
els of script normalization, including visual
invariance-preserving operations that subsume
and go beyond the standard Unicode normal-
ization forms, as well as transformations that
modify the visual appearance of characters in
accordance with the regional orthographies for
eleven contemporary languages from diverse
language families. The library also provides
simple FST-based romanization and transliter-
ation. We additionally attempt to formalize the
typology of Perso-Arabic characters by provid-
ing one-to-many mappings from Unicode code
points to the languages that use them. While
our work focuses on the Arabic script diaspora
rather than Arabic itself, this approach could
be adopted for any language that uses the Ara-
bic script, thus providing a unified framework
for treating a script family used by close to a
billion people.

1 Introduction

While originally developed for recording Arabic,
the Perso-Arabic script has gradually become one
of the most widely used modern scripts. Through-
out history the script was adapted to record many
languages from diverse language families, with
scores of adaptations still active today. This flexi-
bility is partly due to the core features of the script
itself which over the time evolved from a purely
consonantal script to include a productive system
of diacritics for representing long vowels and op-
tional marking of short vowels and phonologi-
cal processes such as gemination (Bauer, 1996;
Kurzon, 2013). Consequently, many languages
productively evolved their own adaptation of the

∗ On contract from Optimum Solutions, Inc.

Perso-Arabic script to better suit their phonology
by not only augmenting the set of diacritics but
also introducing new consonant shapes.

This paper presents an open-source software li-
brary designed to deal with the ambiguities and
inconsistencies that result from representing var-
ious regional Perso-Arabic adaptations in digital
media. Some of these issues are due to the Uni-
code standard itself, where a Perso-Arabic char-
acter can often be represented in more than one
way (Unicode Consortium, 2021). Others are due
to the lack or inadequacies of input methods and
the instability of modern orthographies for the lan-
guages in question (Aazim et al., 2009; Liljegren,
2018). Such issues percolate through the data
available online, such as Wikipedia and Common
Crawl (Patel, 2020), negatively impacting the qual-
ity of NLP models built with such data. The script
normalization software described below goes be-
yond the standard language-agnostic Unicode ap-
proach for Perso-Arabic to help alleviate some of
these issues.

The library design is inspired by and consis-
tent with prior work by Johny et al. (2021), in-
troduced in §2, who provided a suite of finite-
state grammars for various normalization and (re-
versible) romanization operations for the Brah-
mic family of scripts.1 While the Perso-Arabic
script and the respective set of regional orthogra-
phies we support – Balochi, Kashmiri, Kurdish
(Sorani), Malay (Jawi), Pashto, Persian, Punjabi
(Shahmukhi), Sindhi, South Azerbaijani, Urdu
and Uyghur – is significantly different from those
Brahmic scripts, we pursue a similar finite-state in-
terpretation,2 as described in §3. Implementation
details and simple validation are provided in §4.

1https://github.com/google-research/nisaba
2https://github.com/google-research/nisaba/

tree/main/nisaba/scripts/abjad alphabet

381

https://github.com/google-research/nisaba
https://github.com/google-research/nisaba/tree/main/nisaba/scripts/abjad_alphabet
https://github.com/google-research/nisaba/tree/main/nisaba/scripts/abjad_alphabet

2 Related Work

The approach we take in this paper follows in
spirit the work of Johny et al. (2021) and Gutkin
et al. (2022), who developed a finite-state script
normalization framework for Brahmic scripts. We
adopt their taxonomy and terminology of low-
level script normalization operations, which con-
sist of three types: Unicode-endorsed schemes,
such as NFC; further visually-invariant transfor-
mations (visual normalization); and transforma-
tions that modify a character’s shape but preserve
pronunciation and the overall word identity (read-
ing normalization).

The literature on Perso-Arabic script normal-
ization for languages we cover in this paper is
scarce. The most relevant work was carried out
by Ahmadi (2020) for Kurdish, who provides
a detailed analysis of orthographic issues pecu-
liar to Sorani Kurdish along with corresponding
open-source script normalization software used
in downstream NLP applications, such as neu-
ral machine translation (Ahmadi and Masoud,
2020). In the context of machine transliteration
and spell checking, Lehal and Saini (2014) in-
cluded language-agnostic minimal script normal-
ization as a preprocessing step in their open-source
n-gram-based transliterator from Perso-Arabic to
Brahmic scripts. Bhatti et al. (2014) introduced
a taxonomy of spelling errors for Sindhi, includ-
ing an analysis of mistakes due to visually confus-
able characters. Razak et al. (2018) provide a good
overview of confusable characters for Malay Jawi
orthography. For other languages the regional
writing system ambiguities are sometimes men-
tioned in passing, but do not constitute the main
focus of work, as is the case with Punjabi Shah-
mukhi (Lehal and Saini, 2012) and Urdu (Humay-
oun et al., 2022). The specific Perso-Arabic script
ambiguities that abound in the online data are of-
ten not exhaustively documented, particularly in
work focused on multilingual modeling (N. C.,
2022; Bapna et al., 2022). As one moves towards
lesser-resourced languages, such as Kashmiri and
Uyghur, the NLP literature provides no treatment
of script normalization issues and the only reli-
able sources of information are the proposal and
discussion documents from the Unicode Techni-
cal Committee (e.g., Bashir et al., 2006; Aazim
et al., 2009; Pournader, 2014). A forthcoming pa-
per by Doctor et al. (2022) covers the writing sys-
tem differences between these languages in more

Op. Type FST Language-dep. Includes

NFC N no −
Common Visual Vc no N
Visual V yes Vc

Reading R yes −
Romanization M no Vc

Transliteration T no −

Table 1: Summary of script transformation operations.

detail than we can include in this short paper.
One area particularly relevant to this study is

the work by the Internet Corporation for Assigned
Names and Numbers (ICANN) towards develop-
ing a robust set of standards for representing vari-
ous Internet entities in Perso-Arabic script, such as
domain names in URLs. Their particular focus is
on variants, which are characters that are visually
confusable due to identical appearance but differ-
ent encoding, due to similarity in shape or due to
common alternate spellings (ICANN, 2011). In
addition, they developed the first proposal to sys-
tematize the available Perso-Arabic Unicode code
points along the regional lines (ICANN, 2015).
These studies are particularly important for cyber-
security (Hussain et al., 2016; Ginsberg and Yu,
2018; Ahmad and Erdodi, 2021), but also inform
this work.

This software library is, to the best our knowl-
edge, the first attempt to provide a principled ap-
proach to Perso-Arabic script normalization for
multiple languages, for downstream NLP applica-
tions and beyond.

3 Design Methodology

The core components are implemented as individ-
ual FSTs that can be efficiently combined together
in a single pipeline (Mohri, 2009). These are
shown in Table 1 and described below.3

Unicode Normalization For the Perso-Arabic
string encodings which yield visually identical
text, the Unicode standard provides procedures
that normalize text to a conventionalized normal
form, such as the well-known Normalization Form
C (NFC), so that visually identical words are
mapped to a conventionalized representative of
their equivalence class (Whistler, 2021). We im-
plemented the NFC standard as an FST, denoted
N in Table 1, that handles three broad types of
transformations: compositions, re-orderings and

3When referring to names of Unicode characters we low-
ercase them and omit the common prefix arabic (letter).

382

FST Letter Variant (source) Canonical

V∗
l ⟨ڑ⟩ reh + small high tah rreh

Vn
l ⟨ک⟩ kaf keheh

V f
l ⟨ی⟩ alef maksura farsi yeh

V i
l ⟨ہ⟩ heh heh goal

Table 2: Example FST components of Vl for Urdu.

combinations thereof.
As an example of a first type, consider the alef

with madda above letter ⟨آ⟩ that can be composed
in two ways: as a single character (U+0622) or
by adjoining maddah above to alef ({ U+0627,
U+0653 }). The FST N rewrites the adjoined form
into its equivalent composed form. The second
type of transformation involves the canonical re-
ordering of the Arabic combining marks, for exam-
ple, the sequence of shadda (U+0651) followed by
kasra (U+0650) is reversed by N . More complex
transformations that combine both compositions
and re-orderings are possible. For example, the se-
quence { alef (U+0627), superscript alef (U+0670),
maddah above (U+0653) } normalizes to its equiv-
alent form { alef with madda above (U+0622), su-
perscript alef (U+0670) }.

Crucially, N is language-agnostic because the
NFC standard it implements does not define any
transformations that violate the writing system
rules of respective languages.

Visual Normalization As mentioned in §2,
Johny et al. (2021) introduced the term visual nor-
malization in the context of Brahmic scripts to
denote visually-invariant transformations that fall
outside the scope of NFC. We adopt their defini-
tion for Perso-Arabic, implementing it as a sin-
gle language-dependent FST V , shown in Table 1,
which is constructed by FST composition: V =
N ◦ Vc ◦ Vl, where ◦ denotes the composition op-
eration (Mohri, 2009).4

The first FST after NFC, denoted Vc, is
language-agnostic, constructed from a small set of
normalizations for visually ambiguous sequences
found online that apply to all languages in our li-
brary. For example, we map the two-character
sequence waw (U+0648) followed by damma
(U+064F) or small damma (U+0619) to u (U+06C7).

The second set of visually-invariant transforma-
tions, denoted Vl, is language-specific and addi-
tionally depends on the position within the word.
Four special cases are distinguished that are rep-

4See Johny et al. (2021) for details on FST composition
and other operations used in this kind of script normalization.

Op. Type FST # states # arcs # Kb

NFC N 156 1557 28.10
Roman. M 32 546 52 257 1487.10
Translit. T 340 518 15.15

Table 3: Language-agnostic FSTs over UTF-8 strings.

resented as FSTs: position-independent rewrites
(V∗

l), isolated-letter rewrites (V i
l), rewrites in the

word-final position (V f
l), and finally, rewrites in

“non-final” word positions, which include visually-
identical word-initial and word-medial rewrites
(Vn

l). The FST Vl is composed as V i
l ◦V f

l ◦Vn
l ◦V∗

l .
Some examples of these transformations for Urdu
orthography are shown in Table 2, where the vari-
ants shown in the third column are rewritten to
their canonical Urdu form in the fourth column.

Reading Normalization This type of normaliza-
tion was introduced for Brahmic scripts by Gutkin
et al. (2022), who noted that regional orthographic
conventions or lack thereof, which oftentimes con-
flict with each other, benefit from normalization
to some accepted form. Whenever such normal-
ization preserves visual invariance, it falls under
the rubric of visual normalization, but other cases
belong to reading normalization, denoted R in Ta-
ble 1. Similar to visual normalization, R is com-
piled from language-specific context-dependent
rewrite rules. One example of such a rewrite is
a mapping from yeh ⟨ي⟩ (U+064A) to farsi yeh ⟨ی⟩
(U+06CC) in Kashmiri, Persian, Punjabi, Sorani
Kurdish and Urdu. For Malay, Sindhi and Uyghur,
the inverse transformation is implemented as man-
dated by the respective orthographies.

For efficiency reasons R is stored independently
of visual normalization V . At run-time, the read-
ing normalization is applied to an input string s
as s′ = (s ◦ V) ◦ R, which is more efficient than
s′ = s ◦ R′, where R′ = V ◦ R.

Romanization and Transliteration We also
provide language-agnostic romanization (M) and
transliteration (T) FSTs. The FST M converts
Perso-Arabic strings to their respective Latin rep-
resentation in Unicode and is defined as M =
N ◦ Vc ◦ Mc, where N and Vc were described
above, and Mc implements a one-to-one mapping
from 198 Perso-Arabic characters to their respec-
tive romanizations using our custom romanization
scheme derived from language-specific Library of
Congress rules (LC, 2022) and various ISO stan-
dards (ISO, 1984, 1993, 1999). For example, in

383

Language Information Visual Normalization (V) Reading Normalization (R)
Code Name # states # arcs # Mb # states # arcs # Mb

azb South Azerbaijani 315 933 635 647 16.49 21 735 0.012
bal Balochi 620 226 1 244 472 32.31 24 738 0.013
ckb Kurdish (Sorani) 1 097 937 2 199 732 57.15 39 753 0.013
fa Persian 940 436 1 884 347 48.96 36 750 0.013
ks Kashmiri 1 772 494 3 547 448 92.21 44 794 0.014
ms Malay 199 777 403 373 10.45 21 735 0.012
pa Punjabi 2 050 154 4 105 465 106.69 24 738 0.013
ps Pashto 291 564 587 552 15.23 24 738 0.013
sd Sindhi 1 703 726 3 403 283 88.53 34 748 0.013
ug Uyghur 1 255 054 2 513 231 65.31 24 738 0.013
ur Urdu 2 071 139 4 138 950 107.65 31 745 0.013

Table 4: Summary of FSTs over UTF-8 strings for visual and reading normalization.

our scheme the Uyghur yu ⟨ۈ⟩ (U+06C8) maps
to ⟨ü⟩. The transliteration FST T converts the
strings from Unicode Latin into Perso-Arabic. It
is smaller than M and is defined as T = M−1

c .

Character-Language Mapping The geography
and scope of Perso-Arabic script adaptations is
vast. To document the typology of the characters
we developed an easy-to-parse mapping between
the characters and the respective languages and/or
macroareas that relate to a group of languages
building on prior work by ICANN (2015). For ex-
ample, using this mapping it is easy to find that
the letter beh with small v below ⟨ࢠ⟩ (U+08A0) is
part of the orthography of Wolof, a language of
Senegal (Ngom, 2010), while gaf with ring ⟨ڰ⟩
(U+06B0) belongs to Saraiki language spoken in
Pakistan (Bashir and Conners, 2019). This map-
ping can be used to auto-generate the orthographic
inventories for lesser-resourced languages.

4 Software Details and Validation

Our software library is implemented using Pynini,
a Python library for constructing finite-state gram-
mars and for performing operations on FSTs (Gor-
man, 2016; Gorman and Sproat, 2021). Each
FST is compiled from the collections of individ-
ual context-dependent letter rewrite rules (Mohri
and Sproat, 1996) and is available in two versions:
over an alphabet of UTF-8 encoded bytes and
over the integer Unicode code points. The FSTs
are stored uncompressed in binary FST archives
(FARs) in OpenFst format (Allauzen et al., 2007).

The summaries of language-agnostic and
language-dependent FSTs over UTF-8 strings are
shown in Table 3 and Table 4, respectively. As
can be seen from the tables, the language-agnostic
and reading normalization FSTs are relatively un-
complicated and small in terms of number of

Lang. s′ = s ◦ V s′ = (s ◦ V) ◦ R
% tokens % types % tokens % types

ckb 18.27 25.84 30.07 41.26
sd 17.32 14.83 21.74 17.31
ur 0.09 1.16 0.10 1.23

Table 5: Percentage of tokens and types changed.

states, arcs and the overall (uncompressed) size on
disk. The visual normalization FSTs are signifi-
cantly larger, which is explained by the number
of composition operations used in their construc-
tion (see §3). The reading normalization FSTs for
South Azerbaijani and Malay shown in Table 4 im-
plement the identity mapping. This is because we
could not find enough examples requiring reading-
style normalization in online data (see the Limita-
tions section for more details).

As an informal sanity check we validate the
prevalence of normalization on word-frequency
lists for Sorani Kurdish (ckb), Sindhi (sd) and
Uyghur (ug) from project Crúbadán (Scannell,
2007). Table 5 shows the percentages of tokens
and types changed (s′ ̸= s) by visual normaliza-
tion on one hand and the combined visual and
reading normalization on the other. Urdu has the
fewest number of modifications compared to So-
rani Kurdish and Sindhi, most likely due to a more
regular orthography and stable input methods man-
ifest in the crawled data. Significantly more ex-
tensive analysis and experiments in statistical lan-
guage modeling and neural machine translation for
the languages covered in this paper are presented
in a forthcoming study (Doctor et al., 2022).

Example The use of the library is demonstrated
by the following Python example that implements
a simple command-line utility for performing read-
ing normalization on a single string using Pynini
APIs. The program requires two FAR files that

384

Lang. Input Output Correct Output

bal دئیٽ دئیت teh
ckb لەشڪر لەشکر keheh
fa مؤسسه موسسه waw
ks ھۍتک ھؠتک kashmiri yeh
pa کئي کئی farsi yeh
sd ڳوهه ڳوہہ heh goal
ug سای ساي yeh
ur صورة صورۃ teh marbuta goal

Table 6: Some examples of reading normalization.

store compiled visual and reading normalization
grammars, the upper-case BCP-47 language code
for retrieving the FST for a given language, and an
input string:5

example.py

from absl import app
from absl import flags
from collections.abc import Iterable, Sequence
import pynini as pyn

flags.DEFINE_string("input", None, "Input string.")
flags.DEFINE_string("lang", None, "Language code.")
flags.DEFINE_string("reading_grm", None, "Reading FAR.")
flags.DEFINE_string("visual_grm", None, "Visual FAR.")
FLAGS = flags.FLAGS

def load_fst(grammar_path: str, lang: str) -> pyn.Fst:
"""Loads FST for specified grammar and language."""
return pyn.Far(grammar_path)[lang]

def apply(text: str, fsts: Iterable[pyn.Fst]) -> str:
"""Applies sequence of FSTs on an input string."""
try:
composed = pyn.escape(text)
for fst in fsts:

composed = (composed @ fst).optimize()
return pyn.shortestpath(composed).string()

except pyn.FstOpError as error:
raise ValueError(f"Error for string `{text}`")

def main(argv: Sequence[str]) -> None:
... initializing FLAGS
visual_fst = load_fst(FLAGS.visual_grm, FLAGS.lang)
reading_fst = load_fst(FLAGS.reading_grm, FLAGS.lang)
out = apply(FLAGS.input, [visual_fst, reading_fst])
print(f"=> {out}")

if __name__ == "__main__":
app.run(main)

The visual and reading FSTs for a given language
are retrieved from the relevant FAR files using
load_fst function. The input string is first con-
verted to a linear FST. The visual and reading nor-
malization FSTs are then sequentially composed
with the input FST and a shortest path algorithm is
applied on the result, which is then converted from
a linear FST back to a Python string in apply func-
tion to yield the final normalized output.

Some examples of reading normalization pro-

5The infrastructure for compiling the Pynini grammars is
described in Johny et al. (2021).

duced using the example.py utility above for
some of the supported languages are shown in Ta-
ble 6. For each language, the input string in the
second column of the table is normalized to a
string shown in the third column. The final col-
umn shows the name of a particular letter in the
output string that replaced the original letter from
the input string, e.g., for Sorani Kurdish (ckb)
the following rewrite occurs: swash kaf (U+06AA)
→ keheh (U+06A9), while for Punjabi (pa), yeh
(U+064A) → farsi yeh (U+06CC).

5 Conclusion and Future Work

We have presented a flexible FST-based software
package for low-level processing of orthographies
based on Perso-Arabic script. We described the
main components of the architecture consisting
of various script normalization operations, roman-
ization/transliteration, and character-language in-
dex. We expect to increase the current lan-
guage coverage of eleven languages to further rel-
atively well-documented orthographies, but also
provide treatment for resource-scarce orthogra-
phies, such as the Ajami orthographies of Sub-
Saharan Africa (Mumin, 2014).

Limitations

When developing the visual and reading normal-
ization rules for the eleven languages described in
this paper we made use of publicly available on-
line data consisting of the respective Wikipedias,
Wikipron (Lee et al., 2020), Crúbadán (Scannell,
2007) and parts of Common Crawl (Patel, 2020).
The latter corpus is particularly noisy and requires
non-trivial filtering (Kreutzer et al., 2022). Fur-
thermore, many Wikipedia and Common Crawl
documents contain code-switched text in several
languages that are recorded in Perso-Arabic. Ro-
bust language identification (LID) is required to
distinguish between tokens in such sentences (for
example, Kashmiri vs. Pashto or Balochi) in or-
der not to confuse between the respective orthogra-
phies. Since we did not have access to robust LID
models for the languages under study, for lesser-
resourced languages such as Kashmiri, Malay in
Jawi orthography, South Azerbaijani and Uyghur,
it is likely that some of the words we used as exam-
ples requiring normalization may have been mis-
classified resulting in normalizations that should
not be there.

385

References
Muzaffar Aazim, Kamal Mansour, and Roozbeh Pour-

nader. 2009. Proposal to add two Kashmiri charac-
ters and one annotation to the Arabic block. Techni-
cal Report L2/09-176, Unicode Consortium.

Humza Ahmad and Laszlo Erdodi. 2021. Overview of
phishing landscape and homographs in Arabic do-
main names. Security and Privacy, 4(4):1–14.

Sina Ahmadi. 2020. KLPT – Kurdish language pro-
cessing toolkit. In Proceedings of Second Workshop
for NLP Open Source Software (NLP-OSS), pages
72–84, Online. Association for Computational Lin-
guistics.

Sina Ahmadi and Maraim Masoud. 2020. Towards
machine translation for the Kurdish language. In
Proceedings of the 3rd Workshop on Technologies
for MT of Low Resource Languages, pages 87–98,
Suzhou, China. Association for Computational Lin-
guistics.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Woj-
ciech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer
library. In International Conference on Implemen-
tation and Application of Automata, pages 11–23.
Springer.

Ankur Bapna, Isaac Caswell, Julia Kreutzer, Orhan Fi-
rat, Daan van Esch, Aditya Siddhant, Mengmeng
Niu, Pallavi Baljekar, Xavier Garcia, Wolfgang
Macherey, Theresa Breiner, Vera Axelrod, Jason
Riesa, Yuan Cao, Mia Xu Chen, Klaus Macherey,
Maxim Krikun, Pidong Wang, Alexander Gutkin,
Apurva Shah, Yanping Huang, Zhifeng Chen,
Yonghui Wu, and Macduff Hughes. 2022. Building
machine translation systems for the next thousand
languages. arXiv preprint arXiv:2205.03983.

Elena Bashir and Thomas J. Conners. 2019. Phonol-
ogy and orthography. In A Descriptive Grammar of
Hindko, Panjabi, and Saraiki, volume 4 of Mouton-
CASL Grammar Series [MCASL]. De Gruyter Mou-
ton.

Elena Bashir, Sarmad Hussain, and Deborah Anderson.
2006. Proposal for characters for Khowar, Torwali,
and Burushaski. Technical Report L2-06/149, Uni-
code Consortium.

Thomas Bauer. 1996. Arabic writing. In Peter Daniels
and William Bright, editors, The World’s Writing
Systems, chapter 50, pages 559–563. Oxford Univer-
sity Press, Oxford.

Zeeshan Bhatti, Imdad Ali Ismaili, Asad Ali Shaikh,
and Waseem Javaid. 2014. Spelling error trends and
patterns in Sindhi. arXiv preprint arXiv:1403.4759.

Raiomond Doctor, Alexander Gutkin, Cibu Johny,
Brian Roark, and Richard Sproat. 2022. Graphemic
normalization of the Perso-Arabic script. In Pro-
ceedings of Grapholinguistics in the 21st Century
(G21C), Paris, France. In press.

Avi Ginsberg and Cui Yu. 2018. Rapid homoglyph
prediction and detection. In Proceedings of the 1st
International Conference on Data Intelligence and
Security (ICDIS), pages 17–23, South Padre Island,
TX, USA. IEEE.

Kyle Gorman. 2016. Pynini: A Python library for
weighted finite-state grammar compilation. In Pro-
ceedings of the SIGFSM Workshop on Statistical
NLP and Weighted Automata, pages 75–80, Berlin,
Germany. Association for Computational Linguis-
tics.

Kyle Gorman and Richard Sproat. 2021. Finite-State
Text Processing, volume 14 of Synthesis Lectures on
Human Language Technologies. Morgan & Clay-
pool Publishers.

Alexander Gutkin, Cibu Johny, Raiomond Doctor,
Lawrence Wolf-Sonkin, and Brian Roark. 2022. Ex-
tensions to Brahmic script processing within the Nis-
aba library: new scripts, languages and utilities. In
Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pages 6450–6460, Mar-
seille, France. European Language Resources Asso-
ciation.

Muhammad Humayoun, Harald Hammarström, and
Aarne Ranta. 2022. Urdu morphology, orthog-
raphy and lexicon extraction. arXiv preprint
arXiv:2204.03071.

Sarmad Hussain, Ahmed Bakhat, Nabil Benamar,
Meikal Mumin, and Inam Ullah. 2016. Enabling
multilingual domain names: addressing the chal-
lenges of the Arabic script top-level domains. Jour-
nal of Cyber Policy, 1(1):107–129.

ICANN. 2011. Arabic case study team: Arabic case
study team issues report. Internationalized Domain
Names (IDN) Variant Issues project, Internet Corpo-
ration for Assigned Names and Numbers (ICANN).

ICANN. 2015. Task force on Arabic script IDN (TF-
AIDN): Proposal for Arabic script Root Zone LGR.
ICANN Internationalized Domain Names (IDN)
program: Proposal documentation, Internet Corpo-
ration for Assigned Names and Numbers (ICANN).
Version 2.7.

ISO. 1984. ISO 233:1984: Transliteration of Arabic
characters into Latin characters. https://www.iso.
org/standard/4117.html. International Organiza-
tion for Standardization.

ISO. 1993. ISO iso 233-2:1993: Transliteration of Ara-
bic characters into Latin characters — Part 2: Arabic
language — Simplified transliteration. https://
www.iso.org/standard/4118.html. International
Organization for Standardization.

ISO. 1999. ISO iso 233-3:1999: Transliteration
of Arabic characters into Latin characters — Part
3: Persian language — Simplified transliteration.
https://www.iso.org/standard/4118.html. In-
ternational Organization for Standardization.

386

https://www.unicode.org/L2/L2009/09176-kashmiri.pdf
https://www.unicode.org/L2/L2009/09176-kashmiri.pdf
https://doi.org/10.1002/spy2.159
https://doi.org/10.1002/spy2.159
https://doi.org/10.1002/spy2.159
https://doi.org/10.18653/v1/2020.nlposs-1.11
https://doi.org/10.18653/v1/2020.nlposs-1.11
https://aclanthology.org/2020.loresmt-1.12
https://aclanthology.org/2020.loresmt-1.12
https://doi.org/https://doi.org/10.1007/978-3-540-76336-9_3
https://doi.org/https://doi.org/10.1007/978-3-540-76336-9_3
https://doi.org/https://doi.org/10.1007/978-3-540-76336-9_3
https://doi.org/10.48550/arXiv.2205.03983
https://doi.org/10.48550/arXiv.2205.03983
https://doi.org/10.48550/arXiv.2205.03983
https://doi.org/10.1515/9781614512257-003
https://doi.org/10.1515/9781614512257-003
https://www.unicode.org/L2/L2006/06149-bashir-prop.pdf
https://www.unicode.org/L2/L2006/06149-bashir-prop.pdf
https://doi.org/10.48550/arXiv.1403.4759
https://doi.org/10.48550/arXiv.1403.4759
https://doi.org/10.1109/ICDIS.2018.00010
https://doi.org/10.1109/ICDIS.2018.00010
https://doi.org/10.18653/v1/W16-2409
https://doi.org/10.18653/v1/W16-2409
https://doi.org/10.2200/S01086ED1V01Y202104HLT050
https://doi.org/10.2200/S01086ED1V01Y202104HLT050
https://aclanthology.org/2022.lrec-1.692
https://aclanthology.org/2022.lrec-1.692
https://aclanthology.org/2022.lrec-1.692
https://doi.org/10.48550/arXiv.2204.03071
https://doi.org/10.48550/arXiv.2204.03071
https://doi.org/10.1080/23738871.2016.1157618
https://doi.org/10.1080/23738871.2016.1157618
https://doi.org/10.1080/23738871.2016.1157618
http://archive.icann.org/en/topics/new-gtlds/arabic-vip-issues-report-07oct11-en.pdf
http://archive.icann.org/en/topics/new-gtlds/arabic-vip-issues-report-07oct11-en.pdf
https://www.icann.org/en/system/files/files/arabic-lgr-proposal-23aug15-en.pdf
https://www.icann.org/en/system/files/files/arabic-lgr-proposal-23aug15-en.pdf
https://www.iso.org/standard/4117.html
https://www.iso.org/standard/4117.html
https://www.iso.org/standard/4118.html
https://www.iso.org/standard/4118.html
https://www.iso.org/standard/4118.html

Cibu Johny, Lawrence Wolf-Sonkin, Alexander Gutkin,
and Brian Roark. 2021. Finite-state script normal-
ization and processing utilities: The Nisaba Brahmic
library. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: System Demonstrations, pages
14–23, Online. Association for Computational Lin-
guistics.

Julia Kreutzer, Isaac Caswell, Lisa Wang, Ahsan Wa-
hab, Daan van Esch, Nasanbayar Ulzii-Orshikh, Al-
lahsera Tapo, Nishant Subramani, Artem Sokolov,
Claytone Sikasote, Monang Setyawan, Supheak-
mungkol Sarin, Sokhar Samb, Benoı̂t Sagot, Clara
Rivera, Annette Rios, Isabel Papadimitriou, Sa-
lomey Osei, Pedro Ortiz Suarez, Iroro Orife, Kelechi
Ogueji, Andre Niyongabo Rubungo, Toan Q.
Nguyen, Mathias Müller, André Müller, Sham-
suddeen Hassan Muhammad, Nanda Muhammad,
Ayanda Mnyakeni, Jamshidbek Mirzakhalov, Tapi-
wanashe Matangira, Colin Leong, Nze Lawson,
Sneha Kudugunta, Yacine Jernite, Mathias Jenny,
Orhan Firat, Bonaventure F. P. Dossou, Sakhile
Dlamini, Nisansa de Silva, Sakine Çabuk Ballı,
Stella Biderman, Alessia Battisti, Ahmed Baruwa,
Ankur Bapna, Pallavi Baljekar, Israel Abebe Azime,
Ayodele Awokoya, Duygu Ataman, Orevaoghene
Ahia, Oghenefego Ahia, Sweta Agrawal, and Mofe-
toluwa Adeyemi. 2022. Quality at a glance: An au-
dit of web-crawled multilingual datasets. Transac-
tions of the Association for Computational Linguis-
tics, 10:50–72.

Dennis Kurzon. 2013. Diacritics and the Perso-Arabic
script. Writing Systems Research, 5(2):234–243.

LC. 2022. ALA-LC romanization tables. http:
//loc.gov/catdir/cpso/roman. The Library of
Congress. Updated: 08/24/2022.

Jackson L. Lee, Lucas F.E. Ashby, M. Elizabeth Garza,
Yeonju Lee-Sikka, Sean Miller, Alan Wong, Arya D.
McCarthy, and Kyle Gorman. 2020. Massively
multilingual pronunciation modeling with WikiPron.
In Proceedings of the Twelfth Language Resources
and Evaluation Conference, pages 4223–4228, Mar-
seille, France. European Language Resources Asso-
ciation.

Gurpreet Singh Lehal and Tejinder Singh Saini. 2012.
Conversion between scripts of Punjabi: Beyond sim-
ple transliteration. In Proceedings of COLING 2012:
Posters, pages 633–642, Mumbai, India. The COL-
ING 2012 Organizing Committee.

Gurpreet Singh Lehal and Tejinder Singh Saini. 2014.
Sangam: A perso-Arabic to indic script machine
transliteration model. In Proceedings of the 11th
International Conference on Natural Language Pro-
cessing, pages 232–239, Goa, India. NLP Associa-
tion of India.

Henrik Liljegren. 2018. Supporting and sustaining
language vitality in Northern Pakistan. In Leanne
Hinton, Leena Huss, and Gerald Roche, editors,

The Routledge Handbook of Language Revitaliza-
tion, pages 427–437. Routledge.

Mehryar Mohri. 2009. Weighted automata algorithms.
In Manfred Droste, Werner Kuich, and Heiko Vogler,
editors, Handbook of Weighted Automata, Mono-
graphs in Theoretical Computer Science, pages 213–
254. Springer.

Mehryar Mohri and Richard Sproat. 1996. An efficient
compiler for weighted rewrite rules. In 34th An-
nual Meeting of the Association for Computational
Linguistics, pages 231–238, Santa Cruz, California,
USA. Association for Computational Linguistics.

Meikal Mumin. 2014. The Arabic script in Africa:
Understudied literacy. In Meikal Mumin and Kees
Versteegh, editors, The Arabic Script in Africa, vol-
ume 71 of Studies in Semitic Languages and Linguis-
tics, pages 41–76. Brill, Leiden, The Netherlands.

Gokul N. C. 2022. Unified NMT models for the In-
dian subcontinent, transcending script-barriers. In
Proceedings of the Third Workshop on Deep Learn-
ing for Low-Resource Natural Language Processing,
pages 227–236, Hybrid. Association for Computa-
tional Linguistics.

Fallou Ngom. 2010. Ajami scripts in the Senegalese
speech community. Journal of Arabic and Islamic
Studies, 10:1–23.

Jay M. Patel. 2020. Introduction to Common Crawl
datasets. In Getting Structured Data from the Inter-
net, pages 277–324. Springer.

Roozbeh Pournader. 2014. The right HEHs for Arabic
script orthographies of Sorani Kurdish and Uighur.
Technical Report L2/14-136, Unicode Consortium.

Sitti Munirah Abdul Razak, Muhamad Sadry Abu Se-
man, Wan Ali Wan Yusoff Wan Mamat, and Noor
Hasrul Nizan Mohammad Noor. 2018. Translit-
eration engine for union catalogue of Malay
manuscripts in Malaysia: E-Jawi Version 3. In
2018 International Conference on Information and
Communication Technology for the Muslim World
(ICT4M), pages 58–63. IEEE.

Kevin P. Scannell. 2007. The Crúbadán Project: Cor-
pus building for under-resourced languages. In
Building and Exploring Web Corpora (WAC3-2007):
Proceedings of the 3rd Web as Corpus Workshop,
volume 4, pages 5–15. Presses universitaires de Lou-
vain. http://crubadan.org/.

Unicode Consortium. 2021. Arabic. In The Unicode
Standard (Version 14.0.0), chapter 9.2, pages 373–
398. Unicode Consortium, Mountain View, CA.

Ken Whistler. 2021. Unicode normalization forms.
Technical Report TR15-51, Unicode Consortium.
Version 14.0.0.

387

https://doi.org/10.18653/v1/2021.eacl-demos.3
https://doi.org/10.18653/v1/2021.eacl-demos.3
https://doi.org/10.18653/v1/2021.eacl-demos.3
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1080/17586801.2013.799451
https://doi.org/10.1080/17586801.2013.799451
http://loc.gov/catdir/cpso/roman
http://loc.gov/catdir/cpso/roman
https://aclanthology.org/2020.lrec-1.521
https://aclanthology.org/2020.lrec-1.521
https://aclanthology.org/C12-2062
https://aclanthology.org/C12-2062
https://aclanthology.org/W14-5135
https://aclanthology.org/W14-5135
https://doi.org/10.4324/9781315561271
https://doi.org/10.4324/9781315561271
https://doi.org/https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.3115/981863.981894
https://doi.org/10.3115/981863.981894
https://doi.org/10.18653/v1/2022.deeplo-1.23
https://doi.org/10.18653/v1/2022.deeplo-1.23
https://doi.org/10.5617/jais.4599
https://doi.org/10.5617/jais.4599
https://doi.org/10.1007/978-1-4842-6576-5
https://doi.org/10.1007/978-1-4842-6576-5
https://unicode.org/L2/L2014/14136-hehs-sorani-uighur.pdf
https://unicode.org/L2/L2014/14136-hehs-sorani-uighur.pdf
https://doi.org/10.1109/ICT4M.2018.00020
https://doi.org/10.1109/ICT4M.2018.00020
https://doi.org/10.1109/ICT4M.2018.00020
http://crubadan.org/
https://www.unicode.org/versions/Unicode14.0.0/ch09.pdf
https://unicode.org/reports/tr15/

